1
|
Wiesli MG, Huber MW, Weisse B, Zboray R, Kiderlen S, González‐Vázquez A, Maniura‐Weber K, Rottmar M, Lackington WA. Immunomodulation Using BMP-7 and IL-10 to Enhance the Mineralization Capacity of Bone Progenitor Cells in a Fracture Hematoma-Like Environment. Adv Healthc Mater 2025; 14:e2400077. [PMID: 38599586 PMCID: PMC11834375 DOI: 10.1002/adhm.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Following biomaterial implantation, a failure to resolve inflammation during the formation of a fracture hematoma can significantly limit the biomaterial's ability to facilitate bone regeneration. This study aims to combine the immunomodulatory and osteogenic effects of BMP-7 and IL-10 with the regenerative capacity of collagen-hydroxyapatite (CHA) scaffolds to enhance in vitro mineralization in a hematoma-like environment. Incubation of CHA scaffolds with human whole blood leads to rapid adsorption of fibrinogen, significant stiffening of the scaffold, and the formation of a hematoma-like environment characterized by a limited capacity to support the infiltration of human bone progenitor cells, a significant upregulation of inflammatory cytokines and acute phase proteins, and significantly reduced osteoconductivity. CHA scaffolds functionalized with BMP-7 and IL-10 significantly downregulate the production of key inflammatory cytokines, including IL-6, IL-8, and leptin, creating a more permissive environment for mineralization, ultimately enhancing the biomaterial's osteoconductivity. In conclusion, targeting the onset of inflammation in the early phase of bone healing using BMP-7 and IL-10 functionalized CHA scaffolds is a promising approach to effectively downregulate inflammatory processes, while fostering a more permissive environment for bone regeneration.
Collapse
Affiliation(s)
- Matthias Guido Wiesli
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - Matthias Werner Huber
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - Bernhard Weisse
- Laboratory for Mechanical Systems EngineeringEmpaDübendorf8600Switzerland
| | - Robert Zboray
- Center of X‐ray AnalyticsEmpaDübendorf8600Switzerland
| | | | - Arlyng González‐Vázquez
- Tissue Engineering Research GroupRoyal College of Surgeons in IrelandUniversity of Medicine and Health SciencesDublin 2Ireland
| | - Katharina Maniura‐Weber
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - Markus Rottmar
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| | - William Arthur Lackington
- Laboratory for BiointerfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologySt. Gallen9014Switzerland
| |
Collapse
|
2
|
Kamio H, Okabe K, Honda M, Kuroda K, Tsuchiya S. Knockdown of decorin in human bone marrow mesenchymal stem cells suppresses proteoglycan layer formation and establishes a pro-inflammatory environment on titanium oxide surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:5. [PMID: 39775189 PMCID: PMC11706895 DOI: 10.1007/s10856-024-06849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Osseointegration is essential for successful implant treatment. However, the underlying molecular mechanisms remain unclear. In this study, we focused on decorin (DCN), which was hypothesized to be present in the proteoglycan (PG) layer at the interface between bone and the titanium oxide (TiOx) surface. We utilized DCN RNA interference in human bone marrow mesenchymal stem cells (hBMSCs) to investigate its effects on PG layer formation, proliferation, initial adhesion, cell extension, osteogenic capacity, fibrotic markers, and immunotolerance to TiOx in vitro. After 14 days of cultivation, we observed no PG layer was detected, and the osteogenic capacity was suppressed in DCN-depleted hBMSCs. Furthermore, the conditioned medium upregulated the expression of M1 macrophage markers in human macrophages. These results suggest that endogenous DCN plays a crucial role in PG layer formation and that the PG layer alters inflammation around Ti materials.
Collapse
Affiliation(s)
- Hisanobu Kamio
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima city, Hiroshima, Japan
| | - Kazuto Okabe
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Kensuke Kuroda
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Shuhei Tsuchiya
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Lackington WA, Bellon B, Guimond S, Schweizer P, Cancellieri C, Ambeza A, Chopard-Lallier AL, Pippenger B, Armutlulu A, Maeder X, Schmutz P, Rottmar M. Bio-Inspired Micro- and Nano-Scale Surface Features Produced by Femtosecond Laser-Texturing Enhance TiZr-Implant Osseointegration. Adv Healthc Mater 2024; 13:e2400810. [PMID: 38857489 DOI: 10.1002/adhm.202400810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Surface design plays a critical role in determining the integration of dental implants with bone tissue. Femtosecond laser-texturing has emerged as a breakthrough technology offering excellent uniformity and reproducibility in implant surface features. However, when compared to state-of-the-art sandblasted and acid-etched surfaces, laser-textured surface designs typically underperform in terms of osseointegration. This study investigates the capacity of a bio-inspired femtosecond laser-textured surface design to enhance osseointegration compared to state-of-the-art sandblasted & acid-etched surfaces. Laser-texturing facilitates the production of an organized trabeculae-like microarchitecture with superimposed nano-scale laser-induced periodic surface structures on both 2D and 3D samples of titanium-zirconium-alloy. Following a boiling treatment to modify the surface chemistry, improving wettability to a contact angle of 10°, laser-textured surfaces enhance fibrin network formation when in contact with human whole blood, comparable to state-of-the-art surfaces. In vitro experiments demonstrate that laser-textured surfaces significantly outperform state-of-the-art surfaces with a 2.5-fold higher level of mineralization by bone progenitor cells after 28 days of culture. Furthermore, in vivo evaluations reveal superior biomechanical integration of laser-textured surfaces after 28 days of implantation. Notably, during abiological pull-out tests, laser-textured surfaces exhibit comparable performance, suggesting that the observed enhanced osseointegration is primarily driven by the biological response to the surface.
Collapse
Affiliation(s)
- William Arthur Lackington
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Benjamin Bellon
- Institut Straumann AG, Basel, 4052, Switzerland
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, 33720, Finland
| | - Stefanie Guimond
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Peter Schweizer
- Mechanics of Materials & Nanostructures Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, 3603, Switzerland
| | - Claudia Cancellieri
- Joining Technologies & Corrosion Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Antoine Ambeza
- Laser TSE, GF Machining Solutions SA, Geneva, 1242, Switzerland
| | | | - Benjamin Pippenger
- Institut Straumann AG, Basel, 4052, Switzerland
- Department of Periodontology, University of Bern, Bern, 3010, Switzerland
| | | | - Xavier Maeder
- Mechanics of Materials & Nanostructures Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, 3603, Switzerland
| | - Patrik Schmutz
- Joining Technologies & Corrosion Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Markus Rottmar
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| |
Collapse
|
4
|
Giubilini A, Messori M, Bondioli F, Minetola P, Iuliano L, Nyström G, Maniura-Weber K, Rottmar M, Siqueira G. 3D-Printed Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)-Cellulose-Based Scaffolds for Biomedical Applications. Biomacromolecules 2023; 24:3961-3971. [PMID: 37589321 PMCID: PMC10498448 DOI: 10.1021/acs.biomac.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/08/2023] [Indexed: 08/18/2023]
Abstract
While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Massimo Messori
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Federica Bondioli
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Paolo Minetola
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Luca Iuliano
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Gustav Nyström
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Markus Rottmar
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Gilberto Siqueira
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| |
Collapse
|
5
|
Luo F, Li D, Huang Y, Mao R, Wang L, Lu J, Ge X, Fan Y, Zhang X, Chen Y, Wang K. Efficient Osteogenic Activity of PEEK Surfaces Achieved by Femtosecond Laser-Hydroxylation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37232-37246. [PMID: 37486779 DOI: 10.1021/acsami.3c06430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Poly(etheretherketone) (PEEK) is regarded as an attractive orthopedic material because of its good biocompatibility and mechanical properties similar to natural bone. The efficient activation methods for the surfaces of PEEK matrix materials have become a hot research topic. In this study, a method using a femtosecond laser (FSL) followed by hydroxylation was developed to achieve efficient bioactivity. It produces microstructures, amorphous carbon, and grafted -OH groups on the PEEK surface to enhance hydrophilicity and surface energy. Both experimental and simulation results show that our modification leads to a superior ability to induce apatite deposition on the PEEK surface. The results also demonstrate that efficient grafting of C-OH through FSL-hydroxylation can effectively enhance cell proliferation and osteogenic differentiation compared to other modifications, thus improving osteogenic activity. Overall, FSL hydroxylation treatment is proved to be a simple, efficient, and environmentally friendly modification method for PEEK activation. It could expand the applications of PEEK in orthopedics, as well as promote the surface modification and structural design of other polymeric biomaterials to enhance bioactivity.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dongxuan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Cui JT, Wang XY, Mu XD, Huang M, Wang YD, Luo Q, He HX. Bone marrow stromal cell-derived exosome combinate with fibrin on tantalum coating titanium implant accelerates osseointegration. Front Bioeng Biotechnol 2023; 11:1198545. [PMID: 37496851 PMCID: PMC10367419 DOI: 10.3389/fbioe.2023.1198545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
This study aims to present a sustainably releasing system of exosomes-fibrin combinate loaded on tantalum-coating titanium implants. We hope to investigate potential effects of the system on osseointegration between tantalum coating titanium implants and its surrounding bone tissue. Exosomes derived from rabbit bone marrow stromal cells (rBMSCs) and fibrin were deposited onto the micro-nanostructure tantalum coating surface (Ta + exo + FI) and compared to control groups, including tantalum coating (Ta), tantalum coating loaded exosomes (Ta + exo) and tantalum coating loaded fibrin (Ta + FI). The optimal concentration of loading exosomes, exosomes uptake capacity by BMSCs, and the effect of controlled-release by fibrin were assessed by laser scanning confocal microscope (LCSM) and microplate reader. The optimal concentration of exosomes was 1 μg/μL. Adhesion, proliferation, and osteogenic differentiation ability of BMSCs on different materials were assessed in vitro. Finally, osseointegrative capacity of Ta, Ta + exo, Ta + FI, Ta + exo + FI implants in rabbit tibia were respectively evaluated with histology and bone-implant contact ratio (BIC%). It was demonstrated that exosome sustained-release system with fibrin loading on the tantalum coating was successfully established. Fibrin contribute to exosomes release extension from 2d to 6d. Furthermore, Ta + exo + FI significantly promoted adhesion, proliferation, and osteogenic differentiation of BMSCs. In vivo, the implants in Ta + exo + FI group displayed the highest osseointegrative capability than those in other groups. It is concluded that this exosome delivery system on the implants may be an effective way for tantalum coating titanium implants to promote osseointegration between implant and its surrounding bone tissue.
