1
|
Lu J, He X, Auricchio F. A waviness-centered damage model for collagenous soft tissues. Acta Biomater 2025; 195:134-143. [PMID: 39983857 DOI: 10.1016/j.actbio.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025]
Abstract
This article presents a damage model for collagenous tissue under monotonic loading. Given that the true stretch of collagen fibers is not uniform and is regulated by fiber waviness, we postulate that damage commences from more stretched (i.e. straighter) fibers and progresses to less stretched (i.e. wavier) ones. The complicated nonlinear response is regarded as the outcome of two competing mechanisms: the recruitment of wavy intact fibers and the loss of taut functioning fibers. The progression of damage is modeled by an evolving damage front in the waviness domain. A power law is proposed for the evolution of damage front. The model was fitted to four groups of published uniaxial and biaxial tests data of vascular tissues. Spot-on fits were observed in all groups.
Collapse
Affiliation(s)
- Jia Lu
- Department of Mechanical Engineering, The University of Iowa, Iowa City, IA 52242, USA.
| | - Xuehuan He
- Department of Mechanical Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Huang T, Qi X, Cao L, Yang M, Luo H, Li Q, Qian P, Lu J, Lei Z, Luo Y, Yang C. Regional Stiffness and Hardening Indices: New Indicators Derived from Multidimensional Dynamic CTA for Aneurysm Risk Assessment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400653. [PMID: 39449669 DOI: 10.1002/advs.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Two indices, indicating the regional average stiffness and the pace of strain hardening respectively, are derived from the nonlinear stress-strain behavior obtained from biomechanical analysis of aneurysm. A comprehensive method based on electrocardiographic-gated multidimensional dynamic computed tomography angiography (MD CTA) is developed for extracting these mechanical characteristics in vivo. The proposed indices are evaluated by 26 cases including 9 healthy, one aortosclerosis, and 16 abdominal aortic aneurysm cases. The difference of SSI and dSSI value between aneurysmal and healthy groups is up to orders in magnitude. Significant correlation of these indices with the clinical indicator of aneurysm diameter is found. Logistic models based on these indices are capable to sharply discriminate the healthy and the aneurysmal arteries with AUC>0.98. This work introduces new tools and new indices for aortic mechanical assessment which may shed light on understanding the mechanical condition, pathological state and eventually benefit clinical decision-making.
Collapse
Affiliation(s)
- Tianming Huang
- Department of Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, 310000, China
| | - Xiaoyu Qi
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, 43022, China
| | - Lan Cao
- Department of Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, 310000, China
| | - Ming Yang
- Department of Radiology, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Huazhong University of Science and Technology, Wuhan, 43022, China
| | - Huan Luo
- Department of Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, 310000, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, 43022, China
| | - Peidong Qian
- Department of Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, 310000, China
| | - Jia Lu
- Department of Mechanical Engineering, The University of Iowa, Iowa City, 52242, USA
| | - Ziqiao Lei
- Department of Radiology, Hubei Province Key Laboratory of Molecular Imaging, Union Hospital, Huazhong University of Science and Technology, Wuhan, 43022, China
| | - Yuanming Luo
- Department of Mechanical Engineering, The University of Iowa, Iowa City, 52242, USA
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, 43022, China
| |
Collapse
|
3
|
Gueldner PH, Darvish CJ, Chickanosky IKM, Ahlgren EE, Fortunato R, Chung TK, Rajagopal K, Benjamin CC, Maiti S, Rajagopal KR, Vorp DA. Aortic tissue stiffness and tensile strength are correlated with density changes following proteolytic treatment. J Biomech 2024; 172:112226. [PMID: 39008917 DOI: 10.1016/j.jbiomech.2024.112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Dissection or rupture of the aorta is accompanied by high mortality rates, and there is a pressing need for better prediction of these events for improved patient management and clinical outcomes. Biomechanically, these events represent a situation wherein the locally acting wall stress exceed the local tissue strength. Based on recent reports for polymers, we hypothesized that aortic tissue failure strength and stiffness are directly associated with tissue mass density. The objective of this work was to test this novel hypothesis for porcine thoracic aorta. METHODS Three tissue specimens from freshly harvested porcine thoracic aorta were treated with either collagenase or elastase to selectively degrade structural proteins in the tissue, or with phosphate buffer saline (control). The tissue mass and volume of each specimen were measured before and after treatment to allow for density calculation, then mechanically tested to failure under uniaxial extension. RESULTS Protease treatments resulted in statistically significant tissue density reduction (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.003), which in turn was significantly and directly correlated with both ultimate tensile strength (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.03) and tangent modulus (sham vs. collagenase p = 0.007 and sham vs elastase p = 0.03). CONCLUSIONS This work demonstrates for the first time that tissue stiffness and tensile strength are directly correlated with tissue density in proteolytically-treated aorta. These findings constitute an important step towards understanding aortic tissue failure mechanisms and could potentially be leveraged for non-invasive aortic strength assessment through density measurements, which could have implications to clinical care.
