1
|
Cai W, Sisi AF, Abdallah M, Al‐Hashedi AA, Sánchez JDG, Bravo E, Kunhipurayil HH, Albuquerque R, Badran Z, Sanz M, Tamimi F. In Vitro Assessment of Salivary Pellicle Disruption and Biofilm Removal on Titanium: Exploring the Role of Surface Hydrophobicity in Chemical Disinfection. Clin Exp Dent Res 2025; 11:e70082. [PMID: 40344458 PMCID: PMC12061848 DOI: 10.1002/cre2.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/28/2024] [Accepted: 01/24/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVES Peri-implantitis is mostly caused by a pathological biofilm that forms through complex processes, initiated by the formation of the salivary pellicle on implant surfaces. Understanding the nature of these pellicles and biofilm and how to remove them is important for preventing peri-implant infections and improving the success of dental implants. This study explores the characteristics of the salivary pellicle on titanium surfaces and assesses the effectiveness of different decontamination agents in eliminating the salivary pellicle and related microbial contaminations. MATERIALS AND METHODS Titanium surfaces were contaminated with salivary pellicles and pathological biofilms. The nature of the salivary pellicle was characterized using X-ray photoelectron spectroscopy (XPS), surface proteomics, contact angle measurements, and fluorescence microscopy. We tested six commonly used decontamination chemicals (chlorhexidine, essential oil-based mouthwash, citric acid, phosphoric acid, saline, and phosphate buffer saline) as well as newly proposed treatments such as surfactants and solvents (acetone, acetic acid, and Tween 20) for their capability to eliminate salivary pellicles and pathogenic biofilms from titanium surfaces. RESULTS The hydrophobic nature of the salivary pellicle on titanium surfaces limits the efficacy of commonly used hydrophilic solutions in removing pellicles and bacteria. Organic solvents and surfactants, particularly acetic acid and Tween 20, demonstrated superior effectiveness in removing the pellicle and biofilm. Acetic acid was notably effective in restoring surface composition, reducing microbial levels, and removing multispecies biofilms. CONCLUSIONS The use of surfactants and solvents could be a promising alternative for the treatment of biofilms on titanium surfaces. However, further studies are needed to explore their clinical applicability.
Collapse
Grants
- This work was supported by ITI, NSERC, McGill University, Qatar University, the Fondation de I'Ordre des dentists du Quebec (FODQ), Le Reseau de recherché en santé buccodentaire et ossseuse (RSBO), the Fonds de recherche du Québec-Santé (FRQS), the Fonds de recherche du Québec-Nature et technologies (FRQNT), the Islamic Development Bank Scholarship, the Alpha Omega Foundation of Canada (A.A.), the Canadian Foundation for Innovation, NSERC-Discovery, and Canada Research Chair (Tire 2).
Collapse
Affiliation(s)
- Wenji Cai
- Faculty of DentistryMcGill UniversityMontrealCanada
| | | | - Mohamed‐Nur Abdallah
- Faculty of DentistryMcGill UniversityMontrealCanada
- Faculty of DentistryUniversity of Detroit MerciDetroitMichiganUSA
| | | | | | - Enrique Bravo
- ETEP Research Group, Faculty of DentistryComplutense UniversityMadridSpain
| | | | - Rubens Albuquerque
- Faculty of Dentistry of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Zahi Badran
- Faculty of DentistryMcGill UniversityMontrealCanada
- Periodontology UnitUniversity of SharijaSharijaUnited Arab Emirates
| | - Mariano Sanz
- ETEP Research Group, Faculty of DentistryComplutense UniversityMadridSpain
| | - Faleh Tamimi
- College of Dental Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
2
|
Shen D, Zhu H, Xu Y, Zhou Z, Wu Z, Fu B. In-depth Occlusion of Dentinal Tubules Induced by Polyaspartic Acid-Calcium and Magnesium Complexes. J Dent Res 2025; 104:637-644. [PMID: 39953707 DOI: 10.1177/00220345241309340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Dentin hypersensitivity has been widely recognized to be caused by patent dentinal tubules (DTs). A polyaspartic acid-calcium and magnesium (PAsp-Ca&Mg) complex process has been demonstrated to induce biomimetic mineralization of collagen fibrils. This study investigated the in vitro and in vivo occlusion of the DTs by a PAsp-Ca&Mg complex process. Dentin disks were treated by citric acid to open the DTs and randomly divided into 4 groups. Two experimental groups (n = 18) were applied with PAsp-Ca&Mg suspension and phosphate solution or phosphate-fluoride solution in sequence for 10 min. Two positive control groups (n = 18) were treated with Gluma or Duraphat. All the dentin disks were incubated in artificial saliva for 24 h. DT occlusion was characterized by scanning electron microscopy, and dentin permeability measurement was conducted regardless of being subject to abrasive or ultrasonic and acidic challenge. The incisors of 3 New Zealand rabbits were used to verify the in vivo occlusion of the DTs. In vitro and in vivo results demonstrated in-depth occlusion of the DTs to ~100 μm by the PAsp-Ca&Mg complex process. When compared with control groups, the PAsp-Ca&Mg complex process could significantly reduce dentin permeability (P < 0.05) irrespective of abrasive or ultrasonic and acidic challenge. The PAsp-Ca&Mg complex process not only deeply occluded patent DTs but also significantly decreased dentin permeability and provided a paradigm for ion-doped DT occlusion. This provides a promising strategy for managing dentin hypersensitivity.
Collapse
Affiliation(s)
- D Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - H Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Y Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Z Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Z Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - B Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Wu X, Yang H, Liu G, Sun W, Li J, Zhao Y, Gao X, Liu X, Song F, Wang S, Lu Z, Chen C, Huang C. Osteomimix: A Multidimensional Biomimetic Cascade Strategy for Bone Defect Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416715. [PMID: 39924776 DOI: 10.1002/adma.202416715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Despite advancements in biomimetic mineralization techniques, the repair of large-scale bone defects remains a significant challenge. Inspired by the bone formation process, a multidimensional biomimetic cascade strategy is developed by replicating the biomineralization cascade, emulating the hierarchical structure of bone, and biomimicking its biological functions for efficient bone regeneration. This strategy involves the photocrosslinking of sodium methacrylate carboxymethyl cellulose-stabilized amorphous magnesium-calcium phosphate with methacrylate-modified type I collagen to create a self-mineralizing hydrogel. The hydrogel is then integrated with either naturally derived or synthetic oriented bulk scaffolds. The resulting composite, named Osteomimix, provides excellent mechanical support and can be customized for irregular bone defects using CAD/CAM technology. Through in vitro and in vivo studies, this work finds that Osteomimix exhibits spontaneous in situ biomimetic mineralization in a cell-free environment, while modulating immune responses and promoting vascularized bone formation in a cell-dependent manner. Built on bone-specific insights, this strategy achieves biomimicry across temporal, spatial, and functional dimensions, facilitating the seamless integration of artificial constructs with the natural tissue repair dynamics.
