1
|
Volpi M, Paradiso A, Walejewska E, Gargioli C, Costantini M, Swieszkowski W. Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction. Adv Healthc Mater 2024; 13:e2402075. [PMID: 39313990 DOI: 10.1002/adhm.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The muscle-tendon junction (MTJ) plays a pivotal role in efficiently converting the muscular contraction into a controlled skeletal movement through the tendon. Given its complex biomechanical intricacy, the biofabrication of such tissue interface represents a significant challenge in the field of musculoskeletal tissue engineering. Herein, a novel method to produce MTJ-like hydrogel yarns using a microfluidics-assisted 3D rotary wet-spinning strategy is developed. Optimization of flow rates, rotational speed, and delivery time of bioinks enables the production of highly compartmentalized scaffolds that recapitulate the muscle, tendon, and the transient MTJ-like region. Additionally, such biofabrication parameters are validated in terms of cellular response by promoting an optimal uniaxial alignment for both muscle and tendon precursor cells. By sequentially wet-spinning C2C12 myoblasts and NIH 3T3 fibroblasts, a gradient-patterned cellular arrangement mirroring the intrinsic biological heterogeneity of the MTJ is successfully obtained. The immunofluorescence assessment further reveals the localized expression of tissue-specific markers, including myosin heavy chain and collagen type I/III, which demonstrate muscle and tenogenic tissue maturation, respectively. Remarkably, the muscle-tendon transition zone exhibits finger-like projection of the multinucleated myotubes in the tenogenic compartment, epitomizing the MTJ signature architecture.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Walejewska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
2
|
Iwasaki N, Roldo M, Karali A, Blunn G. In vitro development of a muscle-tendon junction construct using decellularised extracellular matrix: Effect of cyclic tensile loading. BIOMATERIALS ADVANCES 2024; 161:213873. [PMID: 38692180 DOI: 10.1016/j.bioadv.2024.213873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The muscle tendon junction (MTJ) plays a crucial role in transmitting the force generated by muscles to the tendon and then to the bone. Injuries such as tears and strains frequently happen at the MTJ, where the regenerative process is limited due to poor vascularization and the complex structure of the tissue. Current solutions for a complete tear at the MTJ have not been successful and therefore, the development of a tissue-engineered MTJ may provide a more effective treatment. In this study, decellularised extracellular matrix (DECM) derived from sheep MTJ was used to provide a scaffold for the MTJ with the relevant mechanical properties and differentiation cues such as the relase of growth factors. Human mesenchymal stem cells (MSCs) were seeded on DECM and 10 % cyclic strain was applied using a bioreactor. MSCs cultured on DECM showed significantly higher gene and protein expression of MTJ markers such as collagen 22, paxillin and talin, than MSCs in 2D culture. Although collagen 22 protein expression was higher in the cells with strain than without strain, reduced gene expression of other MTJ markers was observed when the strain was applied. DECM combined with 10 % strain enhanced myogenic differentiation, while tenogenic differentiation was reduced when compared to static cultures of MSCs on DECM. For the first time, these results showed that DECM derived from the MTJ can induce MTJ marker gene and protein expression by MSCs, however, the effect of strain on the MTJ development in DECM culture needs further investigation.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
3
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
4
|
Iwasaki N, Karali A, Roldo M, Blunn G. Full-Field Strain Measurements of the Muscle-Tendon Junction Using X-ray Computed Tomography and Digital Volume Correlation. Bioengineering (Basel) 2024; 11:162. [PMID: 38391648 PMCID: PMC10886230 DOI: 10.3390/bioengineering11020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
We report, for the first time, the full-field 3D strain distribution of the muscle-tendon junction (MTJ). Understanding the strain distribution at the junction is crucial for the treatment of injuries and to predict tear formation at this location. Three-dimensional full-field strain distribution of mouse MTJ was measured using X-ray computer tomography (XCT) combined with digital volume correlation (DVC) with the aim of understanding the mechanical behavior of the junction under tensile loading. The interface between the Achilles tendon and the gastrocnemius muscle was harvested from adult mice and stained using 1% phosphotungstic acid in 70% ethanol. In situ XCT combined with DVC was used to image and compute strain distribution at the MTJ under a tensile load (2.4 N). High strain measuring 120,000 µε, 160,000 µε, and 120,000 µε for the first principal stain (εp1), shear strain (γ), and von Mises strain (εVM), respectively, was measured at the MTJ and these values reduced into the body of the muscle or into the tendon. Strain is concentrated at the MTJ, which is at risk of being damaged in activities associated with excessive physical activity.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
