1
|
Wang H, Zhao X, Wen J, Wang C, Zhang X, Ren X, Zhang J, Li H, Muhatai G, Qu L. Comparative population genomics analysis uncovers genomic footprints and genes influencing body weight trait in Chinese indigenous chicken. Poult Sci 2023; 102:103031. [PMID: 37716235 PMCID: PMC10511812 DOI: 10.1016/j.psj.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023] Open
Abstract
Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.
Collapse
Affiliation(s)
- Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengqian Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Lujiang Qu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China; State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Liu TM. Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine. World J Stem Cells 2021; 13:1826-1844. [PMID: 35069985 PMCID: PMC8727229 DOI: 10.4252/wjsc.v13.i12.1826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.
Collapse
Affiliation(s)
- Tong-Ming Liu
- Agency for Science, Technology and Research, Institute of Molecular and Cell Biology, Singapore 138648, Singapore.
| |
Collapse
|
4
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
5
|
Song B, Fu H, Liu J, Ren K, Weir MD, Schneider A, Wang P, Song Y, Zhao L, Xu H. Bioactive small molecules in calcium phosphate scaffold enhanced osteogenic differentiation of human induced pluripotent stem cells. Dent Mater J 2021; 40:615-624. [PMID: 33814531 DOI: 10.4012/dmj.2019-263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are exciting for regenerative medicine due to their multi-potent differentiation. SB431542 bioactive molecule can activate bone morphogenetic protein-signalling in osteoblasts. The objectives were to: (1) develop a novel injectable calcium phosphate cement (CPC)-SB431542 scaffold for dental/craniofacial bone engineering; and (2) investigate cell proliferation and osteo-differentiation of hiPSC-derived mesenchymal stem cells (hiPSC-MSCs) on CPC-SB431542 scaffold. Three groups were tested: CPC control; CPC with SB431542 inside CPC (CPCSM); CPC with SB431542 in osteogenic medium (CPC+SMM). SB431542 in CPC promoted stem cell proliferation and viability. hiPSC-MSCs differentiated into osteogenic lineage and synthesized bone minerals. CPC with SB431542 showed much greater osteo-expressions and more bone minerals than those without SB431542. In conclusion, hiPSC-MSCs on CPC scaffold containing SB431542 showed excellent osteo-differentiation and bone mineral synthesis for the first time. CPC was a suitable scaffold for delivering stem cells and SB431542 to promote bone regeneration in dental/craniofacial applications.
Collapse
Affiliation(s)
- Bing Song
- Department of Orthopedic Surgery, Shunde Hospital of Southern Medical University.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haijun Fu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology
| | - Jianwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry
| | - Ping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Yang Song
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University
| | - Liang Zhao
- Department of Orthopedic Surgery, Shunde Hospital of Southern Medical University.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Huakun Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| |
Collapse
|
6
|
Zhou P, Shi JM, Song JE, Han Y, Li HJ, Song YM, Feng F, Wang JL, Zhang R, Lan F. Establishing a deeper understanding of the osteogenic differentiation of monolayer cultured human pluripotent stem cells using novel and detailed analyses. Stem Cell Res Ther 2021; 12:41. [PMID: 33413612 PMCID: PMC7792045 DOI: 10.1186/s13287-020-02085-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.