Collapse
Affiliation(s)
- Xiaoyi Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gufeng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jiyun Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xin Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xuzheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shilei Wang
- Hubei Engineering Center of Natural Polymer-Based Medical Materials and Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyang Lu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
4
|
Öcal F, Dayi B. Effect of antacid gastric syrups on surface properties of dental restorative materials: an in vitro analysis of roughness and microhardness. BMC Oral Health 2025; 25:135. [PMID: 39856639 PMCID: PMC11762459 DOI: 10.1186/s12903-025-05516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES The aim of this in-vitro study was to evaluate the effects of antacid gastric syrups on the surface roughness and microhardness of restorative dental materials. MATERIALS AND METHODS Three different composite resins, nanohybrid, microhybrid and giomer, and four antacid gastric syrups were used in the study. A total of 150 samples were obtained by preparing 50 (10 mm x 2 mm) disk-shaped samples of each composite type. The composites were randomly divided into 5 subgroups and immersed in antacid syrups for 2 min every day for 28 days. The control group samples were kept in distilled water for 28 days. Surface roughness was measured at the beginning, on the 7th, 15th and 28th days using a mechanical profilometer, AFM, and SEM and microhardness was measured using a Vickers device. Shapiro-Wilk, Repeated Measures ANOVA, One-Way ANOVA, Tukey and Games-Howell tests were applied for statistical analysis. RESULTS After 28 days, the surface roughness of the giomer composite decreased significantly (p < 0.05). The surface roughness of microhybrid and nanohybrid composites increased slightly but not significantly (p > 0.05). Microhardness values of microhybrid and giomer composites showed a significant decrease (p < 0.05). SEM and AFM results were in agreement with the mechanical profilometer findings. CONCLUSION Agents such as calcium carbonate, sodium bicarbonate and magnesium carbonate in antacid gastric syrups can affect the surface properties of restorative dental materials. This may adversely affect the longevity and aesthetics of restorations. CLINICAL SIGNIFICANCE The study emphasizes the need for caution in restorative material selection and care protocols in patients using antacid gastric syrups.
Collapse
Affiliation(s)
- Fikri Öcal
- Faculty of Dentistry, Department of Restorative Dentistry, Inonu University, Malatya, Turkey.
| | - Burak Dayi
- Faculty of Dentistry, Department of Restorative Dentistry, Inonu University, Malatya, Turkey
| |
Collapse
|
5
|
Hamalaw SJ, Kareem FA, Noori AJ. Antibacterial, Antibiofilm, and Tooth Color Preservation Capacity of Magnesium Oxide Nanoparticles Varnish (in vitro Study). Nanotechnol Sci Appl 2024; 17:127-146. [PMID: 38952853 PMCID: PMC11216553 DOI: 10.2147/nsa.s462771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Antibacterial and antibiofilm properties of magnesium oxide nanoparticles (MgONPs) mixture assessed against Streptococcus mutans (S. mutans), in addition to examining MgONPs varnish impact on the preservation of the tooth color and inhibition of methylene blue diffusion to the enamel. Methods MgONPs mixture was prepared in deionized water (DW), absolute ethanol (E), and rosin with ethanol (RE), named varnish. The antibacterial and antibiofilm capacities of MgONPs mixtures were tested by agar well diffusion, colony-forming unit (CFU), and biofilm inhibition microtiter methods in triplicate and compared to sodium fluoride varnish (NaF) and chlorhexidine mouthwash (ChX). A spectrophotometer was used to record basic tooth color. The artificial demineralization was initiated for 96 h. Then, experimental materials were applied to the corresponding group, and 10-day pH cycles proceeded. Then, the color was recorded in the same ambient environment. The methylene blue diffusion was evaluated by staining the samples for 24 h. After that, the diffusion test was calculated by a digital camera attached to the stereomicroscope. Results The agar well diffusion test expressed a significant inhibition zone with all MgONPs mixtures (p = 0.000), and maximum inhibition zone diameter associated with MgONPs-RE. The same finding was observed in the CFU test. Additionally, 2.5%, 5%, and 10% MgONPs-RE varnish showed strong biofilm inhibition capacity (p = 0.039) compared to NaF and ChX groups that inhibit biofilm formation moderately (p = 0.003). The study shows that the 5% MgONPs-RE varnish maintains basic tooth color with minimal methylene blue diffusion compared to NaF varnish (p = 0.00). Conclusion Evaluating MgONPs as a mixture revealed antibacterial and antibiofilm capacity against S. mutans with a higher effect of MgONPs-RE varnish. Also, examining the topical effect of MgONPs-RE varnish on the preservation of the tooth color after pH cycle challenges and methylene blue diffusion to enamel confirmed the high performance of MgONPs-RE varnish at 5%.
Collapse
Affiliation(s)
- Sonya Jamal Hamalaw
- Department of Pedodontics and Community Oral Health, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Fadil Abdulla Kareem
- Department of Pedodontics and Community Oral Health, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Arass Jalal Noori
- Department of Pedodontics and Community Oral Health, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| |
Collapse
|
6
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Red Marine Algae Lithothamnion calcareum Supports Dental Enamel Mineralization. Mar Drugs 2023; 21:md21020109. [PMID: 36827150 PMCID: PMC9963885 DOI: 10.3390/md21020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The current management of oral conditions such as dental caries and erosion mostly relies on fluoride-based formulations. Herein, we proposed the use of the remaining skeleton of Lithothamnion calcareum (LC) as an alternative to fluorides. LC is a red macroalgae of the Corallinales order, occurring in the northeast coast of Brazil, whose unique feature is the abundant presence of calcium carbonates in its cell walls. Two experimental approaches tested the general hypothesis that LC could mediate enamel de-remineralization dynamics as efficiently as fluorides. Firstly, the effect of LC on enamel de-mineralization was determined in vitro by microhardness and gravimetric measurements to test the hypothesis that LC could either prevent calcium/phosphate release from intact enamel or facilitate calcium/phosphate reprecipitation on an artificially demineralized enamel surface. Subsequently, an in situ/ex vivo co-twin control study measured the effect of LC on the remineralization of chemical-demineralized enamel using microhardness and quantitative light-induced fluorescence. With this second experiment, we wanted to test whether outcomes obtained in experiment 1 would be confirmed by an in situ/ex vivo co-twin control model. Both experiments showed that LC exhibited equivalent or superior ability to modulate enamel de-remineralization when compared to fluoride solution. LC should be explored as an alternative to manage oral conditions involving the enamel demineralization.