Collapse
Affiliation(s)
- Pete H Gueldner
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cyrus J Darvish
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Emma E Ahlgren
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald Fortunato
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy K Chung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keshava Rajagopal
- Department of Cardiac Surgery, Jefferson University, Philadelphia, PA, USA
| | - Chandler C Benjamin
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kumbakonam R Rajagopal
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Lee PY, Fryc G, Gnalian J, Wang B, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. Acta Biomater 2024; 173:135-147. [PMID: 37967694 PMCID: PMC10843755 DOI: 10.1016/j.actbio.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial to understanding their functions in bearing loads and maintaining tissue integrity. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9º vs. 0.6º and 3.1º vs. 2.7º. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue. STATEMENT OF SIGNIFICANCE: Peripapillary sclera (PPS) and lamina cribrosa (LC) collagen recruitment behaviors are central to the nonlinear mechanical behavior of the posterior pole of the eye. How PPS and LC collagen fibers recruit under stretch is crucial to develop constitutive models of the tissues but remains unclear. We used image-based stretch testing to characterize PPS and LC collagen fiber bundle recruitment under local stretch. We found that fiber-level stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers at a low stretch, but at 10% bundle stretch the two curves crossed with 75% bundles recruited. We also found that PPS and LC fibers had different uncrimping rates and non-zero waviness's when recruited.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Mississippi, University, MS, USA; Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
6
|
Lee PY, Fryc G, Gnalian J, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539784. [PMID: 37215028 PMCID: PMC10197604 DOI: 10.1101/2023.05.07.539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial for the development of constitutive models associating micro and macro scales. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9° vs. 0.6° and 3.1° vs. 2.7°. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Bioengineering, Swanson School of Engineering
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences University of Pittsburgh, Pittsburgh, PA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Biomedical Engineering, University of Mississippi, University, MS
- Department of Mechanical Engineering, University of Mississippi, University, MS
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine
- Department of Bioengineering, Swanson School of Engineering
| |
Collapse
|
7
|
He X, Lu J. Modeling planar response of vascular tissues using quadratic functions of effective strain. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3653. [PMID: 36164831 DOI: 10.1002/cnm.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/13/2022] [Accepted: 09/24/2022] [Indexed: 05/12/2023]
Abstract
Simulation-based studies of the cardiovascular structure such as aorta have become increasingly popular for many biomedical problems such as predictions of aneurysm rupture. A critical step in these simulations is the development of constitutive models that accurately describe the tissue's mechanical behavior. In this work, we present a new constitutive model, which explicitly accounts for the gradual recruitment of collagen fibers. The recruitment is considered using an effective stretch, which is a continuum-scale kinematic variable measuring the uncrimped stretch of the tissue in an average sense. The strain energy of a fiber bundle is described by a quadratic function of the effective strain. Constitutive models formulated in this manner are applied to describe the responses of ascending thoracic aortic aneurysm and porcine thoracic aorta tissues. The heterogeneous properties of the ATAA tissue are extracted from bulge inflation test data, and then used in finite element analysis to simulate the inflation test. The descriptive and predictive capabilities are further assessed using planar testing data of porcine thoracic aortic tissues. It is found that the constitutive model can accurately describe the stress-strain relations. In particular, the finite element simulation replicates the displacement, strain, and stress distributions with excellent fidelity.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Jia Lu
- Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Dwivedi KK, Lakhani P, Yadav A, Kumar S, Kumar N. Location specific multi-scale characterization and constitutive modeling of pig aorta. J Mech Behav Biomed Mater 2023; 142:105809. [PMID: 37116311 DOI: 10.1016/j.jmbbm.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The mechanical and structural behavior of the aorta depend on physiological functions and vary from proximal to distal. Understanding the relation between regionally varying mechanical and multi-scale structural response of aorta can be helpful to assess the disease outcomes. Therefore, this study investigated the variation in mechanical and multi-scale structural properties among the major segments of aorta such as ascending aorta (AA), descending aorta (DA) and abdominal aorta (ABA), and established a relation between mechanical and multi-structural parameters. The obtained results showed significant increase in anisotropy and nonlinearity from proximal to distal aorta. The change in periphery length and radii between load and stress free configuration was also found increasing far from the heart. Opening angle was significantly large for ABA than AA and DA (AA/DA vs ABA; p = 0.001). Mean circumferential residual stretch (ratio of mean periphery length at load and stress free configurations) was found decreasing between AA and DA, and then increasing between DA to ABA and its value was significantly more for ABA (AA vs DA; p = 0.041, AA vs ABA; p = 0.001, DA vs ABA; p = 0.001). The waviness of collagen fibers, collagen fiber content, collagen fibril diameter and total protein content were found significantly increasing from proximal to distal. Pearson correlation test showed a significant linear correlation between variation in mechanical and multi-scale structural parameters over the aortic length. Residual stretch was found positively correlated with collagen fiber content (r = 0.82) whereas opening angel was found positively correlated with total protein content (TPC) (r = 0.76).
Collapse
Affiliation(s)
| | | | - Ashu Yadav
- Department of Automobile Engineering, Manipal University Jaipur, Jaipur, India
| | - Sachin Kumar
- Department of Mechanical Engineering, IIT Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
9
|
Zhai X, Hu P, Wang Y, Zhang H, Cao L, Huang T, Lu J, Luo Y. Association of local solid mechanical, hemodynamic and morphological characteristics with ruptured intracranial aneurysm. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3674. [PMID: 36541137 DOI: 10.1002/cnm.3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The rupture of intracranial aneurysms (IAs) is a complicated phenomenon of which the mechanism is not fully understood. The purpose of this study is to associate local solid mechanical, hemodynamic, and morphological characteristics with rupture regions through statistical means, in an attempt to identify the parameters that are indicative of rupture propensity for IAs. Twenty patient-specific ruptured IA models were reconstructed from digital subtraction angiography (DSA), and applied in the analysis of wall tension, wall shear stress (WSS) and curvature. The precise rupture locations were marked out through intraoperative videos. Pearson correlation analysis was employed to investigate the correlations of these three parameters with patient characteristics and global geometric features. Univariate and multivariate logistic regression analysis were further performed on wall tension, WSS and curvature with regards to rupture and nonrupture regions. Receiver operating characteristic (ROC) analysis defining area under the curve (AUC) was performed on these three parameters. The univariate model of wall tension (AUC, 0.9750), WSS (AUC, 0.9300), curvature (0.8150) and their combined multivariate model (AUC, 0.9875) all present high AUC values. The wall tension, WSS and curvature are acceptable parameters relating to rupture regions. The rupture odd is more sensitive to the wall tension and WSS than curvature. Each logistic model is capable in discriminating ruptures from nonrupture regions, while the multivariate model is the most efficient.
