1
|
Tong L, Zhang D, Huang Z, Gao F, Zhang S, Chen F, Liu C. Calcium Ion-Coupled Polyphosphates with Different Degrees of Polymerization for Bleeding Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43244-43256. [PMID: 39136271 DOI: 10.1021/acsami.4c06698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of efficient hemostatic materials is crucial for achieving rapid hemorrhage control and effective wound healing. Inorganic polyphosphate (polyP) is recognized as an effective modulator of the blood coagulation process. However, the specific effect of polyP chain length on coagulation is not yet fully understood. Furthermore, calcium ions (Ca2+) are essential for the coagulation process, promoting multiple enzyme-catalyzed reactions within the coagulation cascade. Hence, calcium ion-coupled polyphosphate powders with three different degrees of polymerization (CaPP-n, n = 20, 50, and 1500) are synthesized by an ion-exchange reaction. CaPP exhibits a crystalline phase at a low polymerization degree and transitions to an amorphous phase as the polymerization degree increases. Notably, the addition of Ca2+ enhances the wettability of polyP, and CaPP promotes hemostasis, with varying degrees of effectiveness related to chain length. CaPP-50 exhibits the most promising hemostatic performance, with the lowest blood clotting index (BCI, 12.1 ± 0.7%) and the shortest clotting time (302.0 ± 10.5 s). By combining Ca2+ with polyP of medium-chain length, CaPP-50 demonstrates an enhanced ability to accelerate the adhesion and activation of blood cells, initiate the intrinsic coagulation cascade, and form a stable blood clot, outperforming both CaPP-20 and CaPP-1500. The hemostatic efficacy of CaPP-50 is further validated using rat liver bleeding and femoral artery puncture models. CaPP-50 is proven to possess hemostatic properties comparable to those of commercial calcium-based zeolite hemostatic powder and superior to kaolin. In addition, CaPP-50 exhibits excellent biocompatibility and long-term storage stability. These results suggest that CaPP-50 has significant clinical and commercial potential as an active inorganic hemostatic agent for rapid control of bleeding.
Collapse
Affiliation(s)
- Laiqiang Tong
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fan Gao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shaozan Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. Polyphosphate Nanoparticles: Balancing Energy Requirements in Tissue Regeneration Processes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309528. [PMID: 38470207 DOI: 10.1002/smll.202309528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Indexed: 03/13/2024]
Abstract
Nanoparticles of a particular, evolutionarily old inorganic polymer found across the biological kingdoms have attracted increasing interest in recent years not only because of their crucial role in metabolism but also their potential medical applicability: it is inorganic polyphosphate (polyP). This ubiquitous linear polymer is composed of 10-1000 phosphate residues linked by high-energy anhydride bonds. PolyP causes induction of gene activity, provides phosphate for bone mineralization, and serves as an energy supplier through enzymatic cleavage of its acid anhydride bonds and subsequent ATP formation. The biomedical breakthrough of polyP came with the development of a successful fabrication process, in depot form, as Ca- or Mg-polyP nanoparticles, or as the directly effective polymer, as soluble Na-polyP, for regenerative repair and healing processes, especially in tissue areas with insufficient blood supply. Physiologically, the platelets are the main vehicles for polyP nanoparticles in the circulating blood. To be biomedically active, these particles undergo coacervation. This review provides an overview of the properties of polyP and polyP nanoparticles for applications in the regeneration and repair of bone, cartilage, and skin. In addition to studies on animal models, the first successful proof-of-concept studies on humans for the healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128, Mainz, Germany
| |
Collapse
|
3
|
