1
|
Ye G, Yong Q, Hu L, Rosqvist E, Peltonen J, Hu Y, Xu W, Xu C. Molecular engineering of nanocellulose-poly(lactic acid) bio-nanocomposite interface by reactive surface grafting from copolymerization. Int J Biol Macromol 2025; 306:141371. [PMID: 39988160 DOI: 10.1016/j.ijbiomac.2025.141371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Poly(lactic acid) (PLA) is a widely reusable polymer, but its practical applications are greatly constrained by low toughness and poor crystallinity. In this study, the modified cellulose nanocrystal (CNC) was designed as a reinforcement through surface copolymerization of caprolactone (CL) and allyl caprolactone (ACL) to enhance the properties of PLA. The surface molecular engineering of reactive core-shell nanofillers (allyl polycaprolactone-grafted CNC, or CNC-g-APCL) effectively improved the interfacial compatibility between PLA and CNC through a straightforward in situ reactive extrusion process. The presence of elastic polycaprolactone (PCL) and allyl polycaprolactone (APCL) rendered good energy dissipation as evidenced by the improved toughness and elongation at break of the PLA/CNC hybrid composites. More importantly, the integrated CNC composite presented an extremely high crystallinity of 45.1%, which is top-ranking among all reported studies on PLA/CNC nanocomposites. In summary, this research introduces an innovative method for designing nanocomposites with improved interfacial compatibility between the matrix and components by grafting copolymerization and reactive extrusion, providing a universal solution to the mechanical and crystalline deficiencies often observed in biodegradable polymers.
Collapse
Affiliation(s)
- Gaoyuan Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China; Laboratory of Natural Materials Technology, Åbo Akademi University, Turku FI-20500, Finland; Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qiwen Yong
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku FI-20500, Finland; Institute of Applied Chemistry, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China
| | - Liqiu Hu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku FI-20500, Finland
| | - Emil Rosqvist
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku FI-20500, Finland
| | - Jouko Peltonen
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Turku FI-20500, Finland
| | - Yingcheng Hu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials of Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Wenyang Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku FI-20500, Finland.
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, Turku FI-20500, Finland.
| |
Collapse
|
2
|
Van Daele L, Chausse V, Parmentier L, Brancart J, Pegueroles M, Van Vlierberghe S, Dubruel P. 3D-Printed Shape Memory Poly(alkylene terephthalate) Scaffolds as Cardiovascular Stents Revealing Enhanced Endothelialization. Adv Healthc Mater 2024; 13:e2303498. [PMID: 38329408 DOI: 10.1002/adhm.202303498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.
Collapse
Affiliation(s)
- Lenny Van Daele
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| |
Collapse
|
3
|
Meng Y, Zhai H, Zhou Z, Wang X, Han J, Feng W, Huang Y, Wang Y, Bai Y, Zhou J, Quan D. Three dimensional
printable multi‐arms poly(
CL‐
co
‐TOSUO
) for resilient biodegradable elastomer. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Yue Meng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Hong Zhai
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Ziting Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Xiaoying Wang
- School of Biomedical Engineering Jinan University Guangzhou China
| | - Jiandong Han
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - WenJuan Feng
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuxin Huang
- GD HPPC and PCFM Lab, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yuan Wang
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Ying Bai
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Jing Zhou
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Daping Quan
- GD Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| |
Collapse
|
4
|
Ramaraju H, Massarella D, Wong C, Verga AS, Kish EC, Bocks ML, Hollister SJ. Percutaneous delivery and degradation of a shape memory elastomer poly(glycerol dodecanedioate) in porcine pulmonary arteries. Biomaterials 2023; 293:121950. [PMID: 36580715 DOI: 10.1016/j.biomaterials.2022.121950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Shape memory biodegradable elastomers are an emergent class of biomaterials well-suited for percutaneous cardiovascular repair requiring nonlinear elastic materials with facile handling. We have previously developed a chemically crosslinked shape memory elastomer, poly (glycerol dodecanedioate) (PGD), exhibiting tunable transition temperatures around body temperature (34-38 °C), exhibiting nonlinear elastic properties approximating cardiac tissues, and favorable degradation rates in vitro. Degree of tissue coverage, degradation and consequent changes in polymer thermomechanical properties, and inflammatory response in preclinical animal models are unknown material attributes required for translating this material into cardiovascular devices. This study investigates changes in the polymer structure, tissue coverage, endothelialization, and inflammation of percutaneously implanted PGD patches (20 mm × 9 mm x 0.5 mm) into the branch pulmonary arteries of Yorkshire pigs for three months. After three months in vivo, 5/8 samples exhibited (100%) tissue coverage, 2/8 samples exhibited 85-95% tissue coverage, and 1/8 samples exhibited limited (<20%) tissue coverage with mild-moderate inflammation. PGD explants showed a (60-70%) volume loss and (25-30%) mass loss, and a reduction in polymer crosslinks. Lumenal and mural surfaces and the cross-section of the explant demonstrated evidence of degradation. This study validates PGD as an appropriate cardiovascular engineering material due to its propensity for rapid tissue coverage and uneventful inflammatory response in a preclinical animal model, establishing a precedent for consideration in cardiovascular repair applications.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA.