Collapse
|
8
|
Tang L, Li Y, Li R, Tao X, Huang X. Gradient Magnesium Content Affects Nanomechanics via Decreasing the Size and Crystallinity of Nanoparticles of Pseudoosteodentine of the Pacific Cutlassfish, Trichiurus lepturus Teeth. ACS OMEGA 2022; 7:39214-39223. [PMID: 36340077 PMCID: PMC9631885 DOI: 10.1021/acsomega.2c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The formation of biomaterials such as enamel, dentin, and bone is important for many organisms, and the mechanical properties of biomaterials are affected by a wide range of structural and chemical factors. Special dentins exist in extant aquatic gnathostomes, and many more are present in fossils. When a layer of compact orthodentine surrounds the porous osteodentine core in the crown, the composite dentin is called pseudoosteodentine. Using various high-resolution analytical techniques, including micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and nanoindentation, we analyzed the micro- and nanostructures, chemical composition, and mechanical properties of pseudoosteodentine in the Pacific cutlassfish, Trichiurus lepturus teeth. Nanoscale oval-shaped hydroxyapatite (HA) crystals were distributed in a disordered manner in the pseudoosteodentine, and a cross-sectional analysis showed that the mineral crystallinity and crystalline particle size of the outer orthodentine were greater than those of middle and inner osteodentine. Moreover, the outer orthodentine comprised a mixture of smaller crystals and larger, more mature crystals. The nano-hardness and nano-stiffness of outer orthodentine were significantly higher than those of middle and inner osteodentine along a radical direction. The hardness and stiffness of pseudoosteodentine were inversely proportional to its magnesium (Mg) content. These data are consistent with the concept that Mg delays crystal maturation. The crystal size, crystallinity, nano-hardness, and nano-stiffness of pseudoosteodentine all decreased commensurately with the increase of its Mg concentration. The pseudoosteodentine of T. lepturus also can be regarded as a functional gradient material (FGM) because its mechanical properties are closely related to its chemical composition and nanostructure. Special pseudoosteodentine may therefore serve as a design standard for biomimetic synthetic mineral composites.
Collapse
Affiliation(s)
- Li Tang
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Department
of Orthodontics, The Affiliated Hospital
of Qingdao University, Qingdao 266005, China
- School
of Stomatology, Qingdao University, Qingdao 266071, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yongfeng Li
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ruiqi Li
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xingfu Tao
- National
Institute of Metrology, Beijing 100013, China
| | - Xiaofeng Huang
- Department
of Stomatology, Beijing Friendship Hospital,
Capital Medical University, Beijing 100050, China
- Immunology
Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
9
|
Biomimetic Whitening Effect of Polyphosphate-Bleaching Agents on Dental Enamel. Biomimetics (Basel) 2022; 7:biomimetics7040183. [PMID: 36412711 PMCID: PMC9680262 DOI: 10.3390/biomimetics7040183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
This in vitro study investigated the extrinsic tooth-whitening effect of bleaching products containing polyphosphates on the dental enamel surface compared to 10% carbamide peroxide (CP). Eighty human molars were randomly allocated into four whitening-products groups. Group A (control) was treated with 10% CP (Opalescence). The other groups with non-CP over-the-counter (OTC) products were group B = polyphosphates (iWhiteWhitening-Kit); group C = polyphosphates+fluoride (iWhite-toothpaste); and group D = sodium bicarbonate (24K-Whitening-Pen). L*, a*, b* color-parameters were spectrophotometer-recorded at baseline (T0), one day (T1), and one month (T2) post-treatment. Changes in teeth color (ΔEab) were calculated. Data were analyzed using ANOVA and the Bonferroni test (α = 0.05). Groups A, B, and D showed significant differences in ΔL*&Δa* parameters at T1, but not in Δb* at T0. Group C showed no difference for ΔL*, Δa*, Δb* at T0 and T1. Group A showed differences for ΔL*, Δa*, Δb*, at T2, while groups B, C, and D had no difference in any parameters at T0. At T1, ΔEab values = A > D> B > C (ΔEab = 13.4 > 2.4 > 2.1 > 1.2). At T2, ΔEab values increased = A > B > C > D (ΔEab = 12.2 > 10.6 > 9.2 > 2.4). In conclusion, the 10% CP and Biomimetic polyphosphate extrinsic whitening kit demonstrated the highest color change, while simulated brushing with dark stain toothpaste and a whitening pen demonstrated the lowest color change at both measurement intervals.
Collapse
|
10
|
Xu J, Shi H, Luo J, Yao H, Wang P, Li Z, Wei J. Advanced materials for enamel remineralization. Front Bioeng Biotechnol 2022; 10:985881. [PMID: 36177189 PMCID: PMC9513249 DOI: 10.3389/fbioe.2022.985881] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dental caries, a chronic and irreversible disease caused by caries-causing bacteria, has been listed as one of the three major human diseases to be prevented and treated. Therefore, it is critical to effectively stop the development of enamel caries. Remineralization treatment can control the progression of caries by inhibiting and reversing enamel demineralization at an early stage. In this process, functional materials guide the deposition of minerals on the damaged enamel, and the structure and hardness of the enamel are then restored. These remineralization materials have great potential for clinical application. In this review, advanced materials for enamel remineralization were briefly summarized, furthermore, an outlook on the perspective of remineralization materials were addressed.
Collapse
Affiliation(s)
- Jiarong Xu
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Shi
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jun Luo
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Haiyan Yao
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Pei Wang
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, China
- *Correspondence: Zhihua Li, ; Junchao Wei,
| |
Collapse
|
11
|
MacDonald K, Boyd D. Investigation of Multicomponent Fluoridated Borate Glasses through a Design of Mixtures Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6247. [PMID: 36143559 PMCID: PMC9504752 DOI: 10.3390/ma15186247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Due to their enhanced dissolution, solubility and reaction speed, borate glasses offer potential advantages for the design and development of therapeutic ion-release systems. However, the field remains poorly understood relative to traditional phosphosilicate and silicate bioglasses. The increased structural complexity and relative lack of published data relating to borates, particularly borofluorates, also decreases the accuracy of artificial intelligence models, which are used to predict glass properties. To develop predictive models for borofluorate networks, this paper uses a design of mixtures approach for rapid screening of composition-property relationships, including the development of polynomial equations that comprehensively establish the predictive capabilities for glass transition, density, mass loss and fluoride release. A broad range of glass compositions, extending through the boron anomaly range, were investigated, with the inclusion of 45 to 95 mol% B2O3 along with 1-50 mol% MgO, CaO and Na2O as well as 1-30% KF and NaF. This design space allows for the investigation of the impact of fluorine as well as mixed alkali-alkaline earth effects. Glass formation was found to extend past 30 mol% KF or NaF without a negative impact on glass degradation in contrast to the trends observed in phosphosilicates. The data demonstrates that fluoroborate materials offer an exceptional base for the development of fluoride-releasing materials.