Hoxha A, Nikolaou A, Wilkinson HN, Hardman MJ, Gutierrez-Merino J, Felipe-Sotelo M, Carta D. Wound Healing Promotion via Release of Therapeutic Metallic Ions from Phosphate Glass Fibers: An In Vitro and Ex Vivo Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37669-37682. [PMID: 39010729 DOI: 10.1021/acsami.4c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Biomaterials capable of promoting wound healing and preventing infections remain in great demand to address the global unmet need for the treatment of chronic wounds. Phosphate-based glasses (PG) have shown potential as bioresorbable materials capable of inducing tissue regeneration, while being replaced by regenerated tissue and releasing therapeutic species. In this work, phosphate-glass-based fibers (PGF) in the system P2O5-CaO-Na2O added with 1, 2, 4, 6, and 10 mol % of the therapeutic metallic ions (TMI) Ag+, Zn2+, and Fe3+ were manufactured via electrospinning of coacervate gels. Coacervation is a sustainable, cost-effective, water-based method to produce PG. All TMI are effective in promoting wound closure (re-epithelialization) in living human skin ex vivo, where the best-performing system is PGF containing Ag+. In particular, PGF with ≥4 mol % of Ag+ is capable of promoting 84% wound closure over 48 h. These results are confirmed by scratch test migration assays, with the PGF-Ag systems containing ≥6 mol % of Ag+, demonstrating significant wound closure enhancement (up to 72%) after 24 h. The PGF-Ag systems are also the most effective in terms of antibacterial activity against both the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli. PGF doped with Zn2+ shows antibacterial activity only against S. aureus in the systems containing Zn2+ ≥ 10 mol %. In addition, PGF doped with Fe3+ rapidly accelerates ex vivo healing in patient chronic wound skin (>30% in 48 h), demonstrating the utility of doped PGF as a potential therapeutic strategy to treat chronic wounds.
Collapse
Affiliation(s)
- Agron Hoxha
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Athanasios Nikolaou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, U.K
| | - Holly N Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K
| | - Matthew J Hardman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, U.K
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, U.K
| | | | - Monica Felipe-Sotelo
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Daniela Carta
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, U.K
| |
Collapse
|
4
|
Tithy LH, Rahman A, Wong SY, Li X, Arafat MT. Chitosan/starch based unoxidized tannic acid modified microparticles for rapid hemostasis with broad spectrum antibacterial activity. Carbohydr Polym 2024; 336:122111. [PMID: 38670748 DOI: 10.1016/j.carbpol.2024.122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The development of a rapid hemostat through a facile method with co-existing antibacterial activity and minimum erythrocyte lysis property stands as a major requirement in the field of hemostasis. Herein, a series of novel microparticle hemostats were synthesized using chitosan, different hydrothermally-treated starches, and cross-linked with tannic acid (TA) simultaneously in an unoxidized environment via ionotropic gelation method. Hemostats' comparative functional properties, such as adjustable antibacterial and erythrocyte compatibility upon various starch additions were evaluated. The in vivo hemostatic study revealed that the developed hemostats for mouse liver laceration and rat tail amputation had clotting times (13 s and 38 s, respectively) and blood loss (51 mg and 62 mg, respectively) similar to those of Celox™. The erythrocyte adhesion test suggested that erythrocyte distortion can be lowered by modifying the antibacterial hemostats with different starches. The broad-spectrum antibacterial efficacy of the hemostats remained intact against S. aureus (>90 %), E. coli (>80 %), and P. mirabilis bacteria upon starch modification. They also demonstrated high hemocompatibility (<3 % hemolysis ratio), moderate cell viability (>81 %), in vivo biodegradation, and angiogenesis indicating adequate biocompatibility and wound healing. The developed hemostats hold significant promise to be employed as rapid hemostatic agents for preventing major bleeding and bacterial infection in emergencies.