| | - Danielle Massarella
- UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Division of Pediatric, Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Courtney Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA
| | - Adam S Verga
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA
| | - Emily C Kish
- UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Division of Pediatric, Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Martin L Bocks
- UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Division of Pediatric, Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA.
| |
Collapse
|
5
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
6
|
Boire TC, Himmel LE, Yu F, Guth CM, Dollinger BR, Werfel TA, Balikov DA, Duvall CL. Effect of pore size and spacing on neovascularization of a biodegradble shape memory polymer perivascular wrap. J Biomed Mater Res A 2021; 109:272-288. [PMID: 32490564 PMCID: PMC8270373 DOI: 10.1002/jbm.a.37021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
Neointimal hyperplasia (NH) is a main source of failures in arteriovenous fistulas and vascular grafts. Several studies have demonstrated the promise of perivascular wraps to reduce NH via promotion of adventitial neovascularization and providing mechanical support. Limited clinical success thus far may be due to inappropriate material selection (e.g., nondegradable, too stiff) and geometric design (e.g., pore size and spacing, diameter). The influence of pore size and spacing on implant neovascularization is investigated here for a new biodegradable, thermoresponsive shape memory polymer (SMP) perivascular wrap. Following an initial pilot, 21 mice were each implanted with six scaffolds: four candidate SMP macroporous designs (a-d), a nonporous SMP control (e), and microporous GORETEX (f). Mice were sacrificed after 4 (N = 5), 14 (N = 8), and 28 (N = 8) days. There was a statistically significant increase in neovascularization score between all macroporous groups compared to nonporous SMP (p < .023) and microporous GORETEX (p < .007) controls at Day 28. Wider-spaced, smaller-sized pore designs (223 μm-spaced, 640 μm-diameter Design c) induced the most robust angiogenic response, with greater microvessel number (p < .0114) and area (p < .0055) than nonporous SMPs and GORETEX at Day 28. This design also produced significantly greater microvessel density than nonporous SMPs (p = 0.0028) and a smaller-spaced, larger-sized pore (155 μm-spaced, 1,180 μm-sized Design b) design (p = .0013). Strong neovascularization is expected to reduce NH, motivating further investigation of this SMP wrap with controlled pore spacing and size in more advanced arteriovenous models.
Collapse
Affiliation(s)
- Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Lauren E Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Christy M Guth
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Biomedical Engineering Program, University of Mississippi, Oxford, Mississippi, USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Oh WT, Lee JB, Choi W, Bae HW, Kim CS, Kim CY, Sung HJ. Shape Memory Tube Plug for Fine-control of Intraocular Pressure by Glaucoma Devices. ACS Biomater Sci Eng 2020; 6:3784-3790. [PMID: 33463360 DOI: 10.1021/acsbiomaterials.0c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a standard approach to treating glaucoma, a silicone tube device is inserted into the eye to drain water and thereby lower the intraocular pressure (IOP). However, the fixed diameter of the tube often results in too much initial water drain. Suture-sheaving of the outer tube wall also leads to random IOP drops over time. In this study, self-expansion of the inner tube diameter was achieved by inserting a shape memory tube into the silicone tube. The difference in controlling small to large IOP drops before and after tube diameter expansion was demonstrated via computational modeling, a flow pumping system, and rabbit experiments.