Collapse
Affiliation(s)
| | - Daniel Boyd
- IR Scientific Inc., Halifax, NS B3H 0A8, Canada
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
12
|
Topical Agents for Nonrestorative Management of Dental Erosion: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10081413. [PMID: 36011070 PMCID: PMC9408325 DOI: 10.3390/healthcare10081413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
A nonrestorative approach to the management of dental erosion is the foremost option: controlling dental erosion. The objectives of this study are to provide an overview and to summarise the effects and properties of topical anti-erosive agents as a nonrestorative treatment of dental erosion. A literature search was conducted on five databases of peer-reviewed literature—Cochrane Library, EMBASE, PubMed, Scopus and Web of Science—to recruit articles published between 1 January 2000 and 31 December 2021. The literature search identified 812 studies; 95 studies were included. Topical anti-erosive agents can be broadly categorised as fluorides, calcium phosphate-based agents, organic compounds and other anti-erosive agents. In the presence of saliva, fluorides promote the formation of fluorapatite on teeth through remineralisation. Calcium phosphate-based agents supply the necessary minerals that are lost due to the acid challenge of erosion. Some organic compounds and other anti-erosive agents prevent or control dental erosion by forming a protective layer on the tooth surface, by modifying salivary pellicle or by inhibiting the proteolytic activity of dentine collagenases. Topical anti-erosive agents are promising in managing dental erosion. However, current evidence shows inconsistent or limited results for supporting the use of these agents in clinical settings.
Collapse
|
13
|
House KL, Pan L, O'Carroll DM, Xu S. Applications of scanning electron microscopy and focused ion beam milling in dental research. Eur J Oral Sci 2022; 130:e12853. [PMID: 35288994 DOI: 10.1111/eos.12853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The abilities of scanning electron microscopy (SEM) and focused ion beam (FIB) milling for obtaining high-resolution images from top surfaces, cross-sectional surfaces, and even in three dimensions, are becoming increasingly important for imaging and analyzing tooth structures such as enamel and dentin. FIB was originally developed for material research in the semiconductor industry. However, use of SEM/FIB has been growing recently in dental research due to the versatility of dual platform instruments that can be used as a milling device to obtain low-artifact cross-sections of samples combined with high-resolution images. The advent of the SEM/FIB system and accessories may offer access to previously inaccessible length scales for characterizing tooth structures for dental research, opening exciting opportunities to address many central questions in dental research. New discoveries and fundamental breakthroughs in understanding are likely to follow. This review covers the applications, key findings, and future direction of SEM/FIB in dental research in morphology imaging, specimen preparation for transmission electron microscopy (TEM) analysis, and three-dimensional volume imaging using SEM/FIB tomography.
Collapse
Affiliation(s)
- Krystal L House
- Colgate Palmolive Company, Piscataway, New Jersey, USA.,Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Long Pan
- Colgate Palmolive Company, Piscataway, New Jersey, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.,Department of Materials Science and Engineering, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Shiyou Xu
- Colgate Palmolive Company, Piscataway, New Jersey, USA
| |
Collapse
|
14
|
Qi H, Liu Y, Wu L, Liu C, Ni S, Liu Q, Ni X, Sun Q. Mg-HA-C/C Composites Promote Osteogenic Differentiation and Repair Bone Defects Through Inhibiting miR-16. Front Bioeng Biotechnol 2022; 10:838842. [PMID: 35186909 PMCID: PMC8854763 DOI: 10.3389/fbioe.2022.838842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The hydroxyapatite (HA) coating on carbon/carbon (C/C) is reasonable and feasible to obtain bone graft materials with appropriate mechanical and biological properties. However, improvement of the physical and chemical properties of HA-C/C composites to promote bone regeneration and healing remains a challenge. In our present study, the HA coatings on C/C with magnesium (Mg) (Mg-HA-C/C) composites were synthesized that Ca (NO3)2, Mg (NO3)2, and NH4H2PO4 were mixed and coatings were made by electromagnetic induction deposition’s heating. As determined with in vitro experiments, Mg-HA-C/C composites containing 10 and 20% Mg decreased miR-16 levels, increased cell viability, elevated the levels of osteogenesis-related genes, and promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) seeded on their surfaces. In a rat model of skull defects, compared to the control group, at 4 and 12 weeks after the operation, the bone volume fraction (BV/TV) of Mg-HA-C/C composite group was increased by 8.439 ± 2.681% and 23.837 ± 7.845%, as well as the trabecular thickness (Tb.Th) was 56.247 ± 24.238 μm and 114.911 ± 34.015 μm more. These composites also increased the levels of ALP and RUNX2 in skull. The Mg-HA-C/C composite-enhanced bone regeneration and healing were blocked by in situ injection of an miR-16 mimic lentivirus vector. Thus, Mg-HA-C/C composites promote osteogenic differentiation and repair bone defects through inhibiting miR-16.
Collapse
Affiliation(s)
- Hong Qi
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chun Liu
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Su Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinye Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou, China
- *Correspondence: Xinye Ni, ; Qiang Sun,
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xinye Ni, ; Qiang Sun,
| |
Collapse
|
15
|
Nyland BP, Pereira CP, Soares P, da Luz Weiss DS, Mikos WL, Brancher JA, Vieira S, Freire A. Enamel erosion control by strontium-containing TiO 2- and/or MgO-doped phosphate bioactive glass. Clin Oral Investig 2021; 26:1915-1925. [PMID: 34505917 DOI: 10.1007/s00784-021-04168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the effect of strontium-containing titanium- and/or magnesium-doped phosphate bioactive glass on the control of dental erosion. MATERIALS AND METHODS Fifty fragments of human enamel were divided into five groups: negative control, 45S5 bioglass, strontium-containing Ti-doped phosphate bioactive glass (PBG-Ti), strontium-containing Mg-doped phosphate bioactive glass (PBG-Mg), and strontium-containing Ti- and Mg-doped phosphate bioactive glass (PBG-TiMg). The specimens underwent cycles of erosive challenge twice daily for 5 days with 1 mL of citric acid for 2 min followed by 1 mL of the suspension with bioactive substances for 3 min. After the cycles, profilometry, roughness and microhardness testing, and scanning electron microscopy (SEM) were performed. The following statistical tests were used: one-way ANOVA (profile, roughness, and surface microhardness (%VMS) data variation), Tukey's HSD (%VMS), Games-Howell test (profilometry), Student's t test (roughness), and Pearson's correlation between the variables. RESULTS The lower loss of enamel surface and lower %VMS was observed in the PBG-Mg and PBG-TiMg groups, and only the PBG-Mg group showed similar roughness between baseline and eroded areas (p > 0.05). On SEM micrographs, PBG-Ti and PBG-Mg groups showed lower apparent demineralization. CONCLUSION All bioactive materials protected the enamel against erosion. However, strontium-containing phosphate bioactive glasses showed lower enamel loss, and the presence of Mg in these bioactive glasses provided a greater protective effect. CLINICAL RELEVANCE Experimental strontium-containing phosphate bioactive glasses are effective in controlling enamel erosion. The results obtained in this study will guide the development of new dental products.