Collapse
Affiliation(s)
- Xiaodong Zhai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Peng Hu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yadong Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Lan Cao
- Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Tianming Huang
- Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Jia Lu
- Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Yuanming Luo
- Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Wang G, Li Z, Chen C, Yan F, Wei J, Zhang Z, Chen Y. The hemodynamic effect of eccentricity in visceral branched aneurysms with multilayer stents. Proc Inst Mech Eng H 2022; 236:1070-1079. [DOI: 10.1177/09544119221106829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is preliminarily acknowledged that multilayer stent (MS) is a promising alternative technology in the treatment of visceral branched aneurysms, but hemodynamic consequences of eccentricity in such aneurysms with MS are less examined. In this work, we performed a time-dependent simulation of branched aneurysms of various eccentricities with different stent layers, and thrombosis-related parameters, such as time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), and relative residence time (RRT), were also analyzed. Our results revealed that MS can generally restore laminar flow inside the stent, and allow proper perfusion to vital organs while also fostering a relatively secluded hemodynamic environment for thrombosis formation. Particularly, a flow in the aneurysm sac communicating between the main artery and side branch forms at early systole. However, MS fails to completely eliminate detrimental flow impingement after peak systole, which may hinder aneurysm recovery, especially in the cases of eccentric aneurysms. Therefore, saccular aneurysms should be treated with more caution than fusiform aneurysms. And further therapeutic attempts to keep both perfusion in the proximal region of the aneurysm and isolation in the distal region of the aneurysm should be considered.
Collapse
Affiliation(s)
- Guanshi Wang
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Zhongyou Li
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Chong Chen
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Fei Yan
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Junru Wei
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Zhuo Zhang
- College of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yu Chen
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
He X, Lu J. On strain-based rupture criterion for ascending aortic aneurysm: the role of fiber waviness. Acta Biomater 2022; 149:51-59. [PMID: 35760348 DOI: 10.1016/j.actbio.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022]
Abstract
We propose a new approach for constructing strain-based rupture criterion for ascending thoracic aortic aneurysm. The rupture metric is formulated using an effective strain, which is a measure of net strain that the collagen bundles experience after fiber uncrimping. The effective strain is a function of the total strain and the waviness properties of the collagen fibers. In the present work, the waviness properties are obtained from fitting biaxial response data to constitutive models that explicitly consider the collagen waviness and fiber recruitment. Inflation test data from 10 ascending thoracic aortic aneurysm specimens are analyzed. For each specimen, tension-strain data at ∼2300 material points are garnered. The effective strain fields in the configuration immediately before rupture are computed. It is found that the hotspots of the effective strain match the rupture sites very well in all 10 samples. More importantly, the values of effective strain at the hotsopts are closely clustered around 0.1, in contrast to a much wider distribution of the total strain. The study underscores the importance of considering the fiber recruitment in formulating strain-based rupture metric, and suggests that ϵ¯≈0.1, where ϵ¯ is the effective strain metric defined in this work, can be considered as a criterion for assessing the imminent rupture risk of ascending aortic aneurysms.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Mechanical Engineering, and Iowa Technology Institute The University of Iowa, Iowa City, IA 52242, USA
| | - Jia Lu
- Department of Mechanical Engineering, and Iowa Technology Institute The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
12
|
LncRNA H19 Regulates Proliferation, Apoptosis and ECM Degradation of Aortic Smooth Muscle Cells Via miR-1-3p/ADAM10 Axis in Thoracic Aortic Aneurysm. Biochem Genet 2021; 60:790-806. [PMID: 34478010 DOI: 10.1007/s10528-021-10118-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023]
Abstract
Thoracic aortic aneurysm (TAA) is a prevalent health problem worldwide. Long non-coding RNA H19was highly expressed in TAA patients, but the function and mechanism of H19 in TAA remain unknown. The expression levels of H19, microRNA-1-3p (miR-1-3p), and a disintegrin and metalloproteinase 10 (ADAM10) were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROS) cure was performed to evaluate the diagnostic value of H19 on TAA patients. Proliferation and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry. Protein levels of proliferating cell nuclear antigen (PCNA), Cleaved-caspase 3 (Cleaved-cas3), Cleaved-caspase 9 (Cleaved-cas9), Collagen I, Collagen III, and ADAM10 were tested by western blot assay. The binding relationship between miR-1-3p and H19 or ADAM10 was predicted by LncBase Predicted v.2 or Starbase, and verified by the dual-luciferase reporter, RNA pull-down assay, and RNA Immunoprecipitation (RIP) assays. H19 was increased in TAA aorta tissues and serum and vascular smooth muscle cell (VSMC), and hindered proliferation as well as promoted apoptosis and extracellular matrix (ECM) degradation of VSMC. Moreover, miR-1-3p was decreased, and ADAM10 was upregulated in TAA aorta tissues and VSMC. The mechanical analysis confirmed that H19 affected ADAM10 expression by targeting miR-1-3p. Our results indicated that H19 inhibited proliferation, and accelerated apoptosis and ECM degradation of VSMC, providing an underlying lncRNA-targeted therapy for TAA treatment.