Collapse
Affiliation(s)
- Jian-Tong Cui
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Shannxi Provincial Crops Hospital of Chinese People’s Armed Police Forces, Xian, China
| | - Xin-Yuan Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xiao-Dan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Meng Huang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Di Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qiang Luo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hui-Xia He
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Li J, Zhao J, Xu Y, Xu A, He F. Titanium surface interacting with blood clot enhanced migration and osteogenic differentiation of bone marrow mesenchymal stem cells. Front Bioeng Biotechnol 2023; 11:1136406. [PMID: 37260826 PMCID: PMC10227579 DOI: 10.3389/fbioe.2023.1136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Blood clot formation is the initial phase upon implantation, and the feature of blood clot orchestrates the following complement system activation, coagulation cascade, and bone marrow mesenchymal stromal cells (BMSCs) recruitment. This study aimed to investigate the effect of implant surface on blood-material interactions and subsequent BMSC cellular behaviors. Methods: This study was established to imitate the physiological process of implantation in vivo and in vitro. Whole blood was incubated with polished titanium (PT) surfaces and sandblasted and double acid-etching (SLA) surfaces for 10 min or 2 h, then seeded with BMSCs. The adhesion, proliferation, migration, and differentiation of cells were studied at specific time points. Titanium implants were implanted into the tibia in vivo and were screwed out after implantation. The activation of the coagulation cascade, platelets, complement system, and clot networks were assessed and further quantitatively analyzed. Results: Compared with the PT surface, the SLA surface induced the earlier and stronger blood coagulation cascade and formed a more stratified clots network with fibrinogen, platelets, and CD14 positive cell. The adhesion, proliferation, and migration of BMSCs were enhanced by pre-incubated surfaces. The higher levels of the osteogenic-related genes, ALP activity, and calcium nodule formation were showed on SLA surfaces with blood incubation. Conclusion: SLA titanium surfaces play a role in influencing the formation of blood clots and coordinating surface-blood interactions and cell biological processes. These findings provide the idea of modifying the blood clots formed on the implant surface by biomaterials modification and thus has implications for the development of better osteogenic biomaterials.
Collapse
Affiliation(s)
| | | | | | - Antian Xu
- *Correspondence: Fuming He, ; Antian Xu,
| | - Fuming He
- *Correspondence: Fuming He, ; Antian Xu,
| |
Collapse
|
8
|
Zuardi LR, Silva CLA, Rego EM, Carneiro GV, Spriano S, Nanci A, de Oliveira PT. Influence of a Physiologically Formed Blood Clot on Pre-Osteoblastic Cells Grown on a BMP-7-Coated Nanoporous Titanium Surface. Biomimetics (Basel) 2023; 8:biomimetics8010123. [PMID: 36975353 PMCID: PMC10046195 DOI: 10.3390/biomimetics8010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Titanium (Ti) nanotopography modulates the osteogenic response to exogenous bone morphogenetic protein 7 (BMP-7) in vitro, supporting enhanced alkaline phosphatase mRNA expression and activity, as well as higher osteopontin (OPN) mRNA and protein levels. As the biological effects of OPN protein are modulated by its proteolytic cleavage by serum proteases, this in vitro study evaluated the effects on osteogenic cells in the presence of a physiological blood clot previously formed on a BMP-7-coated nanostructured Ti surface obtained by chemical etching (Nano-Ti). Pre-osteoblastic MC3T3-E1 cells were cultured during 5 days on recombinant mouse (rm) BMP-7-coated Nano-Ti after it was implanted in adult female C57BI/6 mouse dorsal dermal tissue for 18 h. Nano-Ti without blood clot or with blood clot at time 0 were used as the controls. The presence of blood clots tended to inhibit the expression of key osteoblast markers, except for Opn, and rmBMP-7 functionalization resulted in a tendency towards relatively greater osteoblastic differentiation, which was corroborated by runt-related transcription factor 2 (RUNX2) amounts. Undetectable levels of OPN and phosphorylated suppressor of mothers against decapentaplegic (SMAD) 1/5/9 were noted in these groups, and the cleaved form of OPN was only detected in the blood clot immediately prior to cell plating. In conclusion, the strategy to mimic in vitro the initial interfacial in vivo events by forming a blood clot on a Ti nanoporous surface resulted in the inhibition of pre-osteoblastic differentiation, which was minimally reverted with an rmBMP-7 coating.
Collapse
Affiliation(s)
- Leonardo Raphael Zuardi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Cleide Lúcia Araújo Silva
- Haematology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-060, SP, Brazil
| | - Eduardo Magalhães Rego
- Haematology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-060, SP, Brazil
| | - Giovana Vacilotto Carneiro
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Antonio Nanci
- Faculté de médecine dentaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
- Correspondence: ; Tel.: +55-16-99623-3663
| |
Collapse
|
9
|
Wu J, Ngai T. In-vitro Fibrin Assembly: From the Bulk to the Interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Osman MA, Alamoush RA, Kushnerev E, Seymour KG, Watts DC, Yates JM. Biological response of epithelial and connective tissue cells to titanium surfaces with different ranges of roughness: An in-vitro study. Dent Mater 2022; 38:1777-1788. [DOI: 10.1016/j.dental.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|
11
|
Lackington WA, Fleyshman L, Schweizer P, Elbs-Glatz Y, Guimond S, Rottmar M. The response of soft tissue cells to Ti implants is modulated by blood-implant interactions. Mater Today Bio 2022; 15:100303. [PMID: 35655805 PMCID: PMC9151735 DOI: 10.1016/j.mtbio.2022.100303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Titanium-based dental implants have been highly optimized to enhance osseointegration, but little attention has been given to the soft tissue-implant interface, despite being a major contributor to long term implant stability. This is strongly linked to a lack of model systems that enable the reliable evaluation of soft tissue-implant interactions. Current in vitro platforms to assess these interactions are very simplistic, thus suffering from limited biological relevance and sensitivity to varying implant surface properties. The aim of this study was to investigate how blood-implant interactions affect downstream responses of different soft tissue cells to implants in vitro, thus taking into account not only the early events of blood coagulation upon implantation, but also the multicellular nature of soft tissue. For this, three surfaces (smooth and hydrophobic; rough and hydrophobic; rough and hydrophilic with nanostructures), which reflect a wide range of implant surface properties, were used to study blood-material interactions as well as cell-material interactions in the presence and absence of blood. Rough surfaces stimulated denser fibrin network formation compared to smooth surfaces and hydrophilicity accelerated the rate of blood coagulation compared to hydrophobic surfaces. In the absence of blood, smooth surfaces supported enhanced attachment of human gingival fibroblasts and keratinocytes, but limited changes in gene expression and cytokine production were observed between surfaces. In the presence of blood, rough surfaces supported enhanced fibroblast attachment and stimulated a stronger anti-inflammatory response from macrophage-like cells than smooth surfaces, but only smooth surfaces were capable of supporting long-term keratinocyte attachment and formation of a layer of epithelial cells. These findings indicate that surface properties not only govern blood-implant interactions, but that this can in turn also significantly modulate subsequent soft tissue cell-implant interactions.
