1
|
Sarkar S, Moitra P, Duan W, Bhattacharya S. A Multifunctional Aptamer Decorated Lipid Nanoparticles for the Delivery of EpCAM-targeted CRISPR/Cas9 Plasmid for Efficacious In Vivo Tumor Regression. Adv Healthc Mater 2024; 13:e2402259. [PMID: 39212195 DOI: 10.1002/adhm.202402259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) gene encodes a type-I trans-membrane glycoprotein that is overexpressed in many cancerous epithelial cells and promotes tumor progression by regulating the expression of several oncogenes like c-myc and other cyclins. Because of this tumorigenic association, the EpCAM gene has been a potential target for anti-cancer therapy in recent days. Herein, it is attempted to knockout the proto-oncogenic EpCAM expression by efficiently delivering an all-in-one Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) plasmid via a lipid nanoparticle system made out of synthetic stimuli-sensitive lipids. The plasmid possesses the necessary information in the form of a guide RNA targeted to the EpCAM gene. The aptamer decorated system selectively targets EpCAM overexpressed cells and efficiently inhibits the genetic expression. It has explored the pH-responsive property of the developed lipid nanoparticles and monitored their efficacy in various cancer cell lines of different origins with elevated EpCAM levels. The phenomenon has further been validated in vivo in non-immunocompromised mouse tumor models. Overall, the newly developed aptamer decorated lipid nanoparticle system has been proven to be efficacious for the delivery of EpCAM-targeted CRISPR/Cas9 plasmid.
Collapse
Affiliation(s)
- Sourav Sarkar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, Odisha, 760003, India
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Yerpedu, Tirupati District, Andhra Pradesh, 517619, India
| |
Collapse
|
2
|
Dean DC, Feng W, Walker RL, Thanindratarn P, Temple HT, Trent JC, Rosenberg AE, Hornicek FJ, Duan Z. Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1) Is a Novel Therapeutic Target in Liposarcoma: A Tissue Microarray Study. Clin Orthop Relat Res 2023; 481:2140-2153. [PMID: 37768856 PMCID: PMC10567009 DOI: 10.1097/corr.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Liposarcoma is the most commonly diagnosed subtype of soft tissue sarcoma. As these tumors often arise near vital organs and neurovascular structures, complete resection can be challenging; consequently, recurrence rates are high. Additionally, available chemotherapeutic agents have shown limited benefit and substantial toxicities. There is, therefore, a clear and unmet need for novel therapeutics for liposarcoma. Discoidin domain receptor tyrosine kinase 1 (DDR1) is involved in adhesion, proliferation, differentiation, migration, and metastasis in several cancers. However, the expression and clinical importance of DDR1 in liposarcoma are unknown. QUESTIONS/PURPOSES The purposes of this study were to assess (1) the expression, (2) the association between DDR1 and survival, and (3) the functional roles of DDR1 in liposarcoma. METHODS The correlation between DDR1 expression in tumor tissues and clinicopathological features and survival was assessed via immunohistochemical staining of a liposarcoma tissue microarray. It contained 53 samples from 42 patients with liposarcoma and 11 patients with lipoma. The association between DDR1 and survival in liposarcoma was analyzed by Kaplan-Meier plots and log-rank tests. The DDR1 knockout liposarcoma cell lines were generated by CRISPR-Cas9 technology. The DDR1-specific and highly selective DDR1 inhibitor 7RH was applied to determine the impact of DDR1 expression on liposarcoma cell growth and proliferation. In addition, the effect of DDR1 inhibition on liposarcoma growth was further accessed in a three-dimensional cell culture model to mimic DDR1 effects in vivo. RESULTS The results demonstrate elevated expression of DDR1 in all liposarcoma subtypes relative to benign lipomas. Specifically, high DDR1 expression was seen in 55% (23 of 42) of liposarcomas and no benign lipomas. However, DDR1 expression was not found to be associated with poor survival in patients with liposarcoma. DDR1 knockout or treatment of 7RH showed decreased liposarcoma cell growth and proliferation. CONCLUSION DDR1 is aberrantly expressed in liposarcoma, and it contributes to several markers of oncogenesis in these tumors. CLINICAL RELEVANCE This work supports DDR1 as a promising therapeutic target in liposarcoma.