Collapse
|
13
|
Lu J, He X. Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average. Biomech Model Mechanobiol 2021; 20:1833-1850. [PMID: 34173928 DOI: 10.1007/s10237-021-01479-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
We present a framework for considering the gradual recruitment of collagen fibers in hyperelastic constitutive modeling. An effective stretch, which is a response variable representing the true stretch at the tissue-scale, is introduced. Properties of the effective stretch are discussed in detail. The effective stretch and strain invariants derived from it are used in selected hyperelastic constitutive models to describe the tissue response. This construction is investigated in conjunction with Holzapfel-Gasser-Ogden family strain energy functions. The ensuing models are validated against a large body of uniaxial and bi-axial stress-strain response data from human aortic aneurysm tissues. Both the descriptive and the predictive capabilities are examined. The former is evaluated by the quality of constitutive fitting, and the latter is assessed using finite element simulation. The models significantly improve the quality of fitting, and reproduce the experiment displacement, stress, and strain distributions with high fidelity in the finite element simulation.
Collapse
Affiliation(s)
- Jia Lu
- Department of Mechanical Engineering, and Iowa Technology Institute, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Xuehuan He
- Department of Mechanical Engineering, and Iowa Technology Institute, The University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
14
|
Estimating aortic thoracic aneurysm rupture risk using tension-strain data in physiological pressure range: an in vitro study. Biomech Model Mechanobiol 2021; 20:683-699. [PMID: 33389275 DOI: 10.1007/s10237-020-01410-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that the rupture properties of an ascending thoracic aortic aneurysm (ATAA) are strongly correlated with the pre-rupture response features. In this work, we present a two-step machine learning method to predict where the rupture is likely to occur in ATAA and what safety reserve the structure may have. The study was carried out using ATAA specimens from 15 patients who underwent surgical intervention. Through inflation test, full-field deformation data and post-rupture images were collected, from which the wall tension and surface strain distributions were computed. The tension-strain data in the pressure range of 9-18 kPa were fitted to a third-order polynomial to characterize the response properties. It is hypothesized that the region where rupture is prone to initiate is associated with a high level of tension buildup. A machine learning method is devised to predict the peak risk region. The predicted regions were found to match the actual rupture sites in 13 samples out of the total 15. In the second step, another machine learning model is utilized to predict the tissue's rupture strength in the peak risk region. Results suggest that the ATAA rupture risk can be reasonably predicted using tension-strain response in the physiological range. This may open a pathway for evaluating the ATAA rupture propensity using information of in vivo response.
Collapse
|
15
|
Prediction of local strength of ascending thoracic aortic aneurysms. J Mech Behav Biomed Mater 2020; 115:104284. [PMID: 33348213 DOI: 10.1016/j.jmbbm.2020.104284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Knowledges of both local stress and strength are needed for a reliable evaluation of the rupture risk for ascending thoracic aortic aneurysm (ATAA). In this study, machine learning is applied to predict the local strength of ATAA tissues based on tension-strain data collected through in vitro inflation tests on tissue samples. Inputs to machine learning models are tension, strain, slope, and curvature values at two points on the low strain region of the tension-strain curve. The models are trained using data from locations where the tissue ruptured, and subsequently applied to data from intact sites to predict the local rupture strength. The predicted strengths are compared with the known strength at rupture sites as well as the highest tension the tissues experienced at the intact sites. A local rupture index, which is the ratio of the end tension to the predicted rupture strength, is computed. The 'hot spots' of the rupture index are found to match the rupture sites better than those of the peak tension. The study suggests that the strength of ATAA tissue could be reliably predicted from early phase response features defined in this work.