Collapse
Affiliation(s)
- William A. Lackington
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Lada Fleyshman
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Schweizer
- Mechanics of Materials & Nanostructures Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Yvonne Elbs-Glatz
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Stefanie Guimond
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Markus Rottmar
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
12
|
Mühl-Benninghaus R, Fries F, Kießling M, Tomori T, Krajewski S, Simgen A, Bauer S, Hey N, Brynda E, Taborska J, Riedel T, Reith W, Cattaneo G, Brochhausen C. Vascular Response on a Novel Fibrin-Based Coated Flow Diverter. Cardiovasc Intervent Radiol 2021; 45:236-243. [PMID: 34913987 PMCID: PMC8807434 DOI: 10.1007/s00270-021-03007-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Purpose Due to thromboembolic complications and in-stent-stenosis after flow diverter (FD) treatment, the long-term use of dual antiplatelet treatment (DAPT) is mandatory. The tested nano-coating has been shown to reduce material thrombogenicity and promote endothelial cell proliferation in vitro. We compared the biocompatibility of coated (Derivo Heal) and non-coated (Derivo bare) FDs with DAPT in an animal model. Methods Derivo® bare (n = 10) and Derivo® Heal (n = 10) FD were implanted in the common carotid arteries (CCAs) of New Zealand white rabbits. One additional FD, alternately a Derivo bare (n = 5) or Derivo Heal (n = 5), was implanted in the abdominal aorta (AA) for assessment of the patency of branch arteries. Histopathological examinations were performed after 28 days. Angiography was performed before and after FD implantation and at follow-up. Results Statistical analysis of the included specimens showed complete endothelialization of all FDs with no significant differences in neointima thickness between Derivo® bare and Derivo® Heal (CCA: p = 0.91; AA: p = 0.59). A significantly reduced number of macrophages in the vessel wall of the Derivo Heal was observed for the CCA (p = 0.02), and significantly reduced fibrin and platelet deposition on the surface of the Derivo Heal was observed for the AA. All branch arteries of the stented aorta remained patent. Conclusion In this animal model, the novel fibrin-based coated FD showed a similar blood and tissue compatibility as the non-coated FD.
Collapse
Affiliation(s)
- Ruben Mühl-Benninghaus
- Department of Neuroradiology, Saarland University Hospital, Kirrberger Strasse, 66424, Homburg, Germany.
| | - Frederik Fries
- Department of Neuroradiology, Saarland University Hospital, Kirrberger Strasse, 66424, Homburg, Germany
| | - Mara Kießling
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Toshiki Tomori
- Department of Neuroradiology, Saarland University Hospital, Kirrberger Strasse, 66424, Homburg, Germany
| | - Stefanie Krajewski
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tuebingen, Tübingen, Germany
| | - Andreas Simgen
- Department of Neuroradiology, Saarland University Hospital, Kirrberger Strasse, 66424, Homburg, Germany
| | | | | | - Eduard Brynda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Johanka Taborska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University Hospital, Kirrberger Strasse, 66424, Homburg, Germany
| | - Giorgio Cattaneo
- Institute for Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
13
|
Gu JT, Jiao K, Li J, Yan JF, Wang KY, Wang F, Liu Y, Tay FR, Chen JH, Niu LN. Polyphosphate-crosslinked collagen scaffolds for hemostasis and alveolar bone regeneration after tooth extraction. Bioact Mater 2021; 15:68-81. [PMID: 35386354 PMCID: PMC8940764 DOI: 10.1016/j.bioactmat.2021.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties. The present study covalently bonded polyphosphate onto a collagen scaffold (P-CS) by crosslinking. The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model. This improvement is attributed to the increase in hydrophilicity, increased thrombin generation, platelet activation and stimulation of the intrinsic coagulation pathway. In addition, the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model. The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells. Osteogenesis was improved by both polyphosphate and blood clots. Taken together, P-CS possesses favorable hemostasis and alveolar ridge preservation capability. It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss. Statement of significance Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction. However, its application is hampered by insufficient hemostatic and osteoinductive property. Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential. Polyphosphate-crosslinked collagen scaffold (P-CS) showed better hemostatic effect in healthy or anticoagulant-treated rats. The promoted bone regeneration ability of P-CS might also be related to the clot alteration caused by polyphosphate. P-CS has therapeutic potential in bleeding control and alveolar ridge preservation after tooth extraction.
Collapse
Affiliation(s)
- Jun-ting Gu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Jiao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian-fei Yan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai-yan Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fu Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Liu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ji-hua Chen
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li-na Niu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- Corresponding author. School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Fintová S, Dlhý P, Mertová K, Chlup Z, Duchek M, Procházka R, Hutař P. Fatigue properties of UFG Ti grade 2 dental implant vs. conventionally tested smooth specimens. J Mech Behav Biomed Mater 2021; 123:104715. [PMID: 34365095 DOI: 10.1016/j.jmbbm.2021.104715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Complicated geometry in combination with surface treatment strongly deteriorates fatigue resistance of metallic dental implants. Mechanical properties of pure Ti grade 2, usually used for dental implant production, were shown to be significantly improved due to intensive grain refinement via Conform SPD. The increase of the tensile strength properties was accompanied by a significant increase in the fatigue resistance and fatigue endurance limit. However, the SLA treatment usually used for the implants' surface roughening, resulted in the fatigue properties and endurance limit decrease, while this effect was more pronounced for the ultrafine-grained comparing to the coarse-grained material when tested under tensile-tensile loading mode. The testing of the implants is usually provided under the bending mode. Even though different testing condition for the conventional specimens tests and implants testing was adopted, a numerical study revealed their comparable fatigue properties. The fatigue limit determined for the implants was 105% higher than the one for coarse-grained and only by 4 % lower than the one for ultrafine-grained Ti grade 2. Based on the obtained results, conventional specimens testing can be used for the prediction of the fatigue limit of the implants.
Collapse
Affiliation(s)
- Stanislava Fintová
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 00, Brno, Czech Republic.
| | - Pavol Dlhý
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Kateřina Mertová
- COMTES FHT a.s., Průmyslová 995, 334 41, Dobřany, Czech Republic
| | - Zdeněk Chlup
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 00, Brno, Czech Republic
| | - Michal Duchek
- COMTES FHT a.s., Průmyslová 995, 334 41, Dobřany, Czech Republic
| | - Radek Procházka
- COMTES FHT a.s., Průmyslová 995, 334 41, Dobřany, Czech Republic
| | - Pavel Hutař
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 00, Brno, Czech Republic
| |
Collapse
|
15
|
Matter MT, Maliqi L, Keevend K, Guimond S, Ng J, Armagan E, Rottmar M, Herrmann IK. One-Step Synthesis of Versatile Antimicrobial Nano-Architected Implant Coatings for Hard and Soft Tissue Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33300-33310. [PMID: 34254508 DOI: 10.1021/acsami.1c10121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dental implant failure remains a prevalent problem around the globe. The integration of implants at the interface of soft and hard tissues is complex and susceptible to instability and infections. Modifications to the surface of titanium implants have been developed to improve the performance, yet insufficient integration and biofilm formation remain major problems. Introducing nanostructures on the surface to augment the implant-tissue contact holds promise for facilitated implant integration; however, current coating processes are limited in their versatility or costs. We present a highly modular single-step approach to produce multicomponent porous bioactive nanostructured coatings on implants. Inorganic nanoparticle building blocks with complex compositions and architectures are synthesized in situ and deposited on the implants in a single step using scalable liquid-feed flame spray pyrolysis. We present hybrid coatings based on ceria and bioglass, which render the implant surfaces superhydrophilic, promote cell adhesion, and exhibit antimicrobial properties. By modifications to the bioglass/ceria nanohybrid composition and architecture that prevent biomineralization, the coating can instead be tailored toward soft tissue healing. The one-step synthesis of nano-architected tissue-specific coatings has great potential in dental implantology and beyond.
Collapse
Affiliation(s)
- Martin T Matter
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Leonida Maliqi
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Stefanie Guimond
- Biointerfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Judith Ng
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
- Biointerfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Efe Armagan
- Laboratory for Biomimetic Membranes and Textiles, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Markus Rottmar
- Biointerfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
16
|
Jing L, Rota S, Olivier F, Momier D, Guigonis JM, Schaub S, Samson M, Bouler JM, Scimeca JC, Rochet N, Lagadec P. Proteomic analysis identified LBP and CD14 as key proteins in blood/biphasic calcium phosphate microparticle interactions. Acta Biomater 2021; 127:298-312. [PMID: 33831568 DOI: 10.1016/j.actbio.2021.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
Immediately upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to the biomaterial surface and the protein layer affects both blood cell functions and biomaterial bioactivity. Previously, we reported that 80-200 µm biphasic calcium phosphate (BCP) microparticles embedded in a blood clot, induce ectopic woven bone formation in mice, when 200-500 µm BCP particles induce mainly fibrous tissue. Here, in a LC-MS/MS proteomic study we compared the differentially expressed blood proteins (plasma and blood cell proteins) and the deregulated signaling pathways of these osteogenic and fibrogenic blood composites. We showed that blood/BCP-induced osteogenesis is associated with a higher expression of fibrinogen (FGN) and an upregulation of the Myd88- and NF-κB-dependent TLR4 signaling cascade. We also highlighted the key role of the LBP/CD14 proteins in the TLR4 activation of blood cells by BCP particles. As FGN is an endogenous ligand of TLR4, able to modulate blood composite stiffness, we propose that different FGN concentrations modify the blood clot mechanical properties, which in turn modulate BCP/blood composite osteoactivity through TLR4 signaling. The present findings provide an insight at the protein level, into the mechanisms leading to an efficient bone reconstruction by blood/BCP composites. STATEMENT OF SIGNIFICANCE: Upon implantation, scaffolds for bone repair are exposed to the patient's blood. Blood proteins adhere to bone substitute surface and this protein layer affects both biomaterial bioactivity and bone healing. Therefore, for the best outcome for patients, it is crucial to understand the molecular interactions between blood and bone scaffolds. Biphasic calcium phosphate (BCP) ceramics are considered as the gold standard in bone reconstruction surgery. Here, using proteomic analyses we showed that the osteogenic properties of 80-200 µm BCP particles embedded in a blood clot is associated with a higher expression of fibrinogen. Fibrinogen upregulates the Myd88- and NF-κB-dependent TLR4 pathway in blood cells and, BCP-induced TLR4 activation is mediated by the LBP and CD14 proteins.
