1
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
2
|
Sánchez-Moguel I, Coffeen CF, Bustos-Jaimes I. On-column refolding and off-column assembly of parvovirus B19 virus-like particles from bacteria-expressed protein. Appl Microbiol Biotechnol 2024; 108:160. [PMID: 38252281 PMCID: PMC10803429 DOI: 10.1007/s00253-024-13004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Virus-like particles (VLPs) are nanometric structures composed of structural components of virions, keeping most of the cellular recognition and internalization properties, but are non-infective as they are deprived of their genetic material. VLPs have been a versatile platform for developing vaccines by carrying their own or heterologous antigenic epitopes. Moreover, VLPs can also be used as nanovessels for encapsulating molecules with therapeutic applications, like enzymes, nucleic acids, and drugs. Parvovirus B19 (B19V) VLPs can be self-assembled in vitro from the denatured major viral particle protein VP2 by equilibrium dialysis. Despite its fair productivity, this process is currently a time-consuming task. Affinity chromatography is used as an efficient step for concentration and purification, but it is only sometimes seen as a method that facilitates the oligomerization of proteins. In this research, we report a novel approach for the in vitro assembly of B19V VLPs through the immobilization of the denatured VP2 into an immobilized metal affinity chromatography (IMAC) column, followed by the on-column folding and the final VLP assembly upon protein elution. This method is suitable for the fast production of B19V VLPs. KEY POINTS: • Biotechnological applications for inclusion bodies • Efficient single-step purification and immobilization strategies • Rapid VLP assembly strategy.
Collapse
Affiliation(s)
- Ignacio Sánchez-Moguel
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Carlos Francisco Coffeen
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Sánchez-Moguel I, Montiel C, Bustos-Jaimes I. Therapeutic Potential of Engineered Virus-like Particles of Parvovirus B19. Pathogens 2023; 12:1007. [PMID: 37623967 PMCID: PMC10458557 DOI: 10.3390/pathogens12081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Virus-like particles (VLPs) comprise one or many structural components of virions, except their genetic material. Thus, VLPs keep their structural properties of cellular recognition while being non-infectious. VLPs of Parvovirus B19 (B19V) can be produced by the heterologous expression of their structural proteins VP1 and VP2 in bacteria. These proteins are purified under denaturing conditions, refolded, and assembled into VLPs. Moreover, chimeric forms of VP2 have been constructed to harbor peptides or functional proteins on the surface of the particles without dropping their competence to form VLPs, serving as presenting nanoparticles. The in-vitro assembly approach offers exciting possibilities for the composition of VLPs, as more than one chimeric form of VP2 can be included in the assembly stage, producing multifunctional VLPs. Here, the heterologous expression and in-vitro assembly of B19V structural proteins and their chimeras are reviewed. Considerations for the engineering of the structural proteins of B19V are also discussed. Finally, the construction of multifunctional VLPs and their future potential as innovative medical tools are examined.
Collapse
Affiliation(s)
- Ignacio Sánchez-Moguel
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Carmina Montiel
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| |
Collapse
|
4
|
Soto-Valerio IA, Cayetano-Cruz M, Valadez-García J, Guadarrama P, Méndez C, Bustos-Jaimes I. In vitro refolding of the structural protein VP1 of parvovirus B19 produces virus-like particles with functional VP1 unique region. Virology 2022; 570:57-66. [DOI: 10.1016/j.virol.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
5
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
6
|
Le DT, Radukic MT, Müller KM. Adeno-associated virus capsid protein expression in Escherichia coli and chemically defined capsid assembly. Sci Rep 2019; 9:18631. [PMID: 31819093 PMCID: PMC6901487 DOI: 10.1038/s41598-019-54928-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Research and clinical applications of recombinant adeno-associated virus (rAAV) significantly increased in recent years alongside regulatory approvals of rAAV gene therapy products. To date, all rAAV vectors as well as AAV empty capsids are produced in eukaryotic cells. We explored a new route to generate AAV capsids with the aim to analyze capsid assembly in a chemically defined setting and pave the way for new production methods and applications based on AAV virus-like particles (VLPs). We generated these empty capsids by bacterial expression and subsequent concomitant protein refolding and VLP formation. AAV serotype 2 structural protein VP3 was expressed in Escherichia coli. VLPs formed as demonstrated by dynamic light scattering, atomic force microscopy, and ELISA. Furthermore, VLPs internalized into human HeLa cells. To extend the application range of the VLPs, we tested peptide insertions, at the genetic level, in a surface loop (amino acid position 587) or at the C-terminus of VP3 and these variants also formed VLPs. VLPs developed without assembly-activating protein (AAP), but adding purified recombinant AAP to the refolding process increased capsid yield. Our findings offer a new route to understand AAV assembly biology and open a toolbox for AAV production strategies that might enable capsid display for vaccination and matching of capsids with cargoes at large scale and low cost.