Collapse
Affiliation(s)
| | | | - Paulo Soares
- Polytechnic School, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil
| | | | - Walter Luís Mikos
- Mechanical Engineering Department, Universidade Tecnológica Federal Do Paraná, Curitiba, Brasil
| | - João Armando Brancher
- School of Life Sciences, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil
| | - Sérgio Vieira
- School of Life Sciences, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil
| | - Andrea Freire
- School of Life Sciences, Pontifícia Universidade Católica Do Paraná, Curitiba, Brasil. .,School of Dentistry- FAODO, Universidade Federal de Mato Grosso Do Sul, Av. Costa e Silva, S/N, Universitário, Campo Grande, MS, 79070-900, Brasil.
| |
Collapse
|
16
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
17
|
Kis VK, Sulyok A, Hegedűs M, Kovács I, Rózsa N, Kovács Z. Magnesium incorporation into primary dental enamel and its effect on mechanical properties. Acta Biomater 2021; 120:104-115. [PMID: 32891873 DOI: 10.1016/j.actbio.2020.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Cross-sectional study of sound primary dental enamel revealed hardness zonation and, in parallel, significant change in the Mg content below the prismless layer. Mg content is known to play an important role in enamel apatite biomineralization, therefore, Mg ion exchange experiments were carried out on the outer surface of sound primary molars and on reference abiogenic Ca-phosphates using MgCl2 solution. Effects of Mg incorporation on crystal/particle size, ionic ratio and morphology were compared and the observed changes were explained by parallel diffusion and dissolution/reprecipitation processes. Based on depth profile analysis and high resolution electron microscopy of the Mg-exchanged dental enamel, a poorly ordered surface layer of approximately 10-15 nanometer thickness was identified. This thin layer is strongly enriched in Mg and has non-apatitic structure. Below the surface layer, the Mg content increased only moderately (up to ~3 at%) and the apatite crystal structure of enamel was preserved. As a common effect of the Mg exchanged volume, primary dental enamel exhibited about 20% increase of nanohardness, which is intrepreted by strengthening of both the thin surface layer and the region below due to the decreased crystallite size and the effect of incorporated Mg, respectively. STATEMENT OF SIGNIFICANCE: Dental enamel is the most durable mineralized tissue in the human body, which, in spite to be exposed to extreme conditions like mastication and acidic dissolution, is able to fulfill its biological function during lifetime. In this study we show that minor component magnesium can affect hardness properties of human primary dental enamel. Then, through Mg incorporation experiments we provide an additional proof for the poorly ordered Mg-containing intergranular phase which has been recently observed. Also, we report that the hardness of dental enamel can be increased by ca. 20% by Mg incorporation. These results contribute to a deeper understanding of sound primary dental enamel structure and may inspire new pathways for assisted remineralization of enamel and regenerative dentistry.
Collapse
Affiliation(s)
- Viktória K Kis
- Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós u. 29-33, Hungary; Institute of Environmental Sciences, University of Pannonia, H-8200 Veszprém, Egyetem út. 10. Hungary.
| | - Attila Sulyok
- Centre for Energy Research, H-1121 Budapest, Konkoly-Thege Miklós u. 29-33, Hungary
| | - Máté Hegedűs
- Departement of Materials Physics, Eötvös Loránd University, H-1119 Budapest, Pázmány Péter sétány 1/a, Hungary
| | - Ivett Kovács
- Research Centre for Astronomy and Earth Sciences, Institute for Geological and Geochemical Research, H-1112 Budapest, Budaörsi út 45, Hungary
| | - Noémi Rózsa
- Semmelweis University, Faculty of Dentistry, H-1088 Budapest, Szentkirályi u. 47, Hungary
| | - Zsolt Kovács
- Departement of Materials Physics, Eötvös Loránd University, H-1119 Budapest, Pázmány Péter sétány 1/a, Hungary.
| |
Collapse
|
18
|
Wu Z, Meng Z, Wu Q, Zeng D, Guo Z, Yao J, Bian Y, Gu Y, Cheng S, Peng L, Zhao Y. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 2020; 11:2041731420967791. [PMID: 33294153 PMCID: PMC7705190 DOI: 10.1177/2041731420967791] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023] Open
Abstract
Artificial bioactive materials have received increasing attention worldwide in clinical orthopedics to repair bone defects that are caused by trauma, infections or tumors, especially dedicated to the multifunctional composite effect of materials. In this study, a weakly alkaline, biomimetic and osteogenic, three-dimensional composite scaffold (3DS) with hydroxyapatite (HAp) and nano magnesium oxide (MgO) embedded in fiber (F) of silkworm cocoon and silk fibroin (SF) is evaluated comprehensively for its bone repair potential in vivo and in vitro experiments, particularly focusing on the combined effect between HAp and MgO. Magnesium ions (Mg2+) has long been proven to promote bone tissue regeneration, and HAp is provided with osteoconductive properties. Interestingly, the weak alkaline microenvironment from MgO may also be crucial to promote Sprague-Dawley (SD) rat bone mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation and alkaline phosphatase (ALP) activities. This SF/F/HAp/nano MgO (SFFHM) 3DS with superior biocompatibility and biodegradability has better mechanical properties, BMSCs proliferation ability, osteogenic activity and differentiation potential compared with the scaffolds adding HAp or MgO alone or neither. Similarly, corresponding meaningful results are also demonstrated in a model of distal lateral femoral defect in SD rat. Therefore, we provide a promising 3D composite scaffold for promoting bone regeneration applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ziquan Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhulong Meng
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| | - Qianjin Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Delu Zeng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhengdong Guo
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiangling Yao
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yangyang Bian
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuntao Gu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shaowen Cheng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Peng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Hainan Medical University, Ministry of Education, Haikou, Hainan, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Steiger EL, Muelli JR, Braissant O, Waltimo T, Astasov-Frauenhoffer M. Effect of divalent ions on cariogenic biofilm formation. BMC Microbiol 2020; 20:287. [PMID: 32938382 PMCID: PMC7493384 DOI: 10.1186/s12866-020-01973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 02/04/2023] Open
Abstract
Background Divalent cations are able to interact with exopolysaccharides (EPS) and thus are capable to modify the structure and composition of dental biofilm. At the moment, little is known about the adsorption of metals by cariogenic EPS; thus, the aim of the present study was to evaluate the effect of divalent ions (calcium, magnesium, and zinc) on the growth and biofilm formation of mutans streptococci and on the dissolution of hydroxyapatite as well as to investigate their binding to the bacterial EPS. Results S. mutans strains used in this study show the highest tolerance towards calcium of the ions tested. Growth parameters showed no differences to control condition for both strains up to 100 mM; revealing natural tolerance to higher concentration of calcium in the surroundings. Although excessive levels of calcium did not impair the growth parameters, it also did not have a positive effect on biofilm formation or its binding affinity to EPS. Magnesium-saturated environment proved to be counterproductive as strains were able to dissolve more Ca2+ from the tooth surface in the presence of magnesium, therefore releasing excessive amounts of Ca2+ in the environment and leading to the progression of the disease. Thus, this supports the idea of self-regulation, when more Ca2+ is released, more calcium is bound to the biofilm strengthening its structure and however, also less is left for remineralization. Zinc inhibited bacterial adhesion already at low concentrations and had a strong antibacterial effect on the strains as well as on calcium dissolution; leading to less biofilm and less EPS. Additionally, Zn2+ had almost always the lowest affinity to all EPS; thus, the unbound zinc could also still remain in the surrounding environment and keep its antimicrobial properties. Conclusion It is important to maintain a stable relationship between calcium, magnesium and zinc as excessive concentrations of one can easily destroy the balance between the three in cariogenic environment and lead to progression of the disease.