Collapse
|
17
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
18
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
19
|
Wiesli MG, Kaiser JP, Gautier E, Wick P, Maniura-Weber K, Rottmar M, Wahl P. Influence of ceftriaxone on human bone cell viability and in vitro mineralization potential is concentration- and time-dependent. Bone Joint Res 2021; 10:218-225. [PMID: 33739124 PMCID: PMC7998344 DOI: 10.1302/2046-3758.103.bjr-2020-0412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Methods Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. Results Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. Conclusion This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218–225.
Collapse
Affiliation(s)
- Matthias Guido Wiesli
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Jean-Pierre Kaiser
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Emanuel Gautier
- Department of Orthopaedics, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Wahl
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| |
Collapse
|
20
|
Yang Y, Xiao Y. Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv Healthc Mater 2020; 9:e2000726. [PMID: 32691989 DOI: 10.1002/adhm.202000726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Blood coagulation in tissue healing not only prevents blood loss, but also forms a natural scaffold for tissue repair and regeneration. As blood clot formation is the initial and foremost phase upon bone injury, and the quality of blood clot (hematoma) orchestrates the following inflammatory and cellular processes as well as the subsequent callus formation and bone remodeling process. Inspired by the natural healing hematoma, tissue-engineered biomimic scaffold/hydrogels and blood prefabrication strategies attract significant interests in developing functional bone substitutes. The alteration of the fracture hematoma ca significantly accelerate or impair the overall bone healing process. This review summarizes the impact of biomaterials on blood coagulation and provides evidence on fibrin network structure, growth factors, and biomolecules that contribute to bone healing within the hematoma. The aim is to provide insights into the development of novel implant and bone biomaterials for enhanced osteogenesis. Advances in the understanding of biomaterial characteristics (e.g., morphology, chemistry, wettability, and protein adsorption) and their effect on hematoma properties are highlighted. Emphasizing the importance of the initial healing phase of the hematoma endows the design of advanced biomaterials with the desired regulatory properties for optimal coagulation and hematoma properties, thereby facilitating enhanced osteogenesis and ideal therapeutic effects.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
21
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
22
|
Shiel AI, Ayre WN, Blom AW, Hallam KR, Heard PJ, Payton O, Picco L, Mansell JP. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. J Orthop Translat 2020; 23:140-151. [PMID: 32818135 PMCID: PMC7427324 DOI: 10.1016/j.jot.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Background Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £137 m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. Methods In realising the development of a superior titanium technology, we exploited the natural affinity of titanium for phosphonic acids and developed a facile means of coating the metal with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Results Herein, we provide evidence that simply immersing titanium in aqueous solutions of FHBP afforded a surface that was superior to unmodified metal at enhancing osteoblast maturation. Importantly, FHBP-functionalised titanium remained stable to 2 years of ambient storage, resisted ∼35 kGy of gamma irradiation and survived implantation into a bone substitute (Sawbone™) and irrigation. Conclusion The facile step we have taken to modify titanium and the robustness of the final surface finish are appealing properties that are likely to attract the attention of implant manufacturers in the future. The translational potential of this article We have generated a functionalised titanium (Ti) surface by simply immersing Ti in aqueous solutions of a bioactive lipid. As a facile procedure it will have greater appeal to implant manufacturers compared to onerous and costly developmental processes.
Collapse
Affiliation(s)
- Anna I Shiel
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Wayne N Ayre
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Keith R Hallam
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Peter J Heard
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Oliver Payton
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Loren Picco
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.,Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
23
|
Haraguchi T, Ayukawa Y, Shibata Y, Takeshita T, Atsuta I, Ogino Y, Yasunami N, Yamashita Y, Koyano K. Effect of Calcium Chloride Hydrothermal Treatment of Titanium on Protein, Cellular, and Bacterial Adhesion Properties. J Clin Med 2020; 9:E2627. [PMID: 32823609 PMCID: PMC7463643 DOI: 10.3390/jcm9082627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
Topographical modification of the dental implant surface is one of the main topics for the improvement of the material, however, the roughened surface has some risks for peri-implantitis. A hydrothermal treatment (HT) of titanium with calcium chloride solution was reported to improve osseointegration and soft tissue sealing without changing the surface topography; however, its mechanism is unclear. We herewith investigated the interaction between extracellular matrix (ECM) protein and HT titanium. Furthermore, we also clarified the bacterial interaction. We employed two kinds of HT, HT with water (DW-HT) and HT with calcium chloride solution (Ca-HT). As a result, the adsorptions of both laminin-332 and osteopontin onto the Ca-HT surface were enhanced. In contrast, the adsorption of albumin, which was reported to have no cell adhesion capacity, was not influenced by Ca-HT. Osteoblast adhesion onto Ca-HT was also enhanced. Although Ca-HT was reported to enhance both epithelial cell attachment strength and in vivo peri-implant epithelial bonding, the number of epithelial cell attachment was not increased even after HT. Ca-HT had no impact in the adhesion of Streptococcus gordonii. These results suggest that Ca-HT enhances cell adhesion onto titanium without increasing bacterial adhesion, and the improvement of ECM protein adsorption is supposed to contribute to cell adhesion.
Collapse
Affiliation(s)
- Takuya Haraguchi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.H.); (N.Y.); (K.K.)
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.H.); (N.Y.); (K.K.)
| | - Yukie Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (T.T.); (Y.Y.)
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (T.T.); (Y.Y.)
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Yoichiro Ogino
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Noriyuki Yasunami
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.H.); (N.Y.); (K.K.)
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (Y.S.); (T.T.); (Y.Y.)
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (T.H.); (N.Y.); (K.K.)
| |
Collapse
|
24
|
Strategies for improving antimicrobial properties of stainless steel. MATERIALS 2020; 13:ma13132944. [PMID: 32630130 PMCID: PMC7372344 DOI: 10.3390/ma13132944] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022]
Abstract
In this review, strategies for improving the antimicrobial properties of stainless steel (SS) are presented. The main focus given is to present current strategies for surface modification of SS, which alter surface characteristics in terms of surface chemistry, topography and wettability/surface charge, without influencing the bulk attributes of the material. As SS exhibits excellent mechanical properties and satisfactory biocompatibility, it is one of the most frequently used materials in medical applications. It is widely used as a material for fabricating orthopedic prosthesis, cardiovascular stents/valves and recently also for three dimensional (3D) printing of custom made implants. Despite its good mechanical properties, SS lacks desired biofunctionality, which makes it prone to bacterial adhesion and biofilm formation. Due to increased resistance of bacteria to antibiotics, it is imperative to achieve antibacterial properties of implants. Thus, many different approaches were proposed and are discussed herein. Emphasis is given on novel approaches based on treatment with highly reactive plasma, which may alter SS topography, chemistry and wettability under appropriate treatment conditions. This review aims to present and critically discuss different approaches and propose novel possibilities for surface modification of SS by using highly reactive gaseous plasma in order to obtain a desired biological response.
Collapse
|
25
|
Wang Q, Zhou P, Liu S, Attarilar S, Ma RLW, Zhong Y, Wang L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1244. [PMID: 32604854 PMCID: PMC7353126 DOI: 10.3390/nano10061244] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
The propose of this review was to summarize the advances in multi-scale surface technology of titanium implants to accelerate the osseointegration process. The several multi-scaled methods used for improving wettability, roughness, and bioactivity of implant surfaces are reviewed. In addition, macro-scale methods (e.g., 3D printing (3DP) and laser surface texturing (LST)), micro-scale (e.g., grit-blasting, acid-etching, and Sand-blasted, Large-grit, and Acid-etching (SLA)) and nano-scale methods (e.g., plasma-spraying and anodization) are also discussed, and these surfaces are known to have favorable properties in clinical applications. Functionalized coatings with organic and non-organic loadings suggest good prospects for the future of modern biotechnology. Nevertheless, because of high cost and low clinical validation, these partial coatings have not been commercially available so far. A large number of in vitro and in vivo investigations are necessary in order to obtain in-depth exploration about the efficiency of functional implant surfaces. The prospective titanium implants should possess the optimum chemistry, bionic characteristics, and standardized modern topographies to achieve rapid osseointegration.