Collapse
Affiliation(s)
- Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenlong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Robert L. Walker
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - H. Thomas Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan C. Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew E. Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Thamodaran V, Rani S, Velayudhan SR. Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System. Methods Mol Biol 2022; 2454:755-773. [PMID: 33830454 PMCID: PMC7612904 DOI: 10.1007/7651_2021_348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Induced pluripotent stem cells (iPSCs) generated from patients are a valuable tool for disease modelling, drug screening, and studying the functions of cell/tissue-specific genes. However, for this research, isogenic iPSC lines are important for comparison of phenotypes in the wild type and mutant differentiated cells generated from the iPSCs. The advent of gene editing technologies to correct or generate mutations helps in the generation of isogenic iPSC lines with the same genetic background. Due to the ease of programming, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9-based gene editing tools have gained pace in gene manipulation studies, including investigating complex diseases like cancer. An iPSC line with drug inducible Cas9 expression from the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus offers a controllable expression of Cas9 with robust gene editing. Here, we describe a stepwise protocol for the generation and characterization of such an iPSC line (AAVS1-PDi-Cas9 iPSC) with a doxycycline (dox)-inducible Cas9 expression cassette from the AAVS1 safe harbor site and efficient editing of target genes with lentiviral vectors expressing gRNAs. This approach with a tunable Cas9 expression that allows investigating gene functions in iPSCs or in the differentiated cells can serve as a versatile tool in disease modelling studies.
Collapse
Affiliation(s)
- Vasanth Thamodaran
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College, Vellore, India
| | - Sonam Rani
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College, Vellore, India
| | - Shaji R Velayudhan
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), Christian Medical College, Vellore, India.
- Department of Haematology, Christian Medical College, Vellore, India.
| |
Collapse
|
6
|
Ling K, Yang L, Yang N, Chen M, Wang Y, Liang S, Li Y, Jiang L, Yan P, Liang Z. Gene Targeting of HPV18 E6 and E7 Synchronously by Nonviral Transfection of CRISPR/Cas9 System in Cervical Cancer. Hum Gene Ther 2021; 31:297-308. [PMID: 31989837 DOI: 10.1089/hum.2019.246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 and E7 genes display vital oncogenic properties in cervical cancer. Eliminating HPV driver gene or loss of function by the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is a promising treatment for the HPV-associated cancer. Thus, this study designed a CRISPR/Cas9 system to target the E6 and E7 genes at once, to detect whether it have efficacy in vitro and in vivo. Meanwhile, CRISPR/Cas9 system was measured after transfection with liposomes but virus. Cervical cancer lines (HeLa and SiHa) were used in this study. Sanger sequencing confirmed that the single CRISPR/Cas9 vector [termed E6E7-knockout (KO)] containing guide RNAs could targeting both HPV18 E6 and E7 genes in vitro. In addition, double-targeting E6 and E7 increased p53 protein expression significantly while compared with E6 or E7 targeting, respectively. Mice with xenografts were divided into four groups: three doses of experimental groups (20, 40, and 60 μg) and one control group. The E6E7-KO through liposome delivery was injected into tumors. Tumor growth was measured and protein expression was observed through immunohistochemistry. The toxic side effects in vivo were also evaluated. E6E7-KO induced cell apoptosis and inhibited cell proliferation markedly in vitro. E6E7-KO downregulated the messenger RNA and protein expression of E6 and E7, whereas p53 and p21 protein levels were upregulated accordingly. Notably, E6E7-KO delivery by liposome exhibited an effect in vivo. Tumor growth was inhibited in the E6E7-KO groups, which was accompanied by decreased E6/E7 protein expression and increased p53/p21 protein expression, especially the level of p53 protein expression. Therefore, E6E7-KO could have synergy efficient by p53 pathway. Furthermore, local injection with CRISPR/Cas9 by nonviral delivery may be regarded as a potential therapy for cervical cancer in the future.