Collapse
Affiliation(s)
- Elena Laura Steiger
- Department for Oral Health & Medicine, University Center for Dental Medicine (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland
| | - Julia Rahel Muelli
- Department for Oral Health & Medicine, University Center for Dental Medicine (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland
| | - Olivier Braissant
- Center of Biomechanics and Biocalorimetry, c/o Department of Biomedical Engineering (DBE), University of Basel, Gewerbestrasse 14, 4123, Allschwil, Switzerland
| | - Tuomas Waltimo
- Department for Oral Health & Medicine, University Center for Dental Medicine (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland
| | - Monika Astasov-Frauenhoffer
- Department Research, University Center for Dental Medicine (UZB), University of Basel, Mattenstrasse 40, 4058, Basel, Switzerland.
| |
Collapse
|
20
|
Sarrigiannidis S, Moussa H, Dobre O, Dalby MJ, Tamimi F, Salmeron-Sanchez M. Chiral Tartaric Acid Improves Fracture Toughness of Bioactive Brushite-Collagen Bone Cements. ACS APPLIED BIO MATERIALS 2020; 3:5056-5066. [PMID: 32904797 PMCID: PMC7461128 DOI: 10.1021/acsabm.0c00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023]
Abstract
Brushite cements are promising bone regeneration materials with limited biological and mechanical properties. Here, we engineer a mechanically improved brushite-collagen type I cement with enhanced biological properties by use of chiral chemistry; d- and l-tartaric acid were used to limit crystal growth and increase the mechanical properties of brushite-collagen cements. The impact of the chiral molecules on the cements was examined with Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). A 3-point bend test was utilized to study the fracture toughness, and cell attachment and morphology studies were carried out to demonstrate biocompatibility. XRD and SEM analyses showed that l-, but not d-tartaric acid, significantly restrained brushite crystal growth by binding to the {010} plane of the mineral and increased brushite crystal packing and the collagen interaction area. l-Tartaric acid significantly improved fracture toughness compared to traditional brushite by 30%. Collagen significantly enhanced cell morphology and focal adhesion expression on l-tartaric acid-treated brushite cements.
Collapse
Affiliation(s)
- Stylianos
O. Sarrigiannidis
- Centre
for the Cellular Microenvironment, University
of Glasgow, Rankine Building, 79−85 Oakfield Ave, Glasgow G12 8LT, United
Kingdom
| | - Hanan Moussa
- Faculty
of Dentistry, McGill University, Strathcona Building, 3640 University
Street, Montreal, Quebec H3A 2B2, Canada
- Faculty
of Dentistry, Benghazi University, Benghazi 9504, Libya
| | - Oana Dobre
- Centre
for the Cellular Microenvironment, University
of Glasgow, Rankine Building, 79−85 Oakfield Ave, Glasgow G12 8LT, United
Kingdom
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, University
of Glasgow, Joseph Black Building, University Pl, Glasgow G12 8QQ, United Kingdom
| | - Faleh Tamimi
- Faculty
of Dentistry, McGill University, Strathcona Building, 3640 University
Street, Montreal, Quebec H3A 2B2, Canada
- College
of Dental Medicine, Qatar University, Doha, Qatar
| | - Manuel Salmeron-Sanchez
- Centre
for the Cellular Microenvironment, University
of Glasgow, Rankine Building, 79−85 Oakfield Ave, Glasgow G12 8LT, United
Kingdom
| |
Collapse
|
21
|
Moussa H, Jiang W, Alsheghri A, Mansour A, Hadad AE, Pan H, Tang R, Song J, Vargas J, McKee MD, Tamimi F. High strength brushite bioceramics obtained by selective regulation of crystal growth with chiral biomolecules. Acta Biomater 2020; 106:351-359. [PMID: 32035283 DOI: 10.1016/j.actbio.2020.01.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/03/2023]
Abstract
Chirality seems to play a key role in mineralization. Indeed, in biominerals, the biomolecules that guide the formation and organization of inorganic crystals and help construct materials with exceptional mechanical properties, are homochiral. Here, we show that addition of homochiral l-(+)-tartaric acid improved the mechanical properties of brushite bioceramics by decreasing their crystal size, following the classic Hall-Petch strengthening effect; d-(-)-tartaric acid had the opposite effect. Adding l-(+)-Tar increased both the compressive strength (26 MPa) and the fracture toughness (0.3 MPa m1/2) of brushite bioceramics, by 33% and 62%, respectively, compared to brushite bioceramics without additives. In addition, l-(+)-tartaric acid enabled the fabrication of cements with high powder-to-liquid ratios, reaching a compressive strength and fracture toughness as high as 32.2 MPa and 0.6 MPa m1/2, respectively, approximately 62% and 268% higher than that of brushite bioceramics prepared without additives, respectively. Characterization of brushite crystals from the macro- to the atomic-level revealed that this regulation is attributable to a stereochemical matching between l-(+)-tartaric acid and the chiral steps of brushite crystals, which results in inhibition of brushite crystallization. These findings provide insight into understanding the role of chirality in mineralization, and how to control the crystallographic structure of bioceramics to achieve high-performance mechanical properties. STATEMENT OF SIGNIFICANCE: Calcium-phosphate cements are promising bone repair materials. However, their suboptimal mechanical properties limit their clinical use. Natural biominerals have remarkable mechanical properties that are the result of controlled size, shape and organization of their inorganic crystals. This is achieved by biomineralization proteins that are homochiral, composed of l- amino acids. Despite the importance of chiral l-biomolecules in biominerals, using homochiral molecules to fabricate bone cements has not been studied yet. In this study, we showed that homochiral l-(+)-tartaric acid can regulate the crystal structure and improve the mechanical properties of a calcium-phosphate cement. Hence, these findings open the door for a new way of designing strong bone cement and highlight the importance of chirality in bioceramics.