Collapse
Affiliation(s)
- Won Taek Oh
- TMD LAB Co., Ltd., Seoul 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Wungrak Choi
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung Won Bae
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hak-Joon Sung
- Medical Engineering, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| |
Collapse
|
8
|
Xiao R, Huang WM. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol Biosci 2020; 20:e2000108. [PMID: 32567193 DOI: 10.1002/mabi.202000108] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/03/2020] [Indexed: 12/16/2022]
Abstract
This review is about the fundamentals and practical issues in applying both heating and solvent responsive shape memory polymers (SMPs) for implant biomedical devices via minimally invasive surgery. After revealing the general requirements in the design of biomedical devices based on SMPs and the fundamentals for the shape-memory effect in SMPs, the underlying mechanisms, characterization methods, and several representative biomedical applications, including vascular stents, tissue scaffolds, occlusion devices, drug delivery systems, and the current R&D status of them, are discussed. The new opportunities arising from emerging technologies, such as 3D printing, and new materials, such as vitrimer, are also highlighted. Finally, the major challenge that limits the practical clinical applications of SMPs at present is addressed.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
9
|
Zhang Y, Hu J. Isocyanate Modified GO Shape-Memory Polyurethane Composite. Polymers (Basel) 2020; 12:E118. [PMID: 31948033 PMCID: PMC7022938 DOI: 10.3390/polym12010118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 11/24/2022] Open
Abstract
Shape-memory composites have benefits for minimally invasive surgery, but their wider applications for bone repair are hindered by conflicts between the mechanical and memory performances, especially at load-bearing locations. In this study, we fabricated a graphene oxide shape-memory polyurethane composite through the chemical combination of graphene oxide and isocyanate, in order to realize satisfactory mechanical and shape-memory effects. As desired, a modulus of ~339 MPa and a shape recovery ratio of 98% were achieved, respectively, in the composite. In addition, finite element analysis demonstrated that, after being implanted in a defective bone through a minimally invasive treatment, where the highest stress was distributed at the implant-bone interface, this composite could offer a generated force during the recovery process. Furthermore, we also discuss the origins of the improved mechanical and memory properties of the composites, which arise from increased net-points and the stable molecular structure inside. Therefore, with its superior structure and properties, we envision that this shape-memory composite can provide new insights toward the practical application of shape-memory polymers and composites in the field of bone repair.
Collapse
Affiliation(s)
| | - Jinlian Hu
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China;
| |
Collapse
|
10
|
Park JY, Lee JB, Shin WB, Kang ML, Shin YC, Son DH, Yi SW, Yoon JK, Kim JY, Ko J, Kim CS, Yoon JS, Sung HJ. Nasolacrimal stent with shape memory as an advanced alternative to silicone products. Acta Biomater 2020; 101:273-284. [PMID: 31707084 DOI: 10.1016/j.actbio.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/27/2023]
Abstract
Epiphora is the overflow of tears typically caused by obstruction or occlusion of the nasolacrimal duct. More attention is required to address this global health issue owing to the increase in air pollution. Implantation of a silicone stent is the preferred treatment for epiphora; however, introducing a silicone stent into a narrow duct with complex geometry is challenging as it requires guidance by a sharp metal needle. Additionally, silicone can cause adverse reactions such as biofilm formation and tear flow resistance due to its extreme hydrophobicity. To overcome these problems, in this study we developed a new type of biocompatible shape memory polymer (SMP) stent with elasticity capacity for self-expansion. First, SMPs in the form of x%poly(ε-caprolactone)-co-y%poly(glycidyl methacrylate) (x%PCL-y%PGMA) were synthesized via ring opening polymerization by varying the molar ratio of PCL (x%) and PGMA (y%). Second, the shape memory and mechanical properties were tuned by controlling the crosslinking degree and concentration of x%PCL-y%PGMA solution to produce a test type of SMP stent. Lastly, this 94%PCL-06%PGMA stent exhibited more standout critical functions in a series of in vitro and in vivo experiments such as a cell growth-supporting level of biocompatibility with nasal epithelial cells without significant inflammatory responses, better resistance to biofilm formation, and more efficient capacity to drain tear than the silicone control. Overall, 94%PCL-06%PGMA can be suggested as a superior alternative to the currently used materials for nasolacrimal stents. STATEMENT OF SIGNIFICANCE: Silicone intubation (stenting) has been widely used to treat nasolacrimal duct obstruction, however, it can cause adverse clinical effects such as bacterial infection; presents procedural challenges because of the curved nasolacrimal duct structure; and shows poor drainage efficiency stemming from the highly hydrophobic nature of silicone. In this work, we describe an innovative shape memory polymer (SMP) as a superior alternative to conventional silicone-based materials for nasolacrimal duct intubation. We demonstrate the clear advantages of the SMP over conventional silicone, including a much higher drainage capacity and superior resistance to bacterial infection.