Collapse
Affiliation(s)
- Lamiya Hassan Tithy
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Siew Yee Wong
- Institute of sustainability for chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xu Li
- Institute of sustainability for chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
5
|
Yang J, Cai F, Lv Y, Jiang T, Zhao X, Hu X, Zheng Y, Shi X. Chitosan nonwoven fabric composited calcium alginate and adenosine diphosphate as a hemostatic bandage for acute bleeding wounds. Int J Biol Macromol 2024; 257:128561. [PMID: 38056735 DOI: 10.1016/j.ijbiomac.2023.128561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Acute bleeding following accidental injury is a leading cause of mortality. However, conventional hemostatic bandages impede wound healing by inducing excessive blood loss, dehydration, and adherence to granulation tissue. Strategies such as incorporating active hemostatic agents and implementing chemical modifications can augment the properties of these bandages. Nevertheless, the presence of remote thrombosis and initiators may pose risks to human health. Here, a hemostatic bandage was developed by physically combined chitosan nonwoven fabric, calcium alginate sponge, and adenosine diphosphate. The presented hemostatic bandage not only exhibits active and passive mechanisms for promoting clotting but also demonstrates excellent mechanical properties, breathability, ease of removal without causing damage to the wound bed or surrounding tissues, as well as maintaining an optimal moist environment conducive to wound healing. In vitro evaluation results indicated that the hemostatic bandage possesses favorable cytocompatibility with low levels of hemolysis. Furthermore, it effectively aggregates various blood cells while activating platelets synergistically to promote both extrinsic and intrinsic coagulation pathways. In an in vivo rat model study involving liver laceration and femoral artery injury scenarios, our developed hemostatic bandage demonstrated rapid clot formation capabilities along with reduced blood loss compared to commercially available fabrics.
Collapse
Affiliation(s)
- Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Fengying Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Ting Jiang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xingkai Zhao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xueli Hu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
6
|
Chen S, Kong C, Yu N, Xu X, Li B, Zhang J. Management of non-compressible hemorrhage and re-bleeding by a liquid hemostatic polysaccharide floccuronic acid. Int J Biol Macromol 2024; 257:128695. [PMID: 38072343 DOI: 10.1016/j.ijbiomac.2023.128695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Effective management of excessive bleeding requires liquid hemostatic agents, especially in scenarios involving uncompressible and postoperative hemorrhage. This study introduces the microbial exopolysaccharide floccuronic acid (FA) as a liquid hemostatic agent, characterized by a high weight average molecular weight of 2.38 × 108 Da. The investigation focuses on the flocculation effect, hemostatic efficiency in both in vitro and in vivo settings, elucidating its hemostatic mechanism, and assessing its safety profile. Results reveal that FA solution significantly accelerates the coagulation process, leading to the formation of compact clots while specifically interfering with fibrin. Notably, FA demonstrates excellent hemostatic effects in animal liver models and a rat arterial rebleeding model. The biocompatible and biodegradable characteristics further underscore FA's potential as a valuable liquid hemostatic material, particularly suited for non-compressible and re-bleeding scenarios.
Collapse
Affiliation(s)
- Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China.
| |
Collapse
|
7
|
Dai S, Xie Z, Wang B, Ye R, Ou X, Wang C, Yu N, Huang C, Zhao J, Cai C, Zhang F, Buratto D, Khan T, Qiao Y, Hua Y, Zhou R, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness. Nat Commun 2023; 14:7699. [PMID: 38052788 PMCID: PMC10698201 DOI: 10.1038/s41467-023-43272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.
Collapse
Affiliation(s)
- Shang Dai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Zhenming Xie
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Binqiang Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ye
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Xinwen Ou
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Chen Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Ning Yu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Huang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chunhui Cai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Furong Zhang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Damiano Buratto
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Taimoor Khan
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Yan Qiao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Ruhong Zhou
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Liu C, Liu C, Shi Z, Lu W, Liu Z, Liu S, Wang X, Wang X, Huang F. Sprayable surface-adaptive biocompatible membranes for efficient hemostasis via assembly of chitosan and polyphosphate. Carbohydr Polym 2023; 302:120360. [PMID: 36604047 DOI: 10.1016/j.carbpol.2022.120360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
This work describes a hemostatic membrane system (or surface coating) based on spray-assisted layer-by-layer electrostatic assemblies of oppositely charged polyphosphate (polyP) and chitosan (Cs). The as-prepared membrane formed a robust micro-stratified porous structure with high flexibility. Both blood clotting test and rodent hepatic severe hemorrhage model revealed the excellent hemostatic performance of the membrane system, benefitting from the robust assembly and synergistic effect of polyP/Cs as well as membrane surface chemistry. Compared to Cs-topped membrane surface, polyP-sprayed one exhibited further improved hemostatic effect via promoting fibrin formation. Besides, comprehensive in vitro and in vivo evaluations demonstrated good biocompatibility and biodegradability of the membrane. The present approach that integrated the hemostasis-stimulating capability of polyP/Cs with facile spraying method is highly scalable and flexible, which is envisioned to be adapted readily for other hemostatic polyelectrolytes and surface functionalization of diverse existing hemostatic products on demand.