Collapse
|
16
|
Maiti S, Thunes JR, Fortunato RN, Gleason TG, Vorp DA. Computational modeling of the strength of the ascending thoracic aortic media tissue under physiologic biaxial loading conditions. J Biomech 2020; 108:109884. [PMID: 32635998 DOI: 10.1016/j.jbiomech.2020.109884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/10/2020] [Accepted: 06/06/2020] [Indexed: 12/23/2022]
Abstract
Type A Aortic Dissection (TAAD) is a life-threatening condition involving delamination of ascending aortic media layers. While current clinical guidelines recommend surgical intervention for aneurysm diameter > 5.5 cm, high incidence of TAAD in patients below this diameter threshold indicates the pressing need for improved evidence-based risk prediction metrics. Construction of such metrics will require the knowledge of the biomechanical failure properties of the aortic wall tissue under biaxial loading conditions. We utilized a fiber-level finite element based structural model of the aortic tissue to quantify the relationship between aortic tissue strength and physiologically relevant biaxial stress state for nonaneurysmal and aneurysmal patient cohorts with tricuspid aortic valve phenotype. We found that the model predicted strength of the aortic tissue under physiologic biaxial loading conditions depends on the stress biaxiality ratio, defined by the ratio of the longitudinal and circumferential components of the tissue stress. We determined that predicted biaxial tissue strength is statistically similar to its uniaxial circumferential strength below biaxiality ratios of 0.68 and 0.69 for nonaneurysmal and aneurysmal cohorts, respectively. Beyond this biaxiality ratio, predicted biaxial strength for both cohorts reduced drastically to a magnitude statistically similar to its longitudinal strength. We identified fiber-level failure mechanisms operative under biaxial stress state governing aforementioned tissue failure behavior. These findings are an important first step towards the development of mechanism-based TAAD risk assessment metrics for early identification of high-risk patients.
Collapse
Affiliation(s)
- Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | - Ronald N Fortunato
- Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas G Gleason
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Sherifova S, Sommer G, Viertler C, Regitnig P, Caranasos T, Smith MA, Griffith BE, Ogden RW, Holzapfel GA. Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomater 2019; 99:443-456. [PMID: 31465883 DOI: 10.1016/j.actbio.2019.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Current clinical practice for aneurysmatic interventions is often based on the maximum diameter of the vessel and/or on the growth rate, although rupture can occur at any diameter and growth rate, leading to fatality. For 27 medial samples obtained from 12 non-aneurysmatic (control) and 9 aneurysmatic human descending thoracic aortas we examined: the mechanical responses up to rupture using uniaxial extension tests of circumferential and longitudinal specimens; the structure of these tissues using second-harmonic imaging and histology, in particular, the content proportions of collagen, elastic fibers and smooth muscle cells in the media. It was found that the mean failure stresses were higher in the circumferential directions (Control-C 1474kPa; Aneurysmatic-C 1446kPa), than in the longitudinal directions (Aneurysmatic-L 735kPa; Control-L 579kPa). This trend was the opposite to that observed for the mean collagen fiber directions measured from the loading axis (Control-L > Aneurysmatic-L > Aneurysmatic-C > Control-C), thus suggesting that the trend in the failure stress can in part be attributed to the collagen architecture. The difference in the mean values of the out-of-plane dispersion in the radial/longitudinal plane between the control and aneurysmatic groups was significant. The difference in the mean values of the mean fiber angle from the circumferential direction was also significantly different between the two groups. Most specimens showed delamination zones near the ruptured region in addition to ruptured collagen and elastic fibers. This study provides a basis for further studies on the microstructure and the uniaxial failure properties of (aneurysmatic) arterial walls towards realistic modeling and prediction of tissue failure. STATEMENT OF SIGNIFICANCE: A data set relating uniaxial failure properties to the microstructure of non-aneurysmatic and aneurysmatic human thoracic aortic medias under uniaxial extension tests is presented for the first time. It was found that the mean failure stresses were higher in the circumferential directions, than in the longitudinal directions. The general trend for the failure stresses was Control-C > Aneurysmatic-C > Aneurysmatic-L > Control-L, which was the opposite of that observed for the mean collagen fiber direction relative to the loading axis (Control-L > Aneurysmatic-L > Aneurysmatic-C > Control-C) suggesting that the trend in the failure stress can in part be attributed to the collagen architecture. This study provides a first step towards more realistic modeling and prediction of tissue failure.