Collapse
Affiliation(s)
- Kaijian Ling
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Leiyan Yang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China.,College of Life Sciences, Southwest University, Chongqing, China
| | - Neng Yang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China.,College of Life Sciences, Southwest University, Chongqing, China
| | - Mengyue Chen
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shi Liang
- Birmingham Young University, Rexburg, Idaho
| | - Yudi Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Yan
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Abeyratne-Perera HK, Basu S, Chandran PL. Shells of compacted DNA as nanocontainers transporting proteins in multiplexed delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112184. [PMID: 34225845 DOI: 10.1016/j.msec.2021.112184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Polyethyleneimine (PEI) polymers are known to compact DNA strands into spheroid, toroid, or rod structures. A formulation with mannose-grafted PEI (PEIm), however, was reported to compact DNA into ~100 nm spheroids that indented like thin-walled pressurized shells. The goal of the study is to understand why mannose bristles divert the traditional pathway of PEI-DNA compaction to produce shell-like structures, and to manipulate the process so that proteins can be packed into the core of the assembling shells for co-delivering DNA and proteins into cells. DLS, AFM, and TEM imaging provide a consistent picture that BSA proteins can be packed into the shells without altering the shell architecture, as long as the proteins were added during the time course of shell assembly. Force spectroscopy studies reveal that DNA shells that buckle also have a rich surface-coating of mannose, indicating that a micelle-like partitioning of hydrophobic and hydrophilic layers governs shell assembly. When HEK293T cells are spiked with BSA-laden DNA shells, co-transfection of DNA and BSA is observed at higher levels than control formulations. Distinct micron-sized features appear having both green fluorescence from BSA-FITC and blue fluorescence from NucBlue DNA stain, suggesting BSA release in nucleus and secretory granules. With DNA nanocontainers, proteins can take advantage of the efficiency of PEI-based DNA transfection for hitchhiking into cells while being shielded from the challenges of the intracellular route. DNA nanocontainers are rapid to assemble, not dependent on the DNA sequence, and can be adapted for different protein types; thereby having potential to serve as a high-throughput platform in scenarios where DNA and protein have to be released at the same site and time within cells (e.g., theranostics, multiplexed co-delivery, gene editing).
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America
| | - Saswati Basu
- Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America
| | - Preethi L Chandran
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America; Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America.
| |
Collapse
|
8
|
Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient Polymer-Mediated Delivery of Gene-Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning. ACS NANO 2020; 14:17626-17639. [PMID: 33225680 DOI: 10.1021/acsnano.0c08549] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemically defined vectors such as cationic polymers are versatile alternatives to engineered viruses for the delivery of genome-editing payloads. However, their clinical translation hinges on rapidly exploring vast chemical design spaces and deriving structure-function relationships governing delivery performance. Here, we discovered a polymer for efficient intracellular ribonucleoprotein (RNP) delivery through combinatorial polymer design and parallelized experimental workflows. A chemically diverse library of 43 statistical copolymers was synthesized via combinatorial RAFT polymerization, realizing systematic variations in physicochemical properties. We selected cationic monomers that varied in their pKa values (8.1-9.2), steric bulk, and lipophilicity of their alkyl substituents. Co-monomers of varying hydrophilicity were also incorporated, enabling elucidation of the roles of protonation equilibria and hydrophobic-hydrophilic balance in vehicular properties and performance. We screened our multiparametric vector library through image cytometry and rapidly uncovered a hit polymer (P38), which outperforms state-of-the-art commercial transfection reagents, achieving nearly 60% editing efficiency via nonhomologous end-joining. Structure-function correlations underlying editing efficiency, cellular toxicity, and RNP uptake were probed through machine learning approaches to uncover the physicochemical basis of P38's performance. Although cellular toxicity and RNP uptake were solely determined by polyplex size distribution and protonation degree, respectively, these two polyplex design parameters were found to be inconsequential for enhancing editing efficiency. Instead, polymer hydrophobicity and the Hill coefficient, a parameter describing cooperativity-enhanced polymer deprotonation, were identified as the critical determinants of editing efficiency. Combinatorial synthesis and high-throughput characterization methodologies coupled with data science approaches enabled the rapid discovery of a polymeric vehicle that would have otherwise remained inaccessible to chemical intuition. The statistically derived design rules elucidated herein will guide the synthesis and optimization of future polymer libraries tailored for therapeutic applications of RNP-based genome editing.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ngoc Le
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mary E Brown
- University Imaging Centers, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shan Jiang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Rui Y, Varanasi M, Mendes S, Yamagata HM, Wilson DR, Green JJ. Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:661-672. [PMID: 32380416 PMCID: PMC7210380 DOI: 10.1016/j.omtn.2020.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
The CRISPR-Cas9 system is a powerful gene-editing tool with wide-ranging applications, but the safe and efficient intracellular delivery of CRISPR components remains a challenge. In this study, we utilized biodegradable poly(beta-amino ester) nanoparticles to codeliver plasmid DNA encoding Cas9 and short guide RNA (sgRNA), respectively, to enable gene knockout following a CRISPR-mediated cleavage at one genomic site (1-cut edit), as well as gene deletion following DNA cleavage at two sites flanking a region of interest (2-cut edits). We designed a reporter system that allows for easy evaluation of both types of edits: gene knockout can be assessed by a decrease in near-infrared fluorescent protein (iRFP) fluorescence, whereas deletion of an expression stop cassette turns on a red-enhanced nanolantern fluorescence/luminescence dual reporter. Nanoparticles enabled up to 70% gene knockout due to small indels, as well as 45% gain-of-function expression after a 600-bp deletion edit. The efficiency of 2-cut edits is more sensitive than 1-cut edits to Cas9 and the sgRNA expression level. We demonstrate promising biodegradable nanoparticle formulations for gene editing. Our findings also provide new insights into the screening and transfection requirements for different types of gene edits, which are applicable for designing nonviral delivery systems for the CRISPR-Cas9 platform.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mahita Varanasi
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shanelle Mendes
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hannah M Yamagata
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David R Wilson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
10
|
Gong Y, Tian S, Xuan Y, Zhang S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J Mater Chem B 2020; 8:4369-4386. [DOI: 10.1039/d0tb00207k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) system is the most widely used tool for gene editing.