Collapse
Affiliation(s)
- Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Wei Lu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhiyuan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Shihai Liu
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266550, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
9
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Schröder HC, Neufurth M, Zhou H, Wang S, Wang X, Müller WEG. Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications. Int J Nanomedicine 2022; 17:5825-5850. [PMID: 36474526 PMCID: PMC9719705 DOI: 10.2147/ijn.s389819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 12/07/2024] Open
Abstract
Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huan Zhou
- School of Health Sciences and Biomedical Engineering, Heibei University of Technology, Tianjin, People’s Republic of China
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Silver-doped phosphate coacervates to inhibit pathogenic bacteria associated with wound infections: an in vitro study. Sci Rep 2022; 12:10778. [PMID: 35750875 PMCID: PMC9232641 DOI: 10.1038/s41598-022-13375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
There is a great demand from patients requiring skin repair, as a result of poorly healed acute wounds or chronic wounds. These patients are at high risk of constant inflammation that often leads to life-threatening infections. Therefore, there is an urgent need for new materials that could rapidly stimulate the healing process and simultaneously prevent infections. Phosphate-based coacervates (PC) have been the subject of increased interest due to their great potential in tissue regeneration and as controlled delivery systems. Being bioresorbable, they dissolve over time and simultaneously release therapeutic species in a continuous manner. Of particular interest is the controlled release of metallic antibacterial ions (e.g. Ag+), a promising alternative to conventional treatments based on antibiotics, often associated with antibacterial resistance (AMR). This study investigates a series of PC gels containing a range of concentrations of the antibacterial ion Ag+ (0.1, 0.3 and 0.75 mol%). Dissolution tests have demonstrated controlled release of Ag+ over time, resulting in a significant bacterial reduction (up to 7 log), against both non-AMR and AMR strains of both Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa). Dissolution tests have also shown controlled release of phosphates, Ca2+, Na+ and Ag+ with most of the release occurring in the first 24 h. Biocompatibility studies, assessed using dissolution products in contact with human keratinocyte cells (HaCaT) and bacterial strains, have shown a significant increase in cell viability (p ≤ 0.001) when gels are dissolved in cell medium compared to the control. These results suggest that gel-like silver doped PCs are promising multifunctional materials for smart wound dressings, being capable of simultaneously inhibit pathogenic bacteria and maintain good cell viability.
Collapse
|
12
|
Sultan MT, Hong H, Lee OJ, Ajiteru O, Lee YJ, Lee JS, Lee H, Kim SH, Park CH. Silk Fibroin-Based Biomaterials for Hemostatic Applications. Biomolecules 2022; 12:biom12050660. [PMID: 35625588 PMCID: PMC9138874 DOI: 10.3390/biom12050660] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Hemostasis plays an essential role in all surgical procedures. Uncontrolled hemorrhage is the primary cause of death during surgeries, and effective blood loss control can significantly reduce mortality. For modern surgeons to select the right agent at the right time, they must understand the mechanisms of action, the effectiveness, and the possible adverse effects of each agent. Over the past decade, various hemostatic agents have grown intensely. These agents vary from absorbable topical hemostats, including collagen, gelatins, microfibrillar, and regenerated oxidized cellulose, to biologically active topical hemostats such as thrombin, biological adhesives, and other combined agents. Commercially available products have since expanded to include topical hemostats, surgical sealants, and adhesives. Silk is a natural protein consisting of fibroin and sericin. Silk fibroin (SF), derived from silkworm Bombyx mori, is a fibrous protein that has been used mostly in fashion textiles and surgical sutures. Additionally, SF has been widely applied as a potential biomaterial in several biomedical and biotechnological fields. Furthermore, SF has been employed as a hemostatic agent in several studies. In this review, we summarize the several morphologic forms of SF and the latest technological advances on the use of SF-based hemostatic agents.