Collapse
Affiliation(s)
- Dinh To Le
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Marco T Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
7
|
Salazar-González JA, Ruiz-Cruz AA, Bustos-Jaimes I, Moreno-Fierros L. Expression of Breast Cancer-Related Epitopes Targeting the IGF-1 Receptor in Chimeric Human Parvovirus B19 Virus-Like Particles. Mol Biotechnol 2019; 61:742-753. [PMID: 31317318 DOI: 10.1007/s12033-019-00198-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Breast cancer is a worldwide health problem, and the complexity of the disease, as well as the lack of treatment specificity, generates an urgent need for developing prophylactic and therapeutic measures. Searching for novel epitope-based approaches able to induce tumour immunity, we designed virus-like particles (VLPs) derived from Human parvovirus B19 assembled of chimeric VP2 proteins displaying two epitopes from the insulin-like growth factor-1 receptor (IGF-1R). Here, we present the generation of two chimeric VP2s that retain the stability, solubility and conditions of purification and assembly of the native VP2. We generated versatile chimeric multiepitope anti-cancer vaccine candidates, which prevented and delayed tumour growth when used in a prophylactic scheme of 4 weekly immunizations prior to 4T1 cell inoculation in female BALB/c mice. The presence of specific antibodies against the displayed epitopes suggests their participation in the protective effect; in contrast, no significant proliferative T-cell responses were recorded following stimulation by specific epitopes. The results comprise an approach whereby fusing desired epitopes from cancer to the N-terminus of B19 VP2 protein can generate a library of chimeric VP2-desired epitopes for further assembly in a designed and personalized epitope delivery system.
Collapse
Affiliation(s)
- Jorge Alberto Salazar-González
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico.
| | - Alail Antonio Ruiz-Cruz
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico
| | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U., 04510, Mexico City, Mexico
| | - Leticia Moreno-Fierros
- Laboratorio de Inmunidad en Mucosas, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
8
|
Cayetano-Cruz M, Coffeen CF, Valadez-García J, Montiel C, Bustos-Jaimes I. Decoration of virus-like particles with an enzymatic activity of biomedical interest. Virus Res 2018; 255:1-9. [DOI: 10.1016/j.virusres.2018.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
|
9
|
Silletta EV, Xu Z, Youssef M, Sacanna S, Jerschow A. Monitoring Molecular Transport across Colloidal Membranes. J Phys Chem B 2018; 122:4931-4936. [PMID: 29665683 DOI: 10.1021/acs.jpcb.8b01638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controlled shaping and surface functionalization of colloidal particles has provided opportunities for the development of new materials and responsive particles. The possibility of creating hollow particles with semipermeable walls allows modulating molecular transport properties on colloidal length scales. While shapes and sizes can typically be observed by optical means, the underlying chemical and physical properties are often invisible. Here, we present measurements of cross-membrane transport via pulsed field gradient NMR in packings of hollow colloidal particles. The work is conducted using a systematic selection of particle sizes, wall permeabilities, and osmotic pressures and allows tracking organic molecules as well as ions. It is also shown that, while direct transport of molecules can be measured, indirect markers can be obtained for invisible species via the osmotic pressure as well. The cross-membrane transport information is important for applications in nanoconfinement, nanofiltration, nanodelivery, or nanoreactor devices.
Collapse
Affiliation(s)
- Emilia V Silletta
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Zhe Xu
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Mena Youssef
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Stefano Sacanna
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| | - Alexej Jerschow
- Department of Chemistry , New York University , 100 Washington Square East , New York , New York 10003 , United States
| |
Collapse
|
10
|
de Oliveira dos Santos Soares R, Bortot LO, van der Spoel D, Caliri A. Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:504002. [PMID: 29125472 PMCID: PMC7104865 DOI: 10.1088/1361-648x/aa99c6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 05/14/2023]
Abstract
Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM3) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process. In silico mutagenesis of two charged residues of the anchor helices of the envelope proteins of DENV shows that Arg-471 and Arg-60 are fundamental to produce bending stress on the membrane. The fine-tuning between the size of the EM3 unit and its specific bending action suggests this protein unit is an important factor in determining the viral particle size.