Collapse
Affiliation(s)
- Ping Zhou
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Jia-Min Shi
- College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Jing-E Song
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yu Han
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Hong-Jiao Li
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Ya-Meng Song
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Fang Feng
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Jian-Lin Wang
- College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Rui Zhang
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China. .,College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| |
Collapse
|
7
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
8
|
Chen H, Yang H, Weir MD, Schneider A, Ren K, Homayounfar N, Oates TW, Zhang K, Liu J, Hu T, Xu HHK. An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering. RSC Adv 2020; 10:40157-40170. [PMID: 35520873 PMCID: PMC9057516 DOI: 10.1039/d0ra06873j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Osteomyelitis and post-operative infections are major problems in orthopedic, dental and craniofacial surgeries. It is highly desirable for a tissue engineering construct to kill bacteria, while simultaneously delivering stem cells and enhancing cell function and tissue regeneration. The objectives of this study were to: (1) develop a novel injectable calcium phosphate cement (CPC) scaffold containing antibiotic ornidazole (ORZ) while encapsulating human periodontal ligament stem cells (hPDLSCs), and (2) investigate the inhibition efficacy against Staphylococcus aureus (S. aureus) and the promotion of hPDLSC function for osteogenesis for the first time. ORZ was incorporated into a CPC-chitosan scaffold. hPDLSCs were encapsulated in alginate microbeads (denoted hPDLSCbeads). The ORZ-loaded CPCC+hPDLSCbeads scaffold was fully injectable, and had a flexural strength of 3.50 ± 0.92 MPa and an elastic modulus of 1.30 ± 0.45 GPa, matching those of natural cancellous bone. With 6 days of sustained ORZ release, the CPCC+10ORZ (10% ORZ) scaffold had strong antibacterial effects on S. aureus, with an inhibition zone of 12.47 ± 1.01 mm. No colonies were observed in the CPCC+10ORZ group from 3 to 7 days. ORZ-containing scaffolds were biocompatible with hPDLSCs. CPCC+10ORZ+hPDLSCbeads scaffold with osteogenic medium had 2.4-fold increase in alkaline phosphatase (ALP) activity and bone mineral synthesis by hPDLSCs, as compared to the control group (p < 0.05). In conclusion, the novel antibacterial construct with stem cell delivery had injectability, good strength, strong antibacterial effects and biocompatibility, supporting osteogenic differentiation and bone mineral synthesis of hPDLSCs. The injectable and mechanically-strong CPCC+10ORZ+hPDLSCbeads construct has great potential for treating bone infections and promoting bone regeneration.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, College of Stomatological, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Hui Yang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry Baltimore USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland Baltimore MD 21201 USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University Beijing China
| | - Jin Liu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an Shannxi China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine Baltimore MD 21201 USA
| |
Collapse
|
9
|
Lai K, Xi Y, Du X, Jiang Z, Li Y, Huang T, Miao X, Wang H, Wang Y, Yang G. Activation of Nell-1 in BMSC Sheet Promotes Implant Osseointegration Through Regulating Runx2/Osterix Axis. Front Cell Dev Biol 2020; 8:868. [PMID: 33072736 PMCID: PMC7536315 DOI: 10.3389/fcell.2020.00868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neural epidermal growth factor-like 1 protein (Nell-1) is first studied because of its association with human craniosynostosis. Nell-1 has been used to accelerate the process of fracture healing because of the osteoinductive ability in recent years. However, the role of Nell-1 during the process of osteointegration is unknown. Here we show that activation of Nell-1 in the BMSC sheet promotes osseointegration in vivo and in vitro. We found that overexpression of Nell-1 improved osteogenic differentiation and enhanced matrix mineralization of BMSCs through increasing expression of Runx2 and Osterix. Activation of Nell-1 up-regulated the expression ratio of OPG/RANKL, which might have a negative influence on osteoclast differentiation. Furthermore, we obtained BMSC sheet-implant complexes transfected with lentivirus overexpressing and interfering Nell-1 in in vivo study, and confirmed that overexpression of Nell-1 promoted new bone formation around the implant and increased the bone-implant contacting area percentage. Our results demonstrate that activation of Nell-1 improves implant osteointegration by regulating Runx2/Osterix axis and shows the potential of BMSC sheet-implant complexes in gene therapy.