Collapse
Affiliation(s)
- Md. Tipu Sultan
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University, Chuncheon 24252, Korea; (M.T.S.); (H.H.); (O.J.L.); (O.A.); (Y.J.L.); (J.S.L.); (H.L.); (S.H.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
- Correspondence:
| |
Collapse
|
13
|
Ouyang Y, Zhang R, Chen H, Chen L, Xi W, Li X, Zhang Q, Yan Y. Novel, degradable, and cytoactive bone cements based on magnesium polyphosphate and calcium citrate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ideal bone-filling materials should be degradable and efficient for fast bone remodeling.
Collapse
Affiliation(s)
- Yalan Ouyang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Rongguang Zhang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Hong Chen
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Lichao Chen
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Wenjing Xi
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Xiaodan Li
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Yonggang Yan
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| |
Collapse
|
14
|
Xie X, Li D, Chen Y, Shen Y, Yu F, Wang W, Yuan Z, Morsi Y, Wu J, Mo X. Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Adv Healthc Mater 2021; 10:e2100918. [PMID: 34235873 DOI: 10.1002/adhm.202100918] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Indexed: 12/15/2022]
Abstract
Developing an excellent hemostatic material with good biocompatibility and high blood absorption capacity for rapid hemostasis of deep non-compressible hemorrhage remains a significant challenge. Herein, a novel conjugate electrospinning strategy to prepare an ultralight 3D gelatin sponge consisting of continuous interconnected nanofibers. This unique fluffy nanofiber structure endows the sponge with low density, high surface area, compressibility, and ultrastrong liquid absorption capacity. In vitro assessments show the gelatin nanofiber sponge has good cytocompatibility, high cell permeability, and low hemolysis ratio. The rat subcutaneous implantation studies demonstrate good biocompatibility and biodegradability of gelatin nanofiber sponge. Gelatin nanofiber sponge aggregates and activates platelets in large quantities to accelerate the formation of platelet embolism, and simultaneously escalates other extrinsic and intrinsic coagulation pathways, which collectively contribute to its superior hemostatic capacity. In vivo studies on an ear artery injury model and a liver trauma model of rabbits demonstrate that the gelatin nanofiber sponge rapidly induce stable blood clots with least blood loss compared to gelatin nanofiber membrane, medical gauze, and commercial gelatin hemostatic sponge. Hence, the gelatin nanofiber sponge holds great potential as an absorbable hemostatic agent for rapid hemostasis.