Collapse
Affiliation(s)
- Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi’an Aeronautical Polytechnic Institute, Xi’an 710089, China;
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Robin Lok-Wang Ma
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Yinsheng Zhong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- National Engineering Research Center for Nanotechnology (NERCN), 28 East JiangChuan Road, Shanghai 200241, China
| |
Collapse
|
26
|
Ehlicke F, Berndt J, Marichikj N, Steinmüller-Nethl D, Walles H, Berndt EU, Hansmann J. Biomimetic in vitro test system for evaluation of dental implant materials. Dent Mater 2020; 36:1059-1070. [PMID: 32546398 DOI: 10.1016/j.dental.2020.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Before application in dental practice, novel dental materials are tested in vitro and in vivo to ensure safety and functionality. However, transferability between preclinical and clinical results is often limited. To increase the predictive power of preclinical testing, a biomimetic in vitro test system that mimics the wound niche after implantation was developed. METHODS First, predetermined implant materials were treated with human blood plasma, M2 macrophages and bone marrow stromal stem cells. Thereby, the three-dimensional wound niche was simulated. Samples were cultured for 28 days, and subsequently analyzed for metabolic activity and biomineralization. Second test level involved a cell-infiltrated bone substitute material for an osseointegration assay to measure mechanical bonding between dental material and bone. Standard and novel dental materials validated the developed test approach. RESULTS The developed test system for dental implant materials allowed quantification of biomineralization on implant surface and assessment of the functional stability of mineralized biomaterial-tissue interface. Human blood plasma, M2 macrophages and bone marrow stromal stem cells proved to be crucial components for predictive assessment of implant materials in vitro. Biocompatibility was demonstrated for all tested materials, whereas the degree of deposited mineralized extracellular matrix and mechanical stability differed between the tested materials. Highest amount of functional biomineralization was determined to be on carbon-coated implant surface. SIGNIFICANCE As an ethical alternative to animal testing, the established in vitro dental test system provides an economic and mid-throughput evaluation of novel dental implant materials or modifications thereof, by applying two successive readout levels: biomineralization and osseointegration.
Collapse
Affiliation(s)
- Franziska Ehlicke
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Jonathan Berndt
- Natural Dental Implants AG, Edisonstrasse 63, 12459 Berlin, Germany.
| | - Nina Marichikj
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany.
| | | | - Heike Walles
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Roentgenring 11, 97070 Wuerzburg, Germany.
| | | | - Jan Hansmann
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Roentgenring 11, 97070 Wuerzburg, Germany.
| |
Collapse
|
27
|
Weber FE. Reconsidering Osteoconduction in the Era of Additive Manufacturing. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:375-386. [PMID: 30997857 PMCID: PMC6784493 DOI: 10.1089/ten.teb.2019.0047] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Bone regeneration procedures in clinics and bone tissue engineering stand on three pillars: osteoconduction, osteoinduction, and stem cells. In the last two decades, the focus in this field has been on osteoinduction, which is realized by the use of bone morphogenetic proteins and the application of mesenchymal stem cells to treat bone defects. However, osteoconduction was reduced to a surface phenomenon because the supposedly ideal pore size of osteoconductive scaffolds was identified in the 1990s as 0.3-0.5 mm in diameter, forcing bone formation to occur predominantly on the surface. Meanwhile, additive manufacturing has evolved as a new tool to realize designed microarchitectures in bone substitutes, thereby enabling us to study osteoconduction as a true three-dimensional phenomenon. Moreover, by additive manufacturing, wide-open porous scaffolds can be produced in which bone formation occurs distant to the surface at a superior bony defect-bridging rate enabled by highly osteoconductive pores 1.2 mm in diameter. This review provides a historical overview and an updated definition of osteoconduction and related terms. In addition, it shows how additive manufacturing can be instrumental in studying and optimizing osteoconduction of bone substitutes, and provides novel optimized features and boundaries of osteoconductive microarchitectures. Impact Statement This review updates the definition of osteoconduction and draws clear lines to discriminate between osteoconduction, osseointegration, and osteoinduction. Moreover, additively manufactured libraries of scaffolds revealed that: osteoconduction is more a three-dimensional than a surface phenomenon; microarchitecture dictates defect bridging, which is the measure for osteoconduction; pore diameter or the diagonal of lattice microarchitectures of osteoconductive bone substitutes should be ∼1.2 mm.
Collapse
Affiliation(s)
- Franz E. Weber
- Oral Biotechnology and Bioengineering, Center of Dental Medicine Department of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Wagstaffe M, Hussain H, Taylor M, Murphy M, Silikas N, Thomas AG. Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO 2(110) and model dental implant surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110030. [PMID: 31546374 DOI: 10.1016/j.msec.2019.110030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/01/2019] [Accepted: 07/28/2019] [Indexed: 01/04/2023]
Abstract
The adsorption of peptides on metal oxides is an area of significant interest, both fundamentally and in a number of technologically important areas. These range from the integration of biomaterials in the body, to denaturation of protein therapeutics and the use of biomolecules and bioinspired materials in synthesis and stabilization of novel nanomaterials. Here we present a study of the tripeptide arginylglycylaspartic acid (RGD) on the surfaces of vacuum-prepared single crystalline TiO2(110), pyrocatechol-capped TiO2(110), and model SLA and SLActive dental implant samples. X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy show that the RGD adsorption mode on the single crystal is consistent with bonding through the deprotonated carboxylate groups of the peptide to surface Ti atoms of the substrate. Despite the increased hydrophobicity of the pyrocatechol-capped TiO2(110) surface RGD adsorption from solution increases following this surface treatment. RGD adsorption on SLA and SLActive surfaces shows that the SLActive surface has a greater uptake of RGD. The RGD uptake on the pyrocatechol capped single crystal and the model implant surfaces suggest that the ease with which surface contaminant hydrocarbons are removed from the surface has a greater influence on peptide adsorption than hydrophobicity/hydrophilicity of the surface.
Collapse
Affiliation(s)
- Michael Wagstaffe
- School of Physics and Astronomy, The University of Manchester, Oxford, Road, M13 9PL, UK
| | - Hadeel Hussain
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Mark Taylor
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Matthew Murphy
- School of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Nikolaos Silikas
- School of Dentistry, The University of Manchester, Manchester M13 9PL, UK
| | - Andrew G Thomas
- School of Materials, The University of Manchester, Manchester M13 9PL, UK; The Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
29
|
Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 2019; 94:112-131. [PMID: 31128320 DOI: 10.1016/j.actbio.2019.05.045] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
The main aim of this review study was to report the state of art on the nano-scale technological advancements of titanium implant surfaces to enhance the osseointegration process. Several methods of surface modification are chronologically described bridging ordinary methods (e.g. grit blasting and etching) and advanced physicochemical approaches such as 3D-laser texturing and biomimetic modification. Functionalization procedures by using proteins, peptides, and bioactive ceramics have provided an enhancement in wettability and bioactivity of implant surfaces. Furthermore, recent findings have revealed a combined beneficial effect of micro- and nano-scale modification and biomimetic functionalization of titanium surfaces. However, some technological developments of implant surfaces are not commercially available yet due to costs and a lack of clinical validation for such recent surfaces. Further in vitro and in vivo studies are required to endorse the use of enhanced biomimetic implant surfaces. STATEMENT OF SIGNIFICANCE: Grit-blasting followed by acid-etching is currently used for titanium implant modifications, although recent technological biomimetic physicochemical methods have revealed enhanced osteoconductive and anti-microbial outcomes. An improvement in wettability and bioactivity of titanium implant surfaces has been accomplished by combining micro and nano-scale modification and functionalization with protein, peptides, and bioactive compounds. Such morphological and chemical modification of the titanium surfaces induce the migration and differentiation of osteogenic cells followed by an enhancement of the mineral matrix formation that accelerate the osseointegration process. Additionally, the incorporation of bioactive molecules into the nanostructured surfaces is a promising strategy to avoid early and late implant failures induced by the biofilm accumulation.