Collapse
Affiliation(s)
- Kaichen Lai
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yue Xi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Xue Du
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhiwei Jiang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yongzheng Li
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Tingben Huang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Xiaoyan Miao
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Ying Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Guoli Yang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
10
|
Xia K, Cen X, Yu L, Huang X, Sun W, Zhao Z, Liu J. Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation. J Cell Physiol 2020; 235:6010-6022. [PMID: 31985033 DOI: 10.1002/jcp.29526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/09/2020] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important modulators of mesenchymal stem cells (MSCs) in cellular differentiation. However, the regulatory mechanisms of lncRNAs in NEL-like 1 (NELL-1)-induced osteogenic differentiation of human adipose-derived stem cells remain elusive. Expression profiles of lncRNAs and messenger RNAs during NELL-1-induced osteogenesis were obtained using high-throughput sequencing. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene coexpression networks were performed. We identified 323 statistically differentially expressed lncRNAs during osteogenesis and NELL-1-induced osteogenesis, and three lncRNAs (ENST00000602964, ENST00000326734, and TCONS_00006792) were identified as core regulators. Hedgehog pathway markers, including IHH and GLI1, were downregulated, while the antagonists of this pathway (GLI3 and HHIP) were upregulated during NELL-1-induced osteogenesis. In this process, the antagonist of Wnt, SFRP1, was downregulated. According to the analysis, we speculated that lncRNAs played important roles in NELL-1-induced osteogenesis via the crosstalk between Hedgehog and Wnt pathways.
Collapse
Affiliation(s)
- Kai Xia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wentian Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int 2020; 2020:1941629. [PMID: 32300365 PMCID: PMC7146092 DOI: 10.1155/2020/1941629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies currently represent the state of art for tissue regenerative treatment approaches for various diseases and disorders. Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells, using vectors carrying definite transcription factors, have manifested a breakthrough in regenerative medicine, relying on their pluripotent nature and ease of generation in large amounts from various dental and nondental tissues. In addition to their potential applications in regenerative medicine and dentistry, iPSCs can also be used in disease modeling and drug testing for personalized medicine. The current review discusses various techniques for the production of iPSC-derived osteogenic and odontogenic progenitors, the therapeutic applications of iPSCs, and their regenerative potential in vivo and in vitro. Through the present review, we aim to explore the potential applications of iPSCs in dental and nondental tissue regeneration and to highlight different protocols used for the generation of different tissues and cell lines from iPSCs.
Collapse
|
12
|
Huang X, Cen X, Zhang B, Liao Y, Zhao Z, Zhu G, Zhao Z, Liu J. The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis. J Cell Mol Med 2019; 23:8432-8441. [PMID: 31633307 PMCID: PMC6850935 DOI: 10.1111/jcmm.14726] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Bone defects caused heavy social and economic burdens worldwide. Nel-like molecule, type 1 (NELL-1) could enhance the osteogenesis and the repairment of bone defects, while the specific mechanism remains to be elucidated. Circular RNAs (circRNAs) have been found to play critical roles in the tissue development and serve as biomarkers for various diseases. However, it remains unclear that the expression patterns of circRNAs and the roles of them played in recombinant NELL-1-induced osteogenesis of human adipose-derived stem cells (hASCs). In this study, we performed RNA-sequencing to investigate the expression profiles of circRNAs in recombinant NELL-1-induced osteogenic differentiation and identified two key circRNAs, namely circRFWD2 and circINO80. These two circRNAs were confirmed to be up-regulated during recombinant NELL-1-induced osteogenesis, and knockdown of them affected the positive effect of NELL-1 on osteogenesis. CircRFWD2 and circINO80 could interact with hsa-miR-6817-5p, which could inhibit the osteogenesis. Silencing hsa-miR-6817-5p could partially reverse the negative effect of si-circRFWD2 and si-circINO80 on the osteogenesis. Therefore, circRFWD2 and circINO80 could regulate the expression of hsa-miR-6817-5p and influence the recombinant NELL-1-induced osteogenic differentiation of hASCs. It opens a new window to better understanding the effects of NELL-1 on the osteogenic differentiation of hASCs and provides potential molecular targets and novel methods for bone regeneration efficiently and safely.