Collapse
Affiliation(s)
- Xianrui Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Wei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences Swinburne University of Technology Boroondara VIC 3122 Australia
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
15
|
|
16
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
17
|
Nix HP, Momeni A, Chevrier DM, Whitman CA, Filiaggi MJ. Doxorubicin-loaded polyphosphate glass microspheres for transarterial chemoembolization. J Biomed Mater Res B Appl Biomater 2020; 108:2621-2632. [PMID: 32100967 DOI: 10.1002/jbm.b.34594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 02/15/2020] [Indexed: 11/12/2022]
Abstract
The standard of care for intermediate stage hepatocellular carcinoma is transarterial chemoembolization (TACE). Drug-eluting bead TACE (DEB-TACE) has emerged as a leading form of TACE, as it uses highly calibrated microspheres to deliver consistent embolization and controlled drug release to the tumor microenvironment. We report here on doxorubicin (DOX)-loaded polyphosphate glass microspheres (PGM) as a novel resorbable, radiopaque, preloaded DEB-TACE platform. Coacervate composed of polyphosphate chains complexed with Ba2+ , Ca2+ , and Cu2+ can be loaded with DOX prior to PGM synthesis, with PGM production achieved using a water-in-oil emulsion technique at room temperature yielding highly spherical particles in clinically relevant size fractions. In vitro, DOX release was found to be linear, pH dependent, and in accordance with Type II non-Fickian transport. PGM degradation was characterized by an initial burst release of degradation products over 7 days, followed by a plateau in mass loss at approximately 75% over a period of several weeks. in vitro studies indicate that PGM degradation products, namely Cu2+ , are cytotoxic and may interact with eluted DOX to impair its pharmacological activity. With additional compositional considerations, this approach may prove promising for DEB-TACE applications.
Collapse
Affiliation(s)
- Hayden P Nix
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arash Momeni
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel M Chevrier
- Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Catherine A Whitman
- Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark J Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Zheng C, Zeng Q, Pimpi S, Wu W, Han K, Dong K, Lu T. Research status and development potential of composite hemostatic materials. J Mater Chem B 2020; 8:5395-5410. [DOI: 10.1039/d0tb00906g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through the discussion of the coagulation mechanism of compositehemostatic materials, the future development potential of hemostatic materials is proposed.
Collapse
Affiliation(s)
- Caiyun Zheng
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Qingyan Zeng
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - SaHu Pimpi
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Wendong Wu
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Kai Han
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Kai Dong
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| | - Tingli Lu
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an Shaanxi
- P. R. China
| |
Collapse
|
19
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Valliant EM, Filiaggi MJ. Impact of trivalent ions on the stability and cohesion of calcium polyphosphate coacervates for embolization applications. J Biomed Mater Res B Appl Biomater 2019; 107:2638-2648. [PMID: 30860666 DOI: 10.1002/jbm.b.34353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/06/2022]
Abstract
Polyphosphates (PPs) are of interest as temporary in situ setting embolic agents for which cohesive characteristics are vital. Trivalent ions Al3+ and Ga3+ were substituted into calcium PP up to 10 mol % for two PP chain lengths (degree of polymerization, Dp 200 and 9000) and the effect on the dissolution rate of the resulting coacervate was examined. High levels of trivalent ions were found to increase the dissolution rate, especially with aluminum (Al) where the coacervate with the greatest Al content (10 mol %) and larger Dp completely dissolved within the first few hours in tris(hydroxymethyl)aminomethane buffered saline. Conversely, small amounts of trivalent ions slowed the dissolution rate of the coacervates compared to those containing calcium only. The coacervate compositions determined to have the fastest and slowest ion release were evaluated for cohesion upon injection into a simulated blood vessel using a dual lumen needle. PPs with lower trivalent content had a higher coacervate yield overall, with 5% Ga and Dp 200 yielding the smallest proportion of coacervate particulates that could be implicated in unwanted distal embolization. However, further studies are required to evaluate the formation and duration of occlusions in vivo so that the PP composition can best be tailored to meet clinical requirements. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2638-2648, 2019.