Collapse
|
30
|
Jäger M, Jennissen HP, Haversath M, Busch A, Grupp T, Sowislok A, Herten M. Intrasurgical Protein Layer on Titanium Arthroplasty Explants: From the Big Twelve to the Implant Proteome. Proteomics Clin Appl 2019; 13:e1800168. [PMID: 30770655 DOI: 10.1002/prca.201800168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Aseptic loosening in total joint replacement due to insufficient osteointegration is an unsolved problem in orthopaedics. The purpose of the study is to obtain a picture of the initial protein adsorption layer on femoral endoprosthetic surfaces as the key to the initiation of osseointegration. EXPERIMENTAL DESIGN The paper describes the first study of femoral stem explants from patients for proteome analysis of the primary protein layer. After 2 min in situ, the stems are explanted and frozen in liquid nitrogen. Proteins are eluted under reducing conditions and analyzed by LC-MS/MS. RESULTS After exclusion of proteins identified by a single peptide, the implant proteome is found to consist of 2802 unique proteins. Of these, 77% are of intracellular origin, 9% are derived from the plasma proteome, 8% from the bone proteome, and four proteins with highest specificity score could be assigned to the bone marrow proteome (transcriptome). The most abundant protein in the adsorbed total protein layer is hemoglobin (8-11%) followed by serum albumin (3.6-6%). CONCLUSIONS A detailed knowledge of the initial protein film deposited onto the implants, as demonstrated here for the first time, may help to understand and predict the response of the osseous microenvironment to implant surfaces.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| | - Herbert P Jennissen
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.,Institute of Physiological Chemistry, Work Group Biochemical Endocrinology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Haversath
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| | - André Busch
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Grupp
- Aesculap AG, Research & Development, 78532 Tuttlingen, Germany
| | - Andrea Sowislok
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany.,Institute of Physiological Chemistry, Work Group Biochemical Endocrinology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Monika Herten
- Department of Orthopedics and Trauma Surgery, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
31
|
Milleret V, Lienemann PS, Bauer S, Ehrbar M. Quantitative in vitro comparison of the thrombogenicity of commercial dental implants. Clin Implant Dent Relat Res 2019; 21 Suppl 1:8-14. [DOI: 10.1111/cid.12737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Vincent Milleret
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital ZurichUniversity of Zurich Zurich Switzerland
| | - Philipp S. Lienemann
- Nobel Biocare AGProduct Development Regeneratives & Biologics Kloten Switzerland
| | - Sebastian Bauer
- Nobel Biocare AGMaterials Research & Surface Technologies Kloten Switzerland
| | - Martin Ehrbar
- Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital ZurichUniversity of Zurich Zurich Switzerland
| |
Collapse
|
32
|
Montazeri M, Hashemi A, Houshmand B, Faghihi S. The Effect of Bio-Conditioning of Titanium Implants for Enhancing Osteogenic Activity. J ORAL IMPLANTOL 2019; 45:187-195. [PMID: 30702957 DOI: 10.1563/aaid-joi-d-18-00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early and effective integration of titanium-based materials into bone tissue is of vital importance for long-term stability of implants. Surface modification is commonly used to enhance cell-substrate interactions for improving cell adhesion, proliferation, and activity. Here, the surface of titanium substrates and commercial implants were coated with blood (TiB), fetal bovine serum (TiF), and phosphate-buffered saline (TiP) solution using a spin coating process. Surface roughness and wettability of samples were measured using contact angle measurements and atomic force microscopy. The samples were then exposed to human osteoblast-like MG63 cells in order to evaluate adhesion, growth, differentiation, and morphology on the surface of modified samples. Untreated titanium disks were used as controls. The lowest roughness and wettability values were found in unmodified titanium samples followed by TiP, TiF, and TiB. The percentage of cellular attachment and proliferation for each sample was measured using an MTT (3-[4,5-dimethylthiazol-2yl] 2,5diphenyl-2H-tetrazoliumbromide) assay. Cell adhesion and proliferation were most improved on TiB followed closely by TiF. The results of this study revealed an increased expression of the osteogenic marker protein alkaline phosphatase on TiB and the coated commercial titanium implants. These results suggested that precoating titanium samples with blood may improve cellular response by successfully mimicking a physiological environment that could be beneficial for clinical implant procedures.
Collapse
Affiliation(s)
- Mohadeseh Montazeri
- 1 Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Hashemi
- 2 Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran. Iran
| | - Behzad Houshmand
- 3 Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahab Faghihi
- 1 Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
33
|
Pippenger BE, Rottmar M, Kopf BS, Stübinger S, Dalla Torre FH, Berner S, Maniura-Weber K. Surface modification of ultrafine-grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Clin Oral Implants Res 2019; 30:99-110. [PMID: 30521101 DOI: 10.1111/clr.13396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The main objective of this study was to demonstrate that dental implants made from ultrafine-grain titanium (UFG-Ti) can be created that replicate state of the art surfaces of standard coarse-grain titanium (Ti), showing excellent cytocompatibility and osseointegration potential while also providing improved mechanical properties. MATERIAL AND METHODS UFG-Ti was prepared by continuous equal channel angular processing (ECAP), and surfaces were treated by sandblasting and acid etching. Mechanical properties (tensile and fatigue strength), wettability, and roughness parameters were evaluated. Human trabecular bone-derived osteoblast precursor cells (HBCs) were cultured on all samples to examine cytocompatibility and mineralization after 4 and 28 days, respectively. Biomechanical pull-out measurements were performed in a rabbit in vivo model 4 weeks after implantation. RESULTS Both yield and tensile strength as well as fatigue endurance were higher for UFG-Ti compared to Ti by 40%, 45%, and 34%, respectively. Fatigue endurance was slightly reduced following surface treatment. Existing surface treatment protocols could be applied to UFG-Ti and resulted in similar roughness and wettability as for standard Ti. Cell attachment and spreading were comparable on all samples, but mineralization was higher for the surfaces with hydrophilic treatment with no significant difference between UFG-Ti and Ti. Pull-out tests revealed that osseointegration of surface-treated UFG-Ti was found to be similar to that of surface-treated Ti. CONCLUSION It could be demonstrated that existing surface treatments for Ti can be translated to UFG-Ti and, furthermore, that dental implants made from surface-treated UFG-Ti exhibit superior mechanical properties while maintaining cytocompatibility and osseointegration potential.
Collapse
Affiliation(s)
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Brigitte S Kopf
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Stefan Stübinger
- High-tech Research Center of Cranio-Maxillofacial Surgery, University of Basel, Basel, Switzerland
| | | | | | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
34
|
Rottmar M, Müller E, Guimond-Lischer S, Stephan M, Berner S, Maniura-Weber K. Assessing the osteogenic potential of zirconia and titanium surfaces with an advanced in vitro model. Dent Mater 2019; 35:74-86. [DOI: 10.1016/j.dental.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/12/2018] [Accepted: 10/12/2018] [Indexed: 10/27/2022]
|
35
|
Burkhardt MA, Gerber I, Moshfegh C, Lucas MS, Waser J, Emmert MY, Hoerstrup SP, Schlottig F, Vogel V. Clot-entrapped blood cells in synergy with human mesenchymal stem cells create a pro-angiogenic healing response. Biomater Sci 2018; 5:2009-2023. [PMID: 28809406 DOI: 10.1039/c7bm00276a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Blood clots stop bleeding and provide cell-instructive microenvironments. Still, in vitro models used to study implant performance typically neglect any possible interactions of recruited cells with surface-adhering blood clots. Here we study the interaction and synergies of bone marrow derived human mesenchymal stem cells (hMSCs) with surface-induced blood clots in an in vitro model by fluorescence microscopy, scanning and correlative light and electron microscopy, ELISA assays and zymography. The clinically used alkali-treated rough titanium (Ti) surfaces investigated here are known to enhance blood clotting compared to native Ti and to improve the healing response, but the underlying mechanisms remain elusive. Here we show that the presence of blood clots synergistically increased hMSC proliferation, extracellular matrix (ECM) remodelling and the release of matrix fragments and angiogenic VEGF, but did not increase the osteogenic differentiation of hMSCs. While many biomaterials are nowadays engineered to release pro-angiogenic factors, we show here that clot-entrapped blood cells on conventional materials in synergy with hMSCs are potent producers of pro-angiogenic factors. Our data might thus not only explain why alkali-treatment is beneficial for Ti implant integration, but they suggest that the physiological importance of blood clots to create pro-angiogenic environments on implants has been greatly underestimated. The importance of blood clots might have been missed because the pro-angiogenic functions get activated only upon stimulation by synergistic interactions with the invading cells.
Collapse
Affiliation(s)
- Melanie A Burkhardt
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Vladimir-Prelog-Weg 4, Zurich, 8093, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nishimura T, Ogino Y, Ayukawa Y, Koyano K. Influence of the wettability of different titanium surface topographies on initial cellular behavior. Dent Mater J 2018; 37:650-658. [PMID: 29669955 DOI: 10.4012/dmj.2017-334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examined the influence of the time-dependent wettability of different surface topographies on initial cellular behavior. Titanium disks with smooth topography (SM) and three kinds of rough topography (sandblasted (SA), microtopography (M) and nanotopography (N)) were prepared. Time-dependent changes in surface wettability were observed in all surfaces as shown in previous studies. On SM surfaces, hydrophobic alteration influenced cell spreading and the activity of RhoA (a small GTPase protein of the Rho family), while no alterations were observed on rough surfaces except for the number of adherent cells. Serum adsorption could recover these functional deteriorations by hydrophobic alteration. These findings suggest that surface topography is a more potent regulator in initial cellular behaviors such as cell spreading and RhoA activation than surface wettability.