Collapse
Affiliation(s)
- Hanan Moussa
- Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada; Faculty of Dentistry, Benghazi University, Benghazi, 9504, Libya
| | - Wenge Jiang
- Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Ammar Alsheghri
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
| | - Alaa Mansour
- Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amir El Hadad
- Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada; Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Ruikang Tang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China; Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
| | - Javier Vargas
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
22
|
Yun F, Swain MV, Chen H, Cairney J, Qu J, Sha G, Liu H, Ringer SP, Han Y, Liu L, Zhang X, Zheng R. Nanoscale pathways for human tooth decay - Central planar defect, organic-rich precipitate and high-angle grain boundary. Biomaterials 2019; 235:119748. [PMID: 31978841 DOI: 10.1016/j.biomaterials.2019.119748] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 02/01/2023]
Abstract
Understanding the pathways and mechanisms of human tooth decay is central to the development of both prophylaxes and treatments, but only limited information is presently available about the initiation of caries at the nanoscale. By combining atom probe tomography and high-resolution electron microscopy, we have found three distinct initial sites for human dental enamel dissolution: a) along the central dark line (CDL) within carbonated apatite nanocrystals, b) at organic-rich precipitates and c) along high-angle grain boundaries. 3D maps of the atoms within hydroxyapatite nanocrystallites in sound and naturally-decayed human dental enamel reveal a higher concentration of Mg and Na in the CDL. The CDL is therefore thought to provide a pathway for the exchange of ions during demineralization and remineralization. Mg and Na enrichment of the CDL also suggests that it is associated with the ribbon-like organic-rich precursor in amelogenesis. Organic-rich precipitates and high-angle grain boundaries were also shown to be more vulnerable to corrosion while low-angle grain boundaries remained intact. This is attributed to the lower crystallinity in these regions.
Collapse
Affiliation(s)
- Fan Yun
- School of Physics, The University of Sydney, NSW, 2006, Australia; Australian Center for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Hansheng Chen
- School of Physics, The University of Sydney, NSW, 2006, Australia; Australian Center for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julie Cairney
- Australian Center for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiangtao Qu
- School of Physics, The University of Sydney, NSW, 2006, Australia; Australian Center for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gang Sha
- School of Materials Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Hongwei Liu
- Australian Center for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia
| | - Simon P Ringer
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; School of Aerospace, Mechanical and Mechatronic Engineering, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Yu Han
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lingmei Liu
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rongkun Zheng
- School of Physics, The University of Sydney, NSW, 2006, Australia; Australian Center for Microscopy and Microanalysis, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
23
|
Abdallah MN, Abughanam G, Tran SD, Sheikh Z, Mezour MA, Basiri T, Xiao Y, Cerruti M, Siqueira WL, Tamimi F. Comparative adsorption profiles of basal lamina proteome and gingival cells onto dental and titanium surfaces. Acta Biomater 2018; 73:547-558. [PMID: 29660511 DOI: 10.1016/j.actbio.2018.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
Titanium (Ti) dental implants are susceptible to bacterial infections and failure due to lack of proper epithelial seal. Epithelial cells establish a strong epithelial seal around natural teeth by the deposition of basal lamina (BL) proteins that adsorb on the tooth surface. This seal can even be re-established onto cementum or dentin following injury or periodontal therapy. However, it is unclear how tooth surfaces promote this cell attachment and protein adsorption. Understanding the interactions between BL proteins and epithelial cells with dentin and Ti will facilitate the development of implant surfaces that promote the formation of an epithelial seal and improve the success of periodontal therapy and wound healing on natural teeth. To study these interactions, we used a surface proteomic approach to decipher the adsorption profile of BL proteins onto Ti and dentin, and correlated these adsorption profiles with in vitro interactions of human gingival fibroblasts and epithelial cells. Results showed that dentin adsorbed higher amounts of key BL proteins, particularly laminin and nidogen-1, and promoted more favorable interactions with epithelial cells than Ti. Next, dentin specimens were deproteinized or partially demineralized to determine if its mineral or protein component was responsible for BL adsorption and cell attachment. Deproteinized (mineral-rich) and partially demineralized (protein-rich) dentin specimens revealed BL proteins (i.e. laminin and nidogen-1) and epithelial cells interact preferentially with dentinal proteins rather than dentin mineral. These findings suggest that, unlike Ti, dentin and, in particular, dentinal proteins have a selective affinity to BL proteins that enhance epithelial cell attachment. STATEMENT OF SIGNIFICANCE It is remains unclear why natural teeth, unlike titanium dental implants, promote the formation of an epithelial seal that protects them against the external environment. This study used a surface screening approach to analyze the adsorption of proteins produced by epithelial tissues onto tooth-dentin and titanium surfaces, and correlate it with the behaviour of cells. This study shows that tooth-dentin, in particular its proteins, has a higher selective affinity to certain adhesion proteins, and subsequently allows more favourable interactions with epithelial cells than titanium. This knowledge could help in developing new approaches for re-establishing and maintaining the epithelial seal around teeth, and could pave the way for developing implants with surfaces that allow the formation of a true epithelial seal.