Collapse
Affiliation(s)
- Esther Mae Valliant
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Joseph Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Tolba E, Wang X, Ackermann M, Neufurth M, Muñoz‐Espí R, Schröder HC, Müller WEG. In Situ Polyphosphate Nanoparticle Formation in Hybrid Poly(vinyl alcohol)/Karaya Gum Hydrogels: A Porous Scaffold Inducing Infiltration of Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801452. [PMID: 30693187 PMCID: PMC6343068 DOI: 10.1002/advs.201801452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/16/2018] [Indexed: 04/14/2023]
Abstract
The preparation and characterization of a porous hybrid cryogel based on the two organic polymers, poly(vinyl alcohol) (PVA) and karaya gum (KG), into which polyphosphate (polyP) nanoparticles have been incorporated, are described. The PVA/KG cryogel is prepared by intermolecular cross-linking of PVA via freeze-thawing and Ca2+-mediated ionic gelation of KG to form stable salt bridges. The incorporation of polyP as amorphous nanoparticles with Ca2+ ions (Ca-polyP-NP) is achieved using an in situ approach. The polyP constituent does not significantly affect the viscoelastic properties of the PVA/KG cryogel that are comparable to natural soft tissue. The exposure of the Ca-polyP-NP within the cryogel to medium/serum allows the formation of a biologically active polyP coacervate/protein matrix that stimulates the growth of human mesenchymal stem cells in vitro and provides the cells a suitable matrix for infiltration superior to the polyP-free cryogel. In vivo biocompatibility studies in rats reveal that already two to four weeks after implantation into muscle, the implant regions containing the polyP-KG/PVA material become replaced by initial granulation tissue, whereas the controls are free of any cells. It is proposed that the polyP-KG/PVA cryogel has the potential to become a promising implant material for soft tissue engineering/repair.
Collapse
Affiliation(s)
- Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
- Polymers and Pigments DepartmentNational Research CentreDokki12622GizaEgypt
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| | - Maximilian Ackermann
- Institute of Functional and Clinical AnatomyUniversity Medical Center of the Johannes Gutenberg UniversityJohann Joachim Becher Weg 1355099MainzGermany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| | - Rafael Muñoz‐Espí
- Institute of Materials Science (ICMUV)Universitat de ValènciaC/Catedràtic José Beltrán 246980PaternaValènciaSpain
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| |
Collapse
|
22
|
Kyffin BA, Foroutan F, Raja FNS, Martin RA, Pickup DM, Taylor SE, Carta D. Antibacterial silver-doped phosphate-based glasses prepared by coacervation. J Mater Chem B 2019; 7:7744-7755. [DOI: 10.1039/c9tb02195g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we report synthesis, characterization and antimicrobial activity of bioresorbable silver-doped polyphosphate glasses, produced via the coacervation method.
Collapse
Affiliation(s)
| | | | - Farah N. S. Raja
- School of Engineering & Applied Science and Aston Institute for Materials Research
- Aston University
- Aston Triangle
- Birmingham
- UK
| | - Richard A. Martin
- School of Engineering & Applied Science and Aston Institute for Materials Research
- Aston University
- Aston Triangle
- Birmingham
- UK
| | - David M. Pickup
- School of Physical Sciences
- Ingram Building
- University of Kent
- Kent
- UK
| | | | - Daniela Carta
- Department of Chemistry
- University of Surrey
- Guildford
- UK
| |
Collapse
|
23
|
Liu W, Yang X, Li N, Xi G, Wang M, Liang B, Feng Y, Chen H, Shi C, Li W. Genipin crosslinked microspheres as an effective hemostatic agent. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wen Liu
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Xiao Yang
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin 300072 China
| | - Na Li
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Guanghui Xi
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Mingshan Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University; Wenzhou Zhejiang 325000 China
| | - Bin Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University; Wenzhou Zhejiang 325000 China
| | - Yakai Feng
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin 300072 China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering; CNITECH, CAS; Wenzhou Zhejiang 325011 China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Wenzhong Li
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3, 14195 Berlin Germany
| |
Collapse
|
24
|
Wang X, Schröder HC, Müller WEG. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J Mater Chem B 2018; 6:2385-2412. [DOI: 10.1039/c8tb00241j] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Physiological amorphous polyphosphate nano/micro-particles, injectable and implantable, attract and stimulate MSCs into implants for tissue regeneration.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
25
|
Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, Luis Neve A, Feng Y, Chen H, Shi C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci 2017; 5:2357-2368. [DOI: 10.1039/c7bm00554g] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of stable blood clots or hemostasis is essential to prevent major blood loss and death from excessive bleeding.
Collapse
|