Collapse
Affiliation(s)
- Yan Gong
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Siyu Tian
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
11
|
Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S, Xie R, Suzuki M, Pattnaik BR, Saha K, Gong S. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. NATURE NANOTECHNOLOGY 2019; 14:974-980. [PMID: 31501532 PMCID: PMC6778035 DOI: 10.1038/s41565-019-0539-2] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/26/2019] [Indexed: 05/20/2023]
Abstract
Delivery technologies for the CRISPR-Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing system often require viral vectors, which pose safety concerns for therapeutic genome editing1. Alternatively, cationic liposomal components or polymers can be used to encapsulate multiple CRISPR components into large particles (typically >100 nm diameter); however, such systems are limited by variability in the loading of the cargo. Here, we report the design of customizable synthetic nanoparticles for the delivery of Cas9 nuclease and a single-guide RNA (sgRNA) that enables the controlled stoichiometry of CRISPR components and limits the possible safety concerns in vivo. We describe the synthesis of a thin glutathione (GSH)-cleavable covalently crosslinked polymer coating, called a nanocapsule (NC), around a preassembled ribonucleoprotein (RNP) complex between a Cas9 nuclease and an sgRNA. The NC is synthesized by in situ polymerization, has a hydrodynamic diameter of 25 nm and can be customized via facile surface modification. NCs efficiently generate targeted gene edits in vitro without any apparent cytotoxicity. Furthermore, NCs produce robust gene editing in vivo in murine retinal pigment epithelium (RPE) tissue and skeletal muscle after local administration. This customizable NC nanoplatform efficiently delivers CRISPR RNP complexes for in vitro and in vivo somatic gene editing.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Pawan K Shahi
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Zhang X, Xu C, Gao S, Li P, Kong Y, Li T, Li Y, Xu F, Du J. CRISPR/Cas9 Delivery Mediated with Hydroxyl-Rich Nanosystems for Gene Editing in Aorta. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900386. [PMID: 31380173 PMCID: PMC6662060 DOI: 10.1002/advs.201900386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/12/2019] [Indexed: 05/02/2023]
Abstract
A CRISPR/Cas9 system has emerged as a powerful tool for gene editing to treat genetic mutation related diseases. Due to the complete endothelial barrier, effective delivery of the CRISPR/Cas9 system to vasculatures remains a challenge for in vivo gene editing of genetic vascular diseases especially in aorta. Herein, it is reported that CHO-PGEA (cholesterol (CHO)-terminated ethanolamine-aminated poly(glycidyl methacrylate)) with rich hydroxyl groups can deliver a plasmid based pCas9-sgFbn1 system for the knockout of exon 10 in Fbn1 gene. This is the first report of a polycation-mediated CRISPR/Cas9 system for gene editing in aorta of adult mice. CHO-PGEA/pCas9-sgFbn1 nanosystems can effectively contribute to the knockout of exon 10 in Fbn1 in vascular smooth muscle cells in vitro, which leads to the change of the phosphorylation of Smad2/3 and the increased expression of two downstream signals of Fbn1: Mmp-2 and Ctgf. For in vivo application, the aortic enrichment of CHO-PGEA/Cas9-sgFbn1 is achieved by administering a pressor dose of angiotensin II (Ang II). The effects of the pCas9-sgFbn1 system targeting Fbn1 demonstrate an increase in the expression of Mmp-2 and Ctgf in aorta. Thus, the combination of CHO-PGEA/pCas9-sgFbn1 nanosystems with Ang II infusion can provide the possibility for in vivo gene editing in aorta.