Collapse
Affiliation(s)
- Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of Temporomandibular JointWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuwei Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
13
|
Liu L, Lam WMR, Naidu M, Yang Z, Wang M, Ren X, Hu T, Kumarsing R, Ting K, Goh JCH, Wong HK. Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Eng Part A 2019; 25:1677-1689. [PMID: 31337284 DOI: 10.1089/ten.tea.2019.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue in vivo. Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed. In this study, we employed polyelectrolyte complex (PEC) as a control release carrier for NELL-1 and BMP-2. An ultra-low dose of BMP-2 synergistically functioned with NELL-1 on bone marrow mesenchymal stem cells osteogenic differentiation with greater mineralization in vitro. The osteoinductive ability of NELL-1 and an ultra-low dose of BMP-2 in PEC was investigated in rat posterolateral spinal fusion. Our results showed increased fusion rate, bone architecture, and improved bone stiffness at 8 weeks after surgery in the combination groups compared with NELL-1 or BMP-2 alone. Moreover, the formation of ectopic bone and adipose tissue was negligible in all the PEC groups. In summary, dual delivery of NELL-1 and an ultra-low dose of BMP-2 in the PEC control release carrier has greater fusion efficiency compared with BMP-2 alone and could potentially be a better alternative to the currently used BMP-2 treatments for spinal fusion. Impact Statement In this study, polyelectrolyte complex was used to absorb neural epidermal growth factor like-like molecule-1 (NELL-1) and bone morphogenetic protein 2 (BMP-2) to achieve controlled dual release. The addition of NELL-1 significantly reduced the effective dose of BMP-2 to 2.5% of its conventional dose in absorbable collagen sponge, to produce solid spinal fusion without significant adverse effects. This study was the first to identify the efficacy of combination NELL-1 and BMP-2 in a control release carrier in spinal fusion, which could be potentially used clinically to increase fusion rate and avoid the adverse effects commonly associated with conventional BMP-2.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wing Moon Raymond Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mathanapriya Naidu
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiafei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Shanghai, China
| | - Ramruttun Kumarsing
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kang Ting
- Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California
| | - James Cho-Hong Goh
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Zhuang XM, Zhou B, Yuan KF. Role of p53 mediated miR-23a/CXCL12 pathway in osteogenic differentiation of bone mesenchymal stem cells on nanostructured titanium surfaces. Biomed Pharmacother 2019; 112:108649. [PMID: 30784930 DOI: 10.1016/j.biopha.2019.108649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Titanium surface modification is widely established and has been proven to improve the osseointegration, but the molecular mechanism remains to be fully elucidated. MicroRNAs serve vital roles in the process of regulating osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, we report that miR-23a was significantly down-regulated in the osteogenic differentiation process of BMSCs on nanostructured titanium surfaces. Elevated miR-23a inhibited osteogenic differentiation of BMSCs, and decreased miR-23a enhanced this process. In addition, we also observed that CXCL12 was a direct target of miR-23a. Knockdown of CXCL12 inhibited nanotube Ti induced-osteogenic differentiation of BMSCs, similar to the effect of upregulation of miR-23a. Finally, p53 was decreased and it regulated miR-23a/CXCL12 axis during nanotube Ti induced-osteogenic differentiation of BMSCs. Therefore, our findings suggest that by targeting CXCL12, miR-23a serves a vital role in osteogenic differentiation of BMSCs cultured on nanostructured titanium surfaces, which may provide novel clinical treatments for osseointegration.