Collapse
|
18
|
Sherifova S, Holzapfel GA. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review. Acta Biomater 2019; 99:1-17. [PMID: 31419563 PMCID: PMC6851434 DOI: 10.1016/j.actbio.2019.08.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
Abstract
Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. The maximum diameter criterion, typically used for aneurysm rupture risk estimations, has been challenged by more sophisticated biomechanically motivated models in the past. Although these models are very helpful for the clinicians in decision-making, they do not attempt to capture material failure. Following a short overview of the microstructure of the aorta, we analyze the failure mechanisms involved in the dissection and rupture by considering also traumatic rupture. We continue with a literature review of experimental studies relevant to quantify tissue strength. More specifically, we summarize more extensively uniaxial tensile, bulge inflation and peeling tests, and we also specify trouser, direct tension and in-plane shear tests. Finally we analyze biomechanically motivated models to predict rupture risk. Based on the findings of the reviewed studies and the rather large variations in tissue strength, we propose that an appropriate material failure criterion for aortic tissues should also reflect the microstructure in order to be effective. STATEMENT OF SIGNIFICANCE: Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. Despite the advances in medical, biomedical and biomechanical research, the mortality rates of aneurysms and dissections remain high. The present review article summarizes experimental studies that quantify the aortic wall strength and it discusses biomechanically motivated models to predict rupture risk. We identified contradictory observations and a large variation within and between data sets, which may be due to biological variations, different sample sizes, differences in experimental protocols, etc. Based on the findings of the reviewed literature and the rather large variations in tissue strength, it is proposed that an appropriate criterion for aortic failure should also reflect the microstructure.
Collapse
Affiliation(s)
- Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
19
|
Xu C, Zhang Y, Xu K, Nie JJ, Yu B, Li S, Cheng G, Li Y, Du J, Xu FJ. Multifunctional cationic nanosystems for nucleic acid therapy of thoracic aortic dissection. Nat Commun 2019; 10:3184. [PMID: 31320641 PMCID: PMC6639375 DOI: 10.1038/s41467-019-11068-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023] Open
Abstract
Thoracic aortic dissection (TAD) is an aggressive vascular disease that requires early diagnosis and effective treatment. However, due to the particular vascular structure and narrowness of lesion location, there are no effective drug delivery systems for the therapy of TAD. Here, we report a multifunctional delivery nanosystem (TP-Gd/miRNA-ColIV) composed of gadolinium-chelated tannic acid (TA), low-toxic cationic PGEA (ethanolamine-aminated poly(glycidyl methacrylate)) and type IV collagen targeted peptide (ColIV) for targeted nucleic acid therapy, early diagnosis and noninvasive monitoring of TAD. Such targeted therapy with miR-145 exhibits impressive performances in stabilizing the vascular structures and preventing the deterioration of TAD. After the treatment with TP-Gd/miR-145-ColIV, nearly no dissection occurs in the thoracic aortic arches of the mice with TAD model. Moreover, TP-Gd/miRNA-ColIV also demonstrates good magnetic resonance imaging (MRI) ability and can be used to noninvasively monitor the development conditions of TAD.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhenzi Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Ke Xu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Shanxi, 030001, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yulin Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Attarian S, Xiao S, Chung T, da Silva ES, Raghavan ML. Investigation of the observed rupture lines in abdominal aortic aneurysms using crack propagation simulations. J Biomech Eng 2019; 141:2735557. [PMID: 31150536 DOI: 10.1115/1.4043940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To use crack propagation simulation to study the rupture site characteristics in ruptured abdominal aortic aneurysms (AAA). METHODS Rupture lines were precisely documented in four ruptured AAA harvested whole from cadavers. Wall thickness and material parameters were experimentally determined. Using subject-specific 3D geometry and subject-specific finite elastic model parameters, crack propagation simulations were conducted based on basic fracture mechanics principles to investigate if and how localized weak spots may have led to the observed rupture lines. RESULTS AND CONCLUSION When an initial crack was imposed at the site of peak wall stress, the propagated path did not match the observed rupture line. This indicates that in this study population, the peak wall stress was unlikely to have caused the observed rupture. When cracks were initiated at random locations in the AAA along random orientations for random initial lengths, the orientation of the resulting propagated rupture line was consistently longitudinal. This suggests that the AAA morphology predisposes the AAA to rupture longitudinally, which is consistent with observations. It was found that, in this study population, rupture may have initiated at short segments of less than about 1 cm that then propagated to form the observed rupture lines. This suggests that ex vivo experimental and in vivo elastography studies should seek a spatial resolution (approx. 1 cm) to reliably identify weak spots in AAA. The small study population and lack of a reliable failure model for AAA tissue make these findings preliminary.