Collapse
Affiliation(s)
- Xiaoping Zhang
- State Key Laboratory of Chemical Resource EngineeringKey Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Chen Xu
- State Key Laboratory of Chemical Resource EngineeringKey Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shijuan Gao
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| | - Ping Li
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| | - Yu Kong
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| | - Tiantian Li
- State Key Laboratory of Chemical Resource EngineeringKey Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yulin Li
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| | - Fu‐Jian Xu
- State Key Laboratory of Chemical Resource EngineeringKey Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)Ministry of EducationBeijing Laboratory of Biomedical Materials, and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jie Du
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| |
Collapse
|
13
|
Wang Y, Ma B, Abdeen AA, Chen G, Xie R, Saha K, Gong S. Versatile Redox-Responsive Polyplexes for the Delivery of Plasmid DNA, Messenger RNA, and CRISPR-Cas9 Genome-Editing Machinery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31915-31927. [PMID: 30222305 PMCID: PMC6530788 DOI: 10.1021/acsami.8b09642] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene therapy holds great promise for the treatment of many diseases, but clinical translation of gene therapies has been slowed down by the lack of safe and efficient gene delivery systems. Here, we report two versatile redox-responsive polyplexes (i.e., cross-linked and non-crosslinked) capable of efficiently delivering a variety of negatively charged payloads including plasmid DNA (DNA), messenger RNA, Cas9/sgRNA ribonucleoprotein (RNP), and RNP-donor DNA complexes (S1mplex) without any detectable cytotoxicity. The key component of both types of polyplexes is a cationic poly( N, N'-bis(acryloyl)cystamine- co-triethylenetetramine) polymer [a type of poly( N, N'-bis(acryloyl)cystamine-poly(aminoalkyl)) (PBAP) polymer] containing disulfide bonds in the backbone and bearing imidazole groups. This composition enables efficient encapsulation, cellular uptake, controlled endo/lysosomal escape, and cytosolic unpacking of negatively charged payloads. To further enhance the stability of non-crosslinked PBAP polyplexes, adamantane (AD) and β-cyclodextrin (β-CD) were conjugated to the PBAP-based polymers. The cross-linked PBAP polyplexes formed by host-guest interaction between β-CD and AD were more stable than non-crosslinked PBAP polyplexes in the presence of polyanionic polymers such as serum albumin, suggesting enhanced stability in physiological conditions. Both cross-linked and non-crosslinked polyplexes demonstrated either similar or better transfection and genome-editing efficiencies, and significantly better biocompatibility than Lipofectamine 2000, a commercially available state-of-the-art transfection agent that exhibits cytotoxicity.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Ben Ma
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
- The Second Department of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Amr A. Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Corresponding authors. ;
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53715, USA
- Corresponding authors. ;
| |
Collapse
|
14
|
Chen G, Ma B, Wang Y, Gong S. A Universal GSH-Responsive Nanoplatform for the Delivery of DNA, mRNA, and Cas9/sgRNA Ribonucleoprotein. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18515-18523. [PMID: 29798662 PMCID: PMC6141193 DOI: 10.1021/acsami.8b03496] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The long-sought promise of gene therapy for the treatment of human diseases remains unfulfilled, largely hindered by the lack of an efficient and safe delivery vehicle. In this study, we have developed a universal glutathione-responsive nanoplatform for the efficient delivery of negatively charged genetic biomacromolecules. The cationic block copolymer, poly(aspartic acid-(2-aminoethyl disulfide)-(4-imidazolecarboxylic acid))-poly(ethylene glycol), bearing imidazole residues and disulfide bonds, can form polyplexes with negatively charged DNA, mRNA, and Cas9/sgRNA ribonucleoprotein (RNP) through electrostatic interactions, which enable efficient cellular uptake, endosomal escape, and cytosol unpacking of the payloads. To facilitate the nuclear transport of DNA and RNP, the nuclear localization signal peptide was integrated into the DNA or RNP polyplexes. All three polyplex systems were fully characterized and optimized in vitro. Their relatively high transfection efficiency and low cytotoxicity, as well as convenient surface functionalization merit further investigation.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Ben Ma
- Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province 710032, China
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53715, United States
| |
Collapse
|
15
|
Steyer B, Cory E, Saha K. Developing precision medicine using scarless genome editing of human pluripotent stem cells. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:3-12. [PMID: 30205878 DOI: 10.1016/j.ddtec.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022]
Abstract
Many avenues exist for human pluripotent stem cells (hPSCs) to impact medical care, but they may have their greatest impact on the development of precision medicine. Recent advances in genome editing and stem cell technology have enabled construction of clinically-relevant, genotype-specific "disease-in-a-dish" models. In this review, we outline the use of genome-edited hPSCs in precision disease modeling and drug screening as well as describe methodological advances in scarless genome editing. Scarless genome-editing approaches are attractive for genotype-specific disease modeling as only the intended DNA base-pair edits are incorporated without additional genomic modification. Emerging evidentiary standards for development and approval of precision therapies are likely to increase application of disease models derived from genome-edited hPSCs.