Collapse
Affiliation(s)
- Ju Young Park
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woo Beom Shin
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Mi-Lan Kang
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; TMD Lab Co., Ltd., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Yong Cheol Shin
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Deok Hyeon Son
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Se Won Yi
- TMD Lab Co., Ltd., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Chang-Soo Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Numais Co., Ltd., 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722 Republic of Korea.
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Wan X, Wei H, Zhang F, Liu Y, Leng J. 3D printing of shape memory poly(
d
,
l
‐lactide‐
co
‐trimethylene carbonate) by direct ink writing for shape‐changing structures. J Appl Polym Sci 2019. [DOI: 10.1002/app.48177] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xue Wan
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Hongqiu Wei
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Fenghua Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of Technology Harbin 150080 People's Republic of China
| | - Yanju Liu
- Department of Astronautical Science and MechanicsHarbin Institute of Technology Harbin 150001 People's Republic of China
| | - Jinsong Leng
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of Technology Harbin 150080 People's Republic of China
| |
Collapse
|
12
|
Zhao G, Wang Z, Wang H, Zhao H, Fu Y, Yang J. Effect of doping nanoparticles on the output force performance of chitosan-based nanocomposite gel actuator. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1520258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gang Zhao
- Institute of Intelligent Manufacturing and Robotics, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbi, China
| | - Zhijie Wang
- Institute of Intelligent Manufacturing and Robotics, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbi, China
| | - Haojun Wang
- Institute of Intelligent Manufacturing and Robotics, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbi, China
| | - Honghao Zhao
- Department of Decision Sciences, School of Business, Macau University of Science and Technology, Macau, China
| | - Yu Fu
- Institute of Intelligent Manufacturing and Robotics, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbi, China
| | - Junjie Yang
- Institute of Intelligent Manufacturing and Robotics, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbi, China
| |
Collapse
|
13
|
Le Devedec F, Boucher H, Dubins D, Allen C. Factors Controlling Drug Release in Cross-linked Poly(valerolactone) Based Matrices. Mol Pharm 2018; 15:1565-1577. [DOI: 10.1021/acs.molpharmaceut.7b01102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Frantz Le Devedec
- Leslie Dan Faculty of Pharmacy, University of Toronto, 44 College Street, Ontario M5S 3M2, Canada
| | - Hilary Boucher
- Leslie Dan Faculty of Pharmacy, University of Toronto, 44 College Street, Ontario M5S 3M2, Canada
| | - David Dubins
- Leslie Dan Faculty of Pharmacy, University of Toronto, 44 College Street, Ontario M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 44 College Street, Ontario M5S 3M2, Canada
| |
Collapse
|
14
|
Meis D, Tena A, Neumann S, Georgopanos P, Emmler T, Shishatskiy S, Rangou S, Filiz V, Abetz V. Thermal rearrangement of ortho-allyloxypolyimide membranes and the effect of the degree of functionalization. Polym Chem 2018. [DOI: 10.1039/c8py00530c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic polyimides containing different ratios of ortho-hydroxy to ortho-allyloxy units were prepared and thermally rearranged.