Collapse
Affiliation(s)
- Siamak Attarian
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Shaoping Xiao
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Timothy Chung
- Department of Surgery, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | | | - Madhavan L Raghavan
- Professor, Biomedical Engineering, University of Iowa, Iowa City, IA, USA 52242
| |
Collapse
|
21
|
Korenczuk CE, Votava LE, Dhume RY, Kizilski SB, Brown GE, Narain R, Barocas VH. Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues. J Biomech Eng 2019; 139:2613842. [PMID: 28334369 DOI: 10.1115/1.4036316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The von Mises (VM) stress is a common stress measure for finite element models of tissue mechanics. The VM failure criterion, however, is inherently isotropic, and therefore may yield incorrect results for anisotropic tissues, and the relevance of the VM stress to anisotropic materials is not clear. We explored the application of a well-studied anisotropic failure criterion, the Tsai–Hill (TH) theory, to the mechanically anisotropic porcine aorta. Uniaxial dogbones were cut at different angles and stretched to failure. The tissue was anisotropic, with the circumferential failure stress nearly twice the axial (2.67 ± 0.67 MPa compared to 1.46 ± 0.59 MPa). The VM failure criterion did not capture the anisotropic tissue response, but the TH criterion fit the data well (R2 = 0.986). Shear lap samples were also tested to study the efficacy of each criterion in predicting tissue failure. Two-dimensional failure propagation simulations showed that the VM failure criterion did not capture the failure type, location, or propagation direction nearly as well as the TH criterion. Over the range of loading conditions and tissue geometries studied, we found that problematic results that arise when applying the VM failure criterion to an anisotropic tissue. In contrast, the TH failure criterion, though simplistic and clearly unable to capture all aspects of tissue failure, performed much better. Ultimately, isotropic failure criteria are not appropriate for anisotropic tissues, and the use of the VM stress as a metric of mechanical state should be reconsidered when dealing with anisotropic tissues.
Collapse
|
22
|
Luo Y, Fan Z, Baek S, Lu J. Machine learning-aided exploration of relationship between strength and elastic properties in ascending thoracic aneurysm. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2977. [PMID: 29504264 DOI: 10.1002/cnm.2977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Machine learning was applied to classify tension-strain curves harvested from inflation tests on ascending thoracic aneurysm samples. The curves were classified into rupture and nonrupture groups using prerupture response features. Two groups of features were used as the basis for classification. The first was the constitutive parameters fitted from the tension-strain data, and the second was geometric parameters extracted from the tension-strain curve. Based on the importance scores provided by the machine learning, implications of some features were interrogated. It was found that (1) the value of a constitutive parameter is nearly the same for all members in the rupture group and (2) the strength correlates strongly with a tension in the early phase of response as well as with the end stiffness. The study suggests that the strength, which is not available without rupturing the tissue, may be indirectly inferred from prerupture response features.
Collapse
Affiliation(s)
- Yuanming Luo
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhiwei Fan
- Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St, Madison, WI 53706-1613, USA
| | - Stephen Baek
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Jia Lu
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|