Collapse
Affiliation(s)
- Xiu-Mei Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bin Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Kai-Fang Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
15
|
Deng R, Law AHY, Shen J, Chan GCF. Mini Review: Application of Human Mesenchymal Stem Cells in Gene and Stem Cells Therapy Era. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Sladkova M, Palmer M, Öhman C, Cheng J, Al-Ansari S, Saad M, Engqvist H, de Peppo GM. Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds. J Tissue Eng Regen Med 2017. [PMID: 28635177 DOI: 10.1002/term.2491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone engineering opens the possibility to grow large amounts of tissue products by combining patient-specific cells with compliant biomaterials. Decellularized tissue matrices represent suitable biomaterials, but availability, long processing time, excessive cost, and concerns on pathogen transmission have led to the development of biomimetic synthetic alternatives. We recently fabricated calcium phosphate cement (CPC) scaffolds with variable macroporosity using a facile synthesis method with minimal manufacturing steps and demonstrated long-term biocompatibility in vitro. However, there is no knowledge on the potential use of these scaffolds for bone engineering and whether the porosity of the scaffolds affects osteogenic differentiation and tissue formation in vitro. In this study, we explored the bone engineering potential of CPC scaffolds with two different macroporosities using human mesenchymal progenitors derived from induced pluripotent stem cells (iPSC-MP) or isolated from bone marrow (BMSC). Biomimetic decellularized bone scaffolds were used as reference material in all experiments. The results demonstrate that, irrespective of their macroporosity, the CPC scaffolds tested in this study support attachment, viability, and growth of iPSC-MP and BMSC cells similarly to decellularized bone. Importantly, the tested materials sustained differentiation of the cells as evidenced by increased expression of osteogenic markers and formation of a mineralized tissue. In conclusion, the results of this study suggest that the CPC scaffolds fabricated using our method are suitable to engineer bone grafts from different cell sources and could lead to the development of safe and more affordable tissue grafts for reconstructive dentistry and orthopaedics and in vitro models for basic and applied research.
Collapse
Affiliation(s)
- Martina Sladkova
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Michael Palmer
- Division of Applied Material Sciences, Uppsala University, Uppsala, Sweden
| | - Caroline Öhman
- Division of Applied Material Sciences, Uppsala University, Uppsala, Sweden
| | - Jiayi Cheng
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Shoug Al-Ansari
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Munerah Saad
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Håkan Engqvist
- Division of Applied Material Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
17
|
Ardeshirylajimi A. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering. J Cell Biochem 2017; 118:3034-3042. [DOI: 10.1002/jcb.25996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisMissouri
| |
Collapse
|
18
|
Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi K, Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Prolif 2017; 50:e12321. [PMID: 27905670 PMCID: PMC6529104 DOI: 10.1111/cpr.12321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are frequently used for bone regeneration, however, they are limited in quantity. Moreover, their proliferation and differentiation capabilities reduce during cell culture expansion. Potential application of induced pluripotent stem cells (iPSCs) has been reported as a promising alternative source for bone regeneration. This study aimed to systematically review the available literature on osteogenic potential of iPSCs and to discuss methods applied to enhance their osteogenic potential. METHODS AND MATERIALS A thorough search of MEDLINE database was performed from January 2006 to September 2016, limited to English-language articles. All in vitro and in vivo studies on application of iPSCs in bone regeneration were included. RESULTS The current review is organized according to the PRISMA statement. Studies were categorized according to three different approaches used for osteo-induction of iPSCs. Data are summarized and reported according to the following variables: types of study, cell sources used for iPSC generation, applied reprogramming methods, applied osteo-induction methods and treatment groups. CONCLUSION According to the articles reviewed, osteo-induced iPSCs revealed osteogenic capability equal to or superior than MSCs; cell sources do not significantly affect osteogenic potential of iPSCs; addition of resveratrol to the osteogenic medium (OM) and irradiatiation after osteogenic induction reduce teratoma formation in animal models; transfection with lentiviral bone morphogenetic protein 2 results in higher mineralization compared to osteo-induction in OM; addition of TGF-β, IGF-1 and FGF-β to OM increases osteogenic capability of iPSCs.