Collapse
|
24
|
Passos VF, Rodrigues LKA, Santiago SL. The effect of magnesium hydroxide-containing dentifrice using an extrinsic and intrinsic erosion cycling model. Arch Oral Biol 2018; 86:46-50. [DOI: 10.1016/j.archoralbio.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 01/29/2023]
|
25
|
Wang K, Wang Y, Zhao X, Li Y, Yang T, Zhang X, Wu X. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:565-571. [DOI: 10.1016/j.msec.2017.02.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 11/16/2022]
|
26
|
Alageel O, Abdallah M, Alsheghri A, Song J, Caron E, Tamimi F. Removable partial denture alloys processed by laser‐sintering technique. J Biomed Mater Res B Appl Biomater 2017; 106:1174-1185. [DOI: 10.1002/jbm.b.33929] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/03/2017] [Accepted: 05/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Omar Alageel
- Faculty of DentistryMcGill UniversityMontreal Quebec Canada
- College of Applied Medical SciencesKing Saud UniversityRiyadh Saudi Arabia
| | | | - Ammar Alsheghri
- Department of Mining and Materials EngineeringMcGill UniversityMontreal Quebec Canada
| | - Jun Song
- Department of Mining and Materials EngineeringMcGill UniversityMontreal Quebec Canada
| | | | - Faleh Tamimi
- Faculty of DentistryMcGill UniversityMontreal Quebec Canada
| |
Collapse
|
27
|
Abdallah MN, Tran SD, Abughanam G, Laurenti M, Zuanazzi D, Mezour MA, Xiao Y, Cerruti M, Siqueira WL, Tamimi F. Biomaterial surface proteomic signature determines interaction with epithelial cells. Acta Biomater 2017; 54:150-163. [PMID: 28259836 DOI: 10.1016/j.actbio.2017.02.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices. STATEMENT OF SIGNIFICANCE Failure of most biomaterials originates from the inability to predict and control the influence of their surface properties on biological phenomena, particularly protein adsorption, and cellular behaviour, which subsequently results in unfavourable host response. Here, we introduce a surface-proteomic screening approach using a label-free mass spectrometry technique to decipher the adsorption profile of extracellular matrix (ECM) proteins on different biomaterials, and correlate it with cellular behaviour. We demonstrated that the way a biomaterial selectively interacts with specific ECM proteins of a given tissue seems to determine the interactions between the cells of that tissue and biomaterials. Accordingly, this approach can potentially revolutionize the screening methods for investigating the protein-cell-biomaterial interactions and pave the way for deeper understanding of these interactions.
Collapse
|
28
|
Abdallah MN, Abdollahi S, Laurenti M, Fang D, Tran SD, Cerruti M, Tamimi F. Scaffolds for epithelial tissue engineering customized in elastomeric molds. J Biomed Mater Res B Appl Biomater 2017; 106:880-890. [PMID: 28419685 DOI: 10.1002/jbm.b.33897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
Restoration of soft tissue defects remains a challenge for surgical reconstruction. In this study, we introduce a new approach to fabricate poly(d,l-lactic acid) (PDLLA) scaffolds with anatomical shapes customized to regenerate three-dimensional soft tissue defects. Highly concentrated polymer/salt mixtures were molded in flexible polyether molds. Microcomputed tomography showed that with this approach it was possible to produce scaffolds with clinically acceptable volume ratio maintenance (>90%). Moreover, this technique allowed us to customize the average pore size and pore interconnectivity of the scaffolds by using variations of salt particle size. In addition, this study demonstrated that with the increasing porosity and/or the decreasing of the average pore size of the PDLLA scaffolds, their mechanical properties decrease and they degrade more slowly. Cell culture results showed that PDLLA scaffolds with an average pore size of 100 µm enhance the viability and proliferation rates of human gingival epithelial cells up to 21 days. The simple method proposed in this article can be extended to fabricate porous scaffolds with customizable anatomical shapes and optimal pore structure for epithelial tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 880-890, 2018.
Collapse
Affiliation(s)
| | - Sara Abdollahi
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Marco Laurenti
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Dongdong Fang
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Craniofacial Stem Cells and Tissue Engineering Laboratory, McGill University, Montreal, Quebec, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Craniofacial Stem Cells and Tissue Engineering Laboratory, McGill University, Montreal, Quebec, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Laurenti M, Al Subaie A, Abdallah MN, Cortes ARG, Ackerman JL, Vali H, Basu K, Zhang YL, Murshed M, Strandman S, Zhu J, Makhoul N, Barralet JE, Tamimi F. Two-Dimensional Magnesium Phosphate Nanosheets Form Highly Thixotropic Gels That Up-Regulate Bone Formation. NANO LETTERS 2016; 16:4779-4787. [PMID: 27280476 DOI: 10.1021/acs.nanolett.6b00636] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydrogels composed of two-dimensional (2D) nanomaterials have become an important alternative to replace traditional inorganic scaffolds for tissue engineering. Here, we describe a novel nanocrystalline material with 2D morphology that was synthesized by tuning the crystallization of the sodium-magnesium-phosphate system. We discovered that the sodium ion can regulate the precipitation of magnesium phosphate by interacting with the crystal's surface causing a preferential crystal growth that results in 2D morphology. The 2D nanomaterial gave rise to a physical hydrogel that presented extreme thixotropy, injectability, biocompatibility, bioresorption, and long-term stability. The nanocrystalline material was characterized in vitro and in vivo and we discovered that it presented unique biological properties. Magnesium phosphate nanosheets accelerated bone healing and osseointegration by enhancing collagen formation, osteoblasts differentiation, and osteoclasts proliferation through up-regulation of COL1A1, RunX2, ALP, OCN, and OPN. In summary, the 2D magnesium phosphate nanosheets could bring a paradigm shift in the field of minimally invasive orthopedic and craniofacial interventions because it is the only material available that can be injected through high gauge needles into bone defects in order to accelerate bone healing and osseointegration.
Collapse
Affiliation(s)
| | - Ahmed Al Subaie
- College of Dentistry, University of Dammam , P.O. Box 1982, Dammam 31441, Saudi Arabia
| | | | - Arthur R G Cortes
- Biomaterials Laboratory, Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , 73 High Street, Charlestown, Massachusetts 02129, United States
| | - Jerome L Ackerman
- Biomaterials Laboratory, Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School , 73 High Street, Charlestown, Massachusetts 02129, United States
| | | | | | - Yu Ling Zhang
- Department of Surgery, Montreal General Hospital, Faculty of Medicine, McGill University , 1650 Cedar Avenue, H3G 1A4, Montreal, Quebec, Canada
| | | | - Satu Strandman
- Department of Chemistry, Université de Montreal , C.P. 6128, Succursale Centre-Ville, H3C 3J7, Montreal, Quebec, Canada
| | - Julian Zhu
- Department of Chemistry, Université de Montreal , C.P. 6128, Succursale Centre-Ville, H3C 3J7, Montreal, Quebec, Canada
| | | | - Jake E Barralet
- Department of Surgery, Montreal General Hospital, Faculty of Medicine, McGill University , 1650 Cedar Avenue, H3G 1A4, Montreal, Quebec, Canada
| | | |
Collapse
|