Collapse
Affiliation(s)
- Tomoko Nishimura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Yoichiro Ogino
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| |
Collapse
|
37
|
Cheng Y, Yang H, Yang Y, Huang J, Wu K, Chen Z, Wang X, Lin C, Lai Y. Progress in TiO 2 nanotube coatings for biomedical applications: a review. J Mater Chem B 2018; 6:1862-1886. [PMID: 32254353 DOI: 10.1039/c8tb00149a] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanotubes (TNTs) have drawn wide attention and been extensively applied in the field of biomedicine, due to their large specific surface area, good corrosion resistance, excellent biocompatibility, and enhanced bioactivity. This review describes the preparation of TNTs and the surface modification that entrust the nanotubes with better antibacterial property and enhanced osteoblast adhesion, proliferation, and differentiation. Considering the contact between TNTs' surface and surrounding tissues after implantation, the interactions between TNTs (with properties including their diameter, length, wettability, and crystalline phase) and proteins, platelets, bacteria, and cells are illustrated. The state of the art in the applications of TNTs in dentistry, orthopedic implants, and cardiovascular stents are introduced. In particular, the application of TNTs in biosensing has attracted much attention due to its ability for the rapid diagnosis of diseases. Finally, the difficulties and challenges in the practical application of TNTs are also discussed.
Collapse
Affiliation(s)
- Yan Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wei F, Liu G, Guo Y, Crawford R, Chen Z, Xiao Y. Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment. Biomater Sci 2018; 6:2156-2171. [DOI: 10.1039/c8bm00287h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blood prefabricated hydroxyapatite/tricalcium phosphate induces ectopic vascularized bone formation via modulating the osteoimmune environment.
Collapse
Affiliation(s)
- Fei Wei
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane 4059
- Australia
| | - Guanqi Liu
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
- People's Republic of China
| | - Yuanlong Guo
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
- People's Republic of China
| | - Ross Crawford
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane 4059
- Australia
| | - Zetao Chen
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
- People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine
- Queensland University of Technology
- Brisbane 4059
- Australia
- Guanghua School of Stomatology
| |
Collapse
|
39
|
Weydert S, Zürcher S, Tanner S, Zhang N, Ritter R, Peter T, Aebersold MJ, Thompson-Steckel G, Forró C, Rottmar M, Stauffer F, Valassina IA, Morgese G, Benetti EM, Tosatti S, Vörös J. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8594-8605. [PMID: 28792773 DOI: 10.1021/acs.langmuir.7b01437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering.
Collapse
Affiliation(s)
- Serge Weydert
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Stefanie Tanner
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Ning Zhang
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 210096 Nanjing, China
| | - Rebecca Ritter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Thomas Peter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen, Switzerland
| | - Flurin Stauffer
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Giulia Morgese
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
40
|
Zhang J, Xie Y, Zuo J, Li J, Wei Q, Yu Z, Tang Z. Cell responses to titanium treated by a sandblast-free method for implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1187-1194. [DOI: 10.1016/j.msec.2017.04.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
|
41
|
Zhang L, Liao X, Fok A, Ning C, Ng P, Wang Y. Effect of crystalline phase changes in titania (TiO 2) nanotube coatings on platelet adhesion and activation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:91-101. [PMID: 29025678 DOI: 10.1016/j.msec.2017.08.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/07/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To explore the relationship between various crystalline phases of titania (TiO2) nanotube (TNT) coatings and platelet adhesion and activation. METHODS TNT coatings were fabricated on pure titanium foils by anodization and then randomly divided into four groups. Three groups were annealed at 350°C, 450°C and 550°C in order to obtain different crystalline phases. The remaining group was not annealed and served as the control group. X-ray diffraction (XRD) was used to define the crystalline phases of different groups. Surface morphology, elemental composition, surface roughness, and contact angles were measured by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), laser scanning confocal microscopy (LSCM) and contact angle analysis, respectively. Platelets were cultured on the TNT coatings for 30min and 60min to assess the number, viability, distribution, and morphology of the adhered platelets. CD62P fluorescence expression and the amount of released platelet-derived growth factor (PDGF) were detected to evaluate platelet activation. RESULTS The un-annealed TNT coatings were amorphous and part of TNT converted to anatase after the 350°C annealing treatment. The quantity of anatase increased upon annealing at 450°C and transformed to rutile at 550°C. Nanotubes of all four groups maintained a well-ordered structure, but the wall thickness of the nanotubes increased from (11.874±1.660) nm for the un-annealed TNTs to (26.126±2.130) nm for the 550°C annealed TNTs. The surface roughness of the 550°C annealed TNT coatings was the lowest and the water contact angle was the largest at (28.117±1.182) °. The number and viability of adhered platelets after 30min and 60min were the highest on TNT coatings annealed at 450°C. LSCM and SEM images revealed that the platelets that adhered on the 450°C annealed TNT coatings aggregated, transformed, and spread most obviously. CD62P fluorescence expression results showed that the platelets on the 350°C and 450°C annealed TNT coating groups expressed the strongest fluorescence, followed by platelets on the 550°C annealed group and the un-annealed group. The quantity of released PDGF was highest for the 450°C annealed group at (4719±86) pg/mL, and lowest for the un-annealed group at (4241±74) pg/mL. CONCLUSION Crystalline TNT coatings encourage improved platelet adhesion and activation over amprphous analogues. The TNT coatings annealed at 450°C resulted in the most improved platelet behavior. The TNT crystalline phase was the predominant influencing factor in platelet adhesion and activation.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Prosthodontics, Guanghua School of Stomatology & Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xuhui Liao
- Department of Prosthodontics, Guanghua School of Stomatology & Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB), School of Dentistry, University of Minnesota, MN 55455, USA
| | - Chengyun Ning
- School of Material Science and Engineering, South China University of Technology, Guangzhou, China, 510641
| | - Piklam Ng
- Department of Prosthodontics, Guanghua School of Stomatology & Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology & Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
42
|
Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation. Acta Biomater 2017; 57:462-471. [PMID: 28528118 DOI: 10.1016/j.actbio.2017.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Interaction of host blood with biomaterials is the first event occurring after implantation in a bone defect. This study aimed at investigating the cellular and molecular consequences arising at the interface between whole blood and biphasic calcium phosphate (BCP) particles. We observed that, due to calcium capture, BCP inhibited blood coagulation, and that this inhibition was reversed by calcium supplementation. Therefore, we studied the impact of calcium supplementation on BCP effects on blood cells. Comparative analysis of BCP and calcium supplemented-BCP (BCP/Ca) effects on blood cells showed that BCP as well as BCP/Ca induced monocyte proliferation, as well as a weak but significant hemolysis. Our data showed for the first time that calcium supplementation of BCP microparticles had anti-inflammatory properties compared to BCP alone that induced an inflammatory response in blood cells. Our results strongly suggest that the anti-inflammatory property of calcium supplemented-BCP results from its down-modulating effect on P2X7R gene expression and its capacity to inhibit ATP/P2X7R interactions, decreasing the NLRP3 inflammasome activation. Considering that monocytes have a vast regenerative potential, and since the excessive inflammation often observed after bone substitutes implantation limits their performance, our results might have great implications in terms of understanding the mechanisms leading to an efficient bone reconstruction. STATEMENT OF SIGNIFICANCE Although scaffolds and biomaterials unavoidably come into direct contact with blood during bone defect filling, whole blood-biomaterials interactions have been poorly explored. By studying in 3D the interactions between biphasic calcium phosphate (BCP) in microparticulate form and blood, we showed for the first time that calcium supplementation of BCP microparticles (BCP/Ca) has anti-inflammatory properties compared to BCP-induced inflammation in whole blood cells and provided information related to the molecular mechanisms involved. The present study also showed that BCP, as well as BCP/Ca particles stimulate monocyte proliferation. As monocytes represent a powerful target for regenerative therapies and as an excessive inflammation limits the performance of biomaterials in bone tissue engineering, our results might have great implications to improve bone reconstruction.
Collapse
|
43
|
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 2017; 12:4937-4961. [PMID: 28761338 PMCID: PMC5516781 DOI: 10.2147/ijn.s124671] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran
| | | | - Roza Vaez-Ghaemi
- Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
44
|
Early osseointegration of implants with cortex-like TiO 2 coatings formed by micro-arc oxidation: A histomorphometric study in rabbits. ACTA ACUST UNITED AC 2017; 37:122-130. [PMID: 28224420 DOI: 10.1007/s11596-017-1705-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/01/2016] [Indexed: 01/01/2023]
Abstract
In our previous studies, a novel cortex-like TiO2 coating was prepared on Ti surface through micro-arc oxidation (MAO) by using sodium tetraborate as electrolyte, and the effects of the coating on cell attachment were testified. This study aimed to investigate the effects of this cortex-like MAO coating on osseointegration. A sand-blasting and acid-etching (SLA) coating that has been widely used in clinical practice served as control. Topographical and chemical characterizations were conducted by scanning electron microscopy, energy dispersive X-ray spectrometer, X-ray diffraction, contact angle meter, and step profiler. Results showed that the cortex-like coating had microslots and nanopores and it was superhydrophilic, whereas the SLA surface was hydrophobic. The roughness of MAO was similar to that of SLA. The MAO and SLA implants were implanted into the femoral condyles of New Zealand rabbits to evaluate their in-vivo performance through micro-CT, histological analysis, and fluorescent labeling at the bone-implant interface four weeks after surgery. The micro-CT showed that the bone volume ratio and mean trabecular thickness were similar between MAO and SLA groups four weeks after implantation. Histological analysis and fluorescent labeling showed no significant differences in the bone-implant contact between the MAO and SLA surfaces. It was suggested that with micro/nanostructure and superhydrophilicity, the cortex-like MAO coating causes excellent osseointegration, holding a promise of an application to implant modification.