Collapse
Affiliation(s)
- David Meis
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | - Alberto Tena
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | - Silvio Neumann
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | | | - Thomas Emmler
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | - Sergey Shishatskiy
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | - Sofia Rangou
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | - Volkan Filiz
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
| | - Volker Abetz
- Helmholtz-Zentrum Geesthacht
- Institute of Polymer Research
- 21502 Geesthacht
- Germany
- University of Hamburg
| |
Collapse
|
15
|
Lee Y, Le Thi P, Seon GM, Ryu SB, Brophy CM, Kim Y, Park JC, Park KD, Cheung-Flynn J, Sung HJ. Heparin-functionalized polymer graft surface eluting MK2 inhibitory peptide to improve hemocompatibility and anti-neointimal activity. J Control Release 2017; 266:321-330. [PMID: 28987880 PMCID: PMC5723561 DOI: 10.1016/j.jconrel.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The leading cause of synthetic graft failure includes thrombotic occlusion and intimal hyperplasia at the site of vascular anastomosis. Herein, we report a co-immobilization strategy of heparin and potent anti-neointimal drug (Mitogen Activated Protein Kinase II inhibitory peptide; MK2i) by using a tyrosinase-catalyzed oxidative reaction for preventing thrombotic occlusion and neointimal formation of synthetic vascular grafts. The binding of heparin-tyramine polymer (HT) onto the polycarprolactone (PCL) surface enhanced blood compatibility with significantly reduced protein absorption (64.7% decrease) and platelet adhesion (85.6% decrease) compared to bare PCL surface. When loading MK2i, 1) the HT depot surface gained high MK2i-loading efficiency through charge-charge interaction, and 2) this depot platform enabled long-term, controlled release over 4weeks (92-272μg/mL of MK2i). The released MK2i showed significant inhibitory effects on VSMC migration through down-regulated phosphorylation of target proteins (HSP27 and CREB) associated with intimal hyperplasia. In addition, it was found that the released MK2i infiltrated into the tissue with a cumulative manner in ex vivo human saphenous vein (HSV) model. This present study demonstrates that enzymatically HT-coated surface modification is an effective strategy to induce long-term MK2i release as well as hemocompatibility, thereby improving anti-neointimal activity of synthetic vascular grafts.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Gyeung Mi Seon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Seung Bae Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Colleen M Brophy
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Joyce Cheung-Flynn
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hak-Joon Sung
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
16
|
Gu SY, Chang K, Jin SP. A dual-induced self-expandable stent based on biodegradable shape memory polyurethane nanocomposites (PCLAU/Fe3
O4
) triggered around body temperature. J Appl Polym Sci 2017. [DOI: 10.1002/app.45686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shu-Ying Gu
- Department of Polymer Materials; School of Materials Science and Engineering, Tongji University; Shanghai 201804 People's Republic of China
- Key Laboratory of Advanced Civil Engineering Materials; Ministry of Education, Tongji University; Shanghai 201804 People's Republic of China
| | - Kun Chang
- Department of Polymer Materials; School of Materials Science and Engineering, Tongji University; Shanghai 201804 People's Republic of China
| | - Sheng-Peng Jin
- Department of Polymer Materials; School of Materials Science and Engineering, Tongji University; Shanghai 201804 People's Republic of China
| |
Collapse
|
17
|
Boumezgane O, Messori M. Poly(ethylene glycol)-based shape-memory polymers. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1324589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Oussama Boumezgane
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Messori
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Yang P, Zhu G, Xu S, Zhang X, Shen X, Cui X, Gao Y, Nie J. A novel shape memory poly(ε-caprolactone) network via UV-triggered thiol-ene reaction. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pengfei Yang
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Guangming Zhu
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Shuogui Xu
- Emergency Medicine Department & Trauma Emergency Center; Changhai Hospital, Second Military Medical University; 168 Changhai Road Shanghai 200433 China
| | - Xiaoyan Zhang
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Xuelin Shen
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Xiaoping Cui
- Equipment and Engineering College; University of CAPF; 1 Shuangyong Road Xi'an 710024 People's Republic of China
| | - Yuliang Gao
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| | - Jing Nie