Collapse
Affiliation(s)
- Benjamin Steyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Evan Cory
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Machado-Aranda D. [The Use Of Pulmonary Gene Therapy In The Treatment Of Experimental Models Of Pneumonia And Septicemia]. GACETA MEDICA DE CARACAS 2018; 126:5-14. [PMID: 30100668 PMCID: PMC6086359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- David Machado-Aranda
- Laboratorio del Estudio de la Biología y Terapia Molecular para el Manejo del Trauma Pulmonar
- División de Cirugía de Trauma, Quemados y Urgencias - Terapia Intensiva Quirúrgica, Universidad de Michigan, Ann Arbor, Michigan, Estados Unidos de América
| |
Collapse
|
17
|
Piscopo NJ, Mueller KP, Das A, Hematti P, Murphy WL, Palecek SP, Capitini CM, Saha K. Bioengineering Solutions for Manufacturing Challenges in CAR T Cells. Biotechnol J 2018; 13:10.1002/biot.201700095. [PMID: 28840981 PMCID: PMC5796845 DOI: 10.1002/biot.201700095] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/26/2017] [Indexed: 12/13/2022]
Abstract
The next generation of therapeutic products to be approved for the clinic is anticipated to be cell therapies, termed "living drugs" for their capacity to dynamically and temporally respond to changes during their production ex vivo and after their administration in vivo. Genetically engineered chimeric antigen receptor (CAR) T cells have rapidly developed into powerful tools to harness the power of immune system manipulation against cancer. Regulatory agencies are beginning to approve CAR T cell therapies due to their striking efficacy in treating some hematological malignancies. However, the engineering and manufacturing of such cells remains a challenge for widespread adoption of this technology. Bioengineering approaches including biomaterials, synthetic biology, metabolic engineering, process control and automation, and in vitro disease modeling could offer promising methods to overcome some of these challenges. Here, we describe the manufacturing process of CAR T cells, highlighting potential roles for bioengineers to partner with biologists and clinicians to advance the manufacture of these complex cellular products under rigorous regulatory and quality control.
Collapse
Affiliation(s)
- Nicole J Piscopo
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Katherine P Mueller
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Amritava Das
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Christian M Capitini
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
18
|
Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D, Steltzer S, Gamm D, Chang Q, Saha K. Scarless Genome Editing of Human Pluripotent Stem Cells via Transient Puromycin Selection. Stem Cell Reports 2018; 10:642-654. [PMID: 29307579 PMCID: PMC5830934 DOI: 10.1016/j.stemcr.2017.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022] Open
Abstract
Genome-edited human pluripotent stem cells (hPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. We present and characterize a robust method for rapid, scarless introduction or correction of disease-associated variants in hPSCs using CRISPR/Cas9. Utilizing non-integrated plasmid vectors that express a puromycin N-acetyl-transferase (PAC) gene, whose expression and translation is linked to that of Cas9, we transiently select for cells based on their early levels of Cas9 protein. Under optimized conditions, co-delivery with single-stranded donor DNA enabled isolation of clonal cell populations containing both heterozygous and homozygous precise genome edits in as little as 2 weeks without requiring cell sorting or high-throughput sequencing. Edited cells isolated using this method did not contain any detectable off-target mutations and displayed expected functional phenotypes after directed differentiation. We apply the approach to a variety of genomic loci in five hPSC lines cultured using both feeder and feeder-free conditions. Stringent transient puromycin selection enriches for hPSCs with scarless genome edits Clonal hPSC cell populations were isolated in as little as 2 weeks Workflow does not require cell sorting or high-throughput sequencing Genome editing at three disease-associated genes in five unique hPSC lines
Collapse
Affiliation(s)
- Benjamin Steyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Qian Bu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Evan Cory
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Keer Jiang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stella Duong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Divya Sinha
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stephanie Steltzer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Abdeen AA, Saha K. Manufacturing Cell Therapies Using Engineered Biomaterials. Trends Biotechnol 2017; 35:971-982. [PMID: 28711155 PMCID: PMC5621598 DOI: 10.1016/j.tibtech.2017.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing.