Collapse
|
45
|
Soares PBF, Moura CCG, Claudino M, Carvalho VF, Rocha FS, Zanetta-Barbosa D. Influence of Implant Surfaces on Osseointegration: A Histomorphometric and Implant Stability Study in Rabbits. Braz Dent J 2017; 26:451-7. [PMID: 26647927 DOI: 10.1590/0103-6440201300411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the stability and osseointegration of implant with different wettability using resonance frequency analysis (RFA) and histomorphometric analysis (bone implant contact, BIC; and bone area fraction occupied, BAFO) after 2 and 4 weeks in rabbit tibiae. Thirty-two Morse taper implants (length 7 mm, diameter 3.5 mm) were divided according to surface characteristics (n=8): Neo, sandblasted and dual acid-etched; and Aq, sandblasted followed by dual acid-etched and maintained in an isotonic solution of 0.9% sodium chloride. Sixteen New Zealand rabbits were used. Two implants of each group were installed in the right and left tibiae according to the experimental periods. The RFA (Ostell(r)) was obtained immediately and after the sacrifice (2 and 4 weeks). The bone/implant blocks were processed for histomorphometric analysis. Data were analyzed using two-way ANOVA followed by Tukey's test and Pearson's correlation for ISQ, BIC and BAFO parameters (p=0.05). No significant effect of implant, period of evaluation or interaction between implant and period of evaluation was found for BIC and BAFO values (p>0.05). Only period of evaluation had significant effect for RFA values at 4 weeks (p=0.001), and at 2 weeks (p<0.001). RFA values were significantly higher at the final period of evaluation compared with those obtained at early periods. There was a significant correlation between BIC values and BAFO values (p=0.009). Both implant surfaces, Aq and Neo, were able to produce similar implant bone integration when normal cortical bone instrumentation was performed.
Collapse
Affiliation(s)
| | | | - Marcela Claudino
- Department of Dentistry, UEPG - Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Valessa Florindo Carvalho
- Department of Operative Dentistry and Dental Materials, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flaviana Soares Rocha
- Department of Oral and Maxillofacial Surgery and Implantology, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Darceny Zanetta-Barbosa
- Department of Oral and Maxillofacial Surgery and Implantology, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
46
|
Murphy M, Walczak M, Thomas A, Silikas N, Berner S, Lindsay R. Toward optimizing dental implant performance: Surface characterization of Ti and TiZr implant materials. Dent Mater 2017; 33:43-53. [DOI: 10.1016/j.dental.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/29/2016] [Accepted: 10/09/2016] [Indexed: 01/05/2023]
|
47
|
Ting M, Jefferies SR, Xia W, Engqvist H, Suzuki JB. Classification and Effects of Implant Surface Modification on the Bone: Human Cell-Based In Vitro Studies. J ORAL IMPLANTOL 2016; 43:58-83. [PMID: 27897464 DOI: 10.1563/aaid-joi-d-16-00079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Implant surfaces are continuously being improved to achieve faster osseointegration and a stronger bone to implant interface. This review will present the various implant surfaces, the parameters for implant surface characterization, and the corresponding in vitro human cell-based studies determining the strength and quality of the bone-implant contact. These in vitro cell-based studies are the basis for animal and clinical studies and are the prelude to further reviews on how these surfaces would perform when subjected to the oral environment and functional loading.
Collapse
Affiliation(s)
- Miriam Ting
- 1 Temple University Kornberg School of Dentistry, Philadelphia, Pa
| | - Steven R Jefferies
- 2 Department of Restorative Dentistry, Temple University Kornberg School of Dentistry, Philadelphia, Pa
| | - Wei Xia
- 3 Department of Engineering Science, Uppsala University, Uppsala, Sweden
| | - Håkan Engqvist
- 3 Department of Engineering Science, Uppsala University, Uppsala, Sweden
| | - Jon B Suzuki
- 4 Department of Periodontology and Oral Implantology, Temple University Kornberg School of Dentistry, Philadelphia, Pa
| |
Collapse
|
48
|
Oughlis S, Changotade S, Poirier F, Cieutat AM, Rohman G, Peltzer J, Migonney V, Lataillade JJ, Lutomski D. Improved proliferation and osteogenic differentiation of human mesenchymal stem cells on a titanium biomaterial grafted with poly(sodium styrene sulphonate) and coated with a platelet-rich plasma proteins biofilm. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516643105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to replace damaged or lost bone in the human body, it is necessary to produce ‘spare body parts’ which are dependent on the use of biomaterial and stem cells and are referred to as ‘tissue engineering’. Surface modification and stem cell interaction of orthopaedic implants offer a promising approach and are investigated here specifically to improve osseointegration of the biomaterial. Osseointegration of titanium implants used in orthopaedic surgery requires that osseo-progenitor cells attach and adhere to the surface, proliferate, then differentiate into osteoblasts and, finally, produce a mineralised matrix. The surface modification of titanium with anionic polymer combined with coating of platelet-rich plasma is provided to create a favourable environment to promote early and strong fixation of implants. The ability of progenitor cells to attach to the surface during early stages is important in the development of new tissue structures; therefore, we developed in our laboratory a strategy involving the grafting of titanium implants with a polymer of sodium styrene sulphonate (poly(sodium styrene sulphonate)) and a biofilm coating of platelet-rich plasma which enables human mesenchymal stem cell interactions. The resulting biomaterial, titanium-poly(sodium styrene sulphonate) and coating of platelet-rich plasma, Ti-poly(sodium styrene sulphonate)–platelet-rich plasma was developed in order to further improve the biomaterial. In this work, we studied and characterised the ‘in vitro’ response of human mesenchymal stem cells to titanium biomaterial grafted with poly(sodium styrene sulphonate) bioactive polymer and coated with platelet-rich plasma proteins (Ti-poly(sodium styrene sulphonate)–platelet-rich plasma). This study shows an increased cell proliferation with Ti-poly(sodium styrene sulphonate)–platelet-rich plasma compared to foetal calf serum and an enhancement of the Ti-poly(sodium styrene sulphonate)–platelet-rich plasma effects on osteoblast differentiation. The results suggest that Ti-poly(sodium styrene sulphonate)–platelet-rich plasma would be a suitable scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Sophiane Oughlis
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Sylvie Changotade
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Florence Poirier
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Anne-Marie Cieutat
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Géraldine Rohman
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Juliette Peltzer
- Unité de Thérapie Cellulaire, Centre de Transfusion Sanguine des Armées Jean Julliard, Clamart, France
| | - Véronique Migonney
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| | - Jean-Jacques Lataillade
- Unité de Thérapie Cellulaire, Centre de Transfusion Sanguine des Armées Jean Julliard, Clamart, France
| | - Didier Lutomski
- UMR CNRS 7244 CSPBAT, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
- Plateforme de Protéomique – UFR SMBH, Université Paris 13, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
49
|
Xu JY, Chen XS, Zhang CY, Liu Y, Wang J, Deng FL. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:229-240. [PMID: 27524017 DOI: 10.1016/j.msec.2016.05.096] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P<0.05) and higher total protein contents on the 14th day (P<0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P<0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes.
Collapse
Affiliation(s)
- Jia-Yun Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xian-Shuai Chen
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458, PR China
| | - Chun-Yu Zhang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458, PR China
| | - Yun Liu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Jing Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Fei-Long Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China.
| |
Collapse
|
50
|
Synergistic interactions of blood-borne immune cells, fibroblasts and extracellular matrix drive repair in an in vitro peri-implant wound healing model. Sci Rep 2016; 6:21071. [PMID: 26883175 PMCID: PMC4756324 DOI: 10.1038/srep21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/18/2016] [Indexed: 01/18/2023] Open
Abstract
Low correlations of cell culture data with clinical outcomes pose major medical challenges with costly consequences. While the majority of biomaterials are tested using in vitro cell monocultures, the importance of synergistic interactions between different cell types on paracrine signalling has recently been highlighted. In this proof-of-concept study, we asked whether the first contact of surfaces with whole human blood could steer the tissue healing response. This hypothesis was tested using alkali-treatment of rough titanium (Ti) surfaces since they have clinically been shown to improve early implant integration and stability, yet blood-free in vitro cell cultures poorly correlated with in vivo tissue healing. We show that alkali-treatment, compared to native Ti surfaces, increased blood clot thickness, including platelet adhesion. Strikingly, blood clots with entrapped blood cells in synergistic interactions with fibroblasts, but not fibroblasts alone, upregulated the secretion of major factors associated with fast healing. This includes matrix metalloproteinases (MMPs) to break down extracellular matrix and the growth factor VEGF, known for its angiogenic potential. Consequently, in vitro test platforms, which consider whole blood-implant interactions, might be superior in predicting wound healing in response to biomaterial properties.
Collapse
|