- Department of Applied Chemistry; Northwestern Polytechnical University; 127 West Friendship Road Xi'an 710072 People's Republic of China
| |
Collapse
|
19
|
Truong TT, Thai SH, Nguyen HT, Vuong VD, Nguyen LTT. Synthesis of allyl end-block functionalized poly(ε-caprolactone)s and their facile post-functionalization via thiol-ene reaction. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thuy Thu Truong
- Faculty of Materials Technology; Ho Chi Minh city University of Technology, Vietnam National University (VNU-HCM); 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Son Hong Thai
- Faculty of Materials Technology; Ho Chi Minh city University of Technology, Vietnam National University (VNU-HCM); 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Ha Tran Nguyen
- Faculty of Materials Technology; Ho Chi Minh city University of Technology, Vietnam National University (VNU-HCM); 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Materials Technology Key Laboratory (Mtlab); Ho Chi Minh City University of Technology, Vietnam National University (VNU-HCM); 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Vinh-Dat Vuong
- Materials Technology Key Laboratory (Mtlab); Ho Chi Minh City University of Technology, Vietnam National University (VNU-HCM); 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Le-Thu T. Nguyen
- Faculty of Materials Technology; Ho Chi Minh city University of Technology, Vietnam National University (VNU-HCM); 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| |
Collapse
|
20
|
Boire TC, Balikov DA, Lee Y, Guth CM, Cheung-Flynn J, Sung HJ. Biomaterial-Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromol Rapid Commun 2016; 37:1860-1880. [PMID: 27673474 PMCID: PMC5156561 DOI: 10.1002/marc.201600412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/15/2016] [Indexed: 12/19/2022]
Abstract
Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia. Systemic therapies have achieved little long-term success, indicating the need for more localized, sustained, biomaterial-based solutions. Numerous studies have demonstrated the ability of external stents to reduce neointimal hyperplasia. However, successful results from animal models have failed to translate to the clinic thus far, and no external stent is currently approved for use in the US to prevent vein graft or hemodialysis access failures. This review discusses current progress in the field, design considerations, and future perspectives for biomaterial-based external stents. More comparative studies iteratively modulating biomaterial and biomaterial-drug approaches are critical in addressing mechanistic knowledge gaps associated with external stent application to the arteriovenous environment. Addressing these gaps will ultimately lead to more viable solutions that prevent vein graft and hemodialysis access failures.
Collapse
Affiliation(s)
- Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
| | - Christy M Guth
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Joyce Cheung-Flynn
- Division of Vascular Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, 37235, Nashville, TN, USA
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, 120-752, Republic of Korea
| |
Collapse
|
21
|
Gu SY, Gao XF, Jin SP, Liu YL. Biodegradable shape memory polyurethanes with controllable trigger temperature. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1795-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Mozumder MS, Mairpady A, Mourad AHI. Polymeric nanobiocomposites for biomedical applications. J Biomed Mater Res B Appl Biomater 2016; 105:1241-1259. [PMID: 26910862 DOI: 10.1002/jbm.b.33633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/20/2023]
Abstract
Polymeric nanobiocomposites have recently become one of the most essential sought after materials for biomedical applications ranging from implants to the creation of gels. Their unique mechanical and biological properties provide them the ability to pass through the highly guarded defense mechanism without undergoing noticeable degradation and initiation of immune responses, which in turn makes them advantageous over the other alternatives. Aligned with the advances in tissue engineering, it is also possible to design three-dimensional extracellular matrix using these polymeric nanobiocomposites that could closely mimic the human tissues. In fact, unique polymer chemistry coupled with nanoparticles could create unique microenvironment that promotes cell growth and differentiation. In addition, the nanobiocomposites can also be devised to carry drugs efficiently to the target site without exhibiting any cytotoxicity as well as to eradicate surgical infections. In this article, an effort has been made to thoroughly review a number of different types/classes of polymeric nanocomposites currently used in biomedical fields. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1241-1259, 2017.
Collapse
Affiliation(s)
| | - Anusha Mairpady
- Chemical & Petroleum Engineering Department, UAE University, Al Ain, UAE
| | | |
Collapse
|
23
|
|