Collapse
Affiliation(s)
- Farshid Bastami
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Pantea Nazeman
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hamidreza Moslemi
- School of DentistryShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Rezai Rad
- Medical Nano‐Technology & Tissue Engineering Research CenterSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Kazem Sharifi
- Department of BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arash Khojasteh
- Department of Tissue EngineeringSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
19
|
Ullah M, Kuroda Y, Bartosh TJ, Liu F, Zhao Q, Gregory C, Reger R, Xu J, Lee RH, Prockop DJ. iPS-derived MSCs from an expandable bank to deliver a prodrug-converting enzyme that limits growth and metastases of human breast cancers. Cell Death Discov 2017; 3:16064. [PMID: 28179988 PMCID: PMC5292869 DOI: 10.1038/cddiscovery.2016.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 12/12/2022] Open
Abstract
One attractive strategy to treat cancers is to deliver an exogenous enzyme that will convert a non-toxic compound to a highly toxic derivative. The strategy was tested with viral vectors but was disappointing because the efficiency of transduction into tumor cells was too low. Recent reports demonstrated that the limitation can be addressed by using tissue-derived mesenchymal stromal cells (MSCs) to deliver enzyme/prodrug systems that kill adjacent cancer cells through bystander effects. Here we addressed the limitation that tissue-derived MSCs vary in their properties and are difficult to generate in the large numbers needed for clinical applications. We prepared a Feeder Stock of MSCs from induced pluripotent stem cells (iPSs) that provided an extensively expandable source of standardized cells. We then transduced the iPS-derived MSCs to express cytosine deaminase and injected them locally into a mouse xenogeneic model of human breast cancer. After administration of the prodrug (5-fluorocytosine), the transduced iPS-MSCs both limited growth of preformed tumors and decreased lung metastases.
Collapse
Affiliation(s)
- M Ullah
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - Y Kuroda
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - T J Bartosh
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - F Liu
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - Q Zhao
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - C Gregory
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - R Reger
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - J Xu
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - R H Lee
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| | - D J Prockop
- Institute for Regenerative Medicine
at Scott & White, Texas A&M University and Health Science Center,
College of Medicine, Temple, TX
76502, USA
| |
Collapse
|
20
|
Abstract
Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.
Collapse
|
21
|
Sladkova M, Palmer M, Öhman C, Alhaddad RJ, Esmael A, Engqvist H, de Peppo GM. Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:640-52. [DOI: 10.1016/j.msec.2016.06.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/07/2016] [Accepted: 06/23/2016] [Indexed: 02/02/2023]
|
22
|
Wu Q, Yang B, Hu K, Cao C, Man Y, Wang P. Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:1-8. [PMID: 27392674 DOI: 10.1089/ten.teb.2015.0559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Induced pluripotent stem cells (iPSCs), reprogrammed from adult somatic cells using defined transcription factors, are regarded as a promising cell source for tissue engineering. For the purpose of bone tissue regeneration, efficient in vitro differentiation of iPSCs into downstream cells, such as mesenchymal stem cells (MSCs), osteoblasts, or osteocyte-like cells, before use is necessary to limit undesired tumorogenesis associated with the pluripotency of iPSCs. Until recently numerous techniques on the production of iPSC-derived osteogenic progenitors have been introduced. We reviewed these protocols and provided a perspective on the comparisons of osteogenic potentials of (1) iPSC-derived osteogenic cells produced by different protocols, (2) iPSCs from different somatic origins, and (3) iPSC-derived MSC-like cells and bone marrow stem cells. Finally, we discussed the potential application of the diseased iPSCs for systematic bone disorders.