Collapse
Affiliation(s)
- Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical History and Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M. Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep 2017; 7:2095. [PMID: 28522803 PMCID: PMC5437071 DOI: 10.1038/s41598-017-02013-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
The CRISPR/Cas9 system has been applied to efficient genome editing in many eukaryotic cells. However, the bases that can be edited by this system have been limited to those within the protospacer adjacent motif (PAM) and guide RNA-targeting sequences. In this study, we developed a genome-wide base editing technology, "CRISPR Nickase system" that utilizes a single Cas9 nickase. This system was free from the limitation of editable bases that was observed in the CRISPR/Cas9 system, and was able to precisely edit bases up to 53 bp from the nicking site. In addition, this system showed no off-target editing, in contrast to the CRISPR/Cas9 system. Coupling the CRISPR Nickase system with yeast gap repair cloning enabled the construction of yeast mutants within only five days. The CRISPR Nickase system provides a versatile and powerful technology for rapid, site-specific, and precise base editing in yeast.
Collapse
Affiliation(s)
- Atsushi Satomura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Nishioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hitoshi Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kosuke Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
21
|
Yang Q, Xiao T, Guo J, Su Z. Complex Relationship between Obesity and the Fat Mass and Obesity Locus. Int J Biol Sci 2017; 13:615-629. [PMID: 28539834 PMCID: PMC5441178 DOI: 10.7150/ijbs.17051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
In the 21st century, obesity has become a serious problem because of increasing obese patients and numerous metabolic complications. The primary reasons for this situation are environmental and genetic factors. In 2007, FTO (fat mass and obesity associated) was the first gene identified through a genome-wide association study (GWAS) associated with obesity in humans. Subsequently, a cluster of single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene was discovered to be associated with BMI and body composition. Various studies have explored the mechanistic basis behind this association. Thus, emerging evidence showed that FTO plays a key role regulating adipose tissue development and functions in body size and composition. Recent prevalent research topic concentrated in the three neighboring genes of FTO: RPGRIP1L, IRX3 and IRX5, as having a functional link between obesity-associated common variants within FTO and the observed human phenotypes. The purpose of this review is to present a comprehensive picture of the impact of FTO on obesity susceptibility and to illuminate these new studies of FTO function in adipose tissue.
Collapse
Affiliation(s)
- Qingyun Yang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR, United Kingdom.,Guangzhou Boxabio Technology Ltd, Guangzhou Science City, P R China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
22
|
Lu Q, Livi GP, Modha S, Yusa K, Macarrón R, Dow DJ. Applications of CRISPR genome editing technology in drug target identification and validation. Expert Opin Drug Discov 2017; 12:541-552. [DOI: 10.1080/17460441.2017.1317244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Santos DP, Kiskinis E, Eggan K, Merkle FT. Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:5B.6.1-5B.6.60. [PMID: 27532820 PMCID: PMC4988528 DOI: 10.1002/cpsc.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome editing of human pluripotent stem cells (hPSCs) with the CRISPR/Cas9 system has the potential to revolutionize hPSC-based disease modeling, drug screening, and transplantation therapy. Here, we aim to provide a single resource to enable groups, even those with limited experience with hPSC culture or the CRISPR/Cas9 system, to successfully perform genome editing. The methods are presented in detail and are supported by a theoretical framework to allow for the incorporation of inevitable improvements in the rapidly evolving gene-editing field. We describe protocols to generate hPSC lines with gene-specific knock-outs, small targeted mutations, or knock-in reporters. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David P. Santos
- The Ken & Ruth Davee Department of Neurology & Clinical Neurological Sciences, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology & Clinical Neurological Sciences, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Florian T. Merkle
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|