Collapse
Affiliation(s)
- Ricardo de Oliveira dos Santos Soares
- Faculdade de Medicina de Marília, Marília, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Física e Química, Grupo de Física Biológica, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro Oliveira Bortot
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Física e Química, Grupo de Física Biológica, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - Antonio Caliri
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Física e Química, Grupo de Física Biológica, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Bustos-Jaimes I, Soto-Román RA, Gutiérrez-Landa IA, Valadez-García J, Segovia-Trinidad CL. Construction of protein-functionalized virus-like particles of parvovirus B19. J Biotechnol 2017; 263:55-63. [PMID: 28935566 DOI: 10.1016/j.jbiotec.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/25/2017] [Accepted: 09/17/2017] [Indexed: 11/17/2022]
Abstract
Decoration of virus-like particles (VLPs) expands the repertory of functions these particles can display. In the last years, VLPs have successfully been used as scaffolds to present different molecules, frequently through the specific reaction of chemical groups on the surface of the particles, or by protein engineering when the presentation of peptides or proteins is the primary goal. VLPs of parvovirus B19 (B19V), have been previously produced in vitro and its stability and ability to assemble into hybrid particles composed of wild-type and chimeric proteins evidenced their potential as research tools. Herein, we report the presentation of functional proteins on the surface of B19V VLPs, through the fusion of the gene coding for the heterologous protein within the gene coding for the structural protein VP2. Two model proteins were used for the construction of chimeras, a lipase from Bacillus pumilus (BplA) and the enhanced green fluorescent protein (EGFP). Both chimeras were folded and successfully assembled in vitro into VLPs. While the BplA chimera exhibited esterase activity, the chimera of EGFP showed no fluorescence. We replaced the EGFP by its fast-folding derivative "super folder GFP" (sfGFP) flanked by larger linkers to increase its movement freedom, which resulted in fluorescent protein able to assemble fluorescent VLPs. These results expand the toolbox for VLP decoration as well as for the construction of new nanobiomaterials.
Collapse
Affiliation(s)
- Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| | - Ricardo Arturo Soto-Román
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | - Josefina Valadez-García
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | |
Collapse
|
12
|
Del Carmen Morán-García A, Rivera-Toledo E, Echeverría O, Vázquez-Nin G, Gómez B, Bustos-Jaimes I. Peptide presentation on primate erythroparvovirus 1 virus-like particles: In vitro assembly, stability and immunological properties. Virus Res 2016; 224:12-8. [PMID: 27523978 DOI: 10.1016/j.virusres.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
Virus-like particles (VLPs) have demonstrated to be valuable scaffolds for the display of heterologous peptides for vaccine development and other specific interactions. VLPs of primate erythroparvovirus 1, generally referred as parvovirus B19 (B19V), have already been produced in-vivo and in-vitro from the recombinant VP2 protein of this virus. In this study, chimeric forms of B19V VP2 were constructed, and their ability to assemble into VLPs was evaluated. Chimeras were composed of the VP2 protein fused, at its N-terminus, with two peptides derived from the fusion glycoprotein (F) of the respiratory syncytial virus (RSV). The chimeric proteins self-assembled into VLPs morphologically similar to B19V virions. Stability of these VLPs was analyzed under denaturation conditions with guanidinium chloride (GdnHCl). Our results indicate that the presence of the heterologous fragments increased the stability of VLPs assembled by any of the VP2 chimeras. Specific proteolysis assays shown that a fraction of the N-termini of the chimeric proteins is located on the outer surface of the VLPs. Immunogenicity of VLPs against RSV was evaluated and the results indicate that the particles can elicit a humoral immune response, although these antibodies did not cross-react with RSV in ELISA tests. These results provide novel insights into the localization of the N-termini of B19V VP2 protein after in vitro assembly into VLPs, and point them to be attractive sites to display peptides or proteins without compromise the assembly or stability of VLPs.
Collapse
Affiliation(s)
- Areli Del Carmen Morán-García
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Evelyn Rivera-Toledo
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City 04510, Mexico
| | - Olga Echeverría
- Department of Cell Biology, Faculty of Sciences, UNAM, Mexico City 04510, Mexico
| | - Gerardo Vázquez-Nin
- Department of Cell Biology, Faculty of Sciences, UNAM, Mexico City 04510, Mexico
| | - Beatriz Gómez
- Department of Microbiology and Parasitology, Faculty of Medicine, UNAM, Mexico City 04510, Mexico
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|