Collapse
Affiliation(s)
- Qingqing Wu
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bo Yang
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Kevin Hu
- 2 University of Maryland Dental School , Baltimore, Maryland
| | - Cong Cao
- 3 Department of Stomatology, China-Japan Friendship Hospital , Beijing, China
| | - Yi Man
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Ping Wang
- 1 State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China .,2 University of Maryland Dental School , Baltimore, Maryland
| |
Collapse
|
23
|
Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, Chen C, Li X, Zhang C, Huang Y. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci 2016; 12:639-52. [PMID: 27194942 PMCID: PMC4870708 DOI: 10.7150/ijbs.14025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/27/2016] [Indexed: 12/22/2022] Open
Abstract
The vascularization of tissue-engineered bone is a prerequisite step for the successful repair of bone defects. Hypoxia inducible factor-1α (HIF-1α) plays an essential role in angiogenesis-osteogenesis coupling during bone regeneration and can activate the expression of angiogenic factors in mesenchymal stem cells (MSCs). Dimethyloxaloylglycine (DMOG) is an angiogenic small molecule that can inhibit prolyl hydroxylase (PHD) enzymes and thus regulate the stability of HIF-1α in cells at normal oxygen tension. Human induced pluripotent stem cell-derived MSCs (hiPSC-MSCs) are promising alternatives for stem cell therapy. In this study, we evaluated the effect of DMOG on promoting hiPSC-MSCs angiogenesis in tissue-engineered bone and simultaneously explored the underlying mechanisms in vitro. The effectiveness of DMOG in improving the expression of HIF-1α and its downstream angiogenic genes in hiPSC-MSCs demonstrated that DMOG significantly enhanced the gene and protein expression profiles of angiogenic-related factors in hiPSC-MSCs by sustaining the expression of HIF-1α. Further analysis showed that DMOG-stimulated hiPSC-MSCs angiogenesis was associated with the phosphorylation of protein kinase B (Akt) and with an increase in VEGF production. The effects could be blocked by the addition of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. In a critical-sized calvarial defect model in rats, DMOG-treated hiPSC-MSCs showed markedly improved angiogenic capacity in the tissue-engineered bone, leading to bone regeneration. Collectively, the results indicate that DMOG, via activation of the PI3K/Akt pathway, promotes the angiogenesis of hiPSC-MSCs in tissue-engineered bone for bone defect repair and that DMOG-treated hiPSC-MSCs can be exploited as a potential therapeutic tool in bone regeneration.
Collapse
Affiliation(s)
- Jieyuan Zhang
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junjie Guan
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xin Qi
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hao Ding
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hong Yuan
- 2. Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongping Xie
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chunyuan Chen
- 3. Graduate School of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaolin Li
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Changqing Zhang
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yigang Huang
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
24
|
Dong X, Li H, Zhou Y, Ou L, Cao J, Chang J. The stimulation of osteogenic differentiation of embryoid bodies from human induced pluripotent stem cells by akermanite bioceramics. J Mater Chem B 2016; 4:2369-2376. [PMID: 32263232 DOI: 10.1039/c6tb00398b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have great potential as seed cells for tissue engineering applications. Previous studies have shown that iPSCs could be induced to differentiate into bone forming cells. However, in a tissue engineering approach, seeding cells in biomaterials is required, and the effect of biomaterials on cell growth and differentiation is critical for the success of the formation of engineered tissues. In this study, we investigated the effect of akermanite, a bioactive ceramic, on the osteogenic differentiation of embryoid body (EB) cells derived from human iPSCs. The results showed that, in the presence of osteogenic factors (ascorbic acid, dexamethasone, and β-glycerophosphate), ionic extracts of akermanite enhanced the osteogenic differentiation of EB cells as compared with normal osteogenic medium. Alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes such as osteocalcin (OCN), collagen (COL-1), RUNX2, and BMP2 are significantly increased by the stimulation of akermanite ceramic extracts at certain concentration ranges. More interesting is that the medium containing extracts of akermanite but without osteogenic factors also showed stimulatory effects on the osteogenic differentiation of EB cells as compared to normal growth medium without osteogenic factors, such as ascorbic acid, dexamethasone, and β-glycerophosphate, not at the early stage of culture, but only at the later stage of the culture period (21 days). These results suggest that akermanite as a bioactive material together with human iPSCs might be used for bone tissue engineering applications.
Collapse
Affiliation(s)
- Xixi Dong
- Stomatology Department, General Hospital of Chinese PLA, 28 Fu Xing Road, Beijing 100853, China.
| | | | | | | | | | | |
Collapse
|