5
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
6
|
Gaffney LS, Fisher MB, Freytes DO. Tendon Extracellular Matrix Promotes Myotendinous Junction Protein Expression in Engineered Muscle Tissue under Both Static and Mechanically Stimulated Culture Conditions. J Tissue Eng Regen Med 2023; 2023:6658543. [PMID: 40226411 PMCID: PMC11918950 DOI: 10.1155/2023/6658543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 04/15/2025]
Abstract
Studying the crosstalk between the muscle and tendon tissue is an important yet understudied area in musculoskeletal research. In vitro models can help elucidate the function and repair of the myotendinous junction (MTJ) under static and dynamic culture conditions using engineered muscle tissues. The goal of this study was to culture engineered muscle tissues in a novel bioreactor in both static and mechanically stimulated cultures and evaluate the expression of MTJ-specific proteins within the muscle-tendon unit(paxillin and type XXII collagen). C2C12 myoblasts were seeded in hydrogels made from type I collagen ortendon-derived extracellular matrix (tECM) and allowed to form around movable anchors. Engineered tissues were allowed to form and stabilize for 10 days. After 10 days in the culture, stimulated cultures were cyclically stimulated for 3 hours per day for 2 and 4 weeks alongside static cultures. Strain values at the maximum displacement of the anchors averaged about 0.10, a target that has been shown to induce myogenic phenotype in C2C12s. Protein expression of paxillin after 2 weeks did not differ between hydrogel materials in static cultures but increased by 62% in tECM when mechanically stimulated. These differences continued after 4 weeks, with 31% and 57% increases in tECM tissues relative to type I collagen. Expression of type XXII collagen was similarly influenced by hydrogel material and culture conditions. Overall, this research combined a relevant microenvironment to study muscle and tendon interactions with a novel bioreactor to apply mechanical strain, an important regulator of the formation and maintenance of the native MTJ.
Collapse
Affiliation(s)
- Lewis S. Gaffney
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| | - Matthew B. Fisher
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, NC 25799, USA
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Jiang N, Chen H, Zhang J, Cao P, Wang P, Hou Y, Tan P, Sun J, Li Z, Zhu S. Decellularized-disc based allograft and xenograft prosthesis for the long-term precise reconstruction of temporomandibular joint disc. Acta Biomater 2023; 159:173-187. [PMID: 36708853 DOI: 10.1016/j.actbio.2023.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
Currently, no effective disc reconstruction treatment strategy is clinically available for temporomandibular joint (TMJ) disc-related diseases. To address this, we developed a prosthesis construct with laser-drilled decellularized natural disc reinforced by polycaprolactone, which mimics the natural morphology, and structural, biomechanical and biological property of the TMJ disc. The construct demonstrated good biocompatibility, safety and immunological tolerance both in vitro, and in a rat subcutaneous model. During 6 months implantation in an allogeneic rabbit TMJ disc reconstruction model, the disc prosthesis maintained its integrity, collagen fiber-orientation, mechanical property, joint structural stability and prevented articular cartilage and bone from damage. Furthermore, the "upgraded" disc prosthesis obtained from decellularized porcine disc was implanted into a goat TMJ disc reconstruction model. The xenograft prosthesis, with strength and viscoelasticity similar to a natural TMJ disc, was able to restore the structure and function of TMJ up to 20 weeks. These results demonstrate the translational feasibility of an allogeneic or xenogeneic decellularized disc prosthesis for treatment of advanced TMJ disc-related diseases. STATEMENT OF SIGNIFICANCE: This study makes a significant contribution to TMJ disc disease treatment both in theory and in clinics, because: (1) it provided an innovative approach to prepare an artificial TMJ disc with decent mechanical properties and long-term condyle-protecting effect; (2) it specified an advanced decellularized method for fibrocartilage decellularization and xenograft application; (3) it developed a facile and reproducible TMJ disc reconstruction model not only for middle size animal but also for large animal study; (4) the comprehensive and unreported biomechanical tests on the natural TMJ discs would act as a valuable reference for further research in the field of artificial TMJ disc materials or TMJ disc tissue engineering; (5) it suggested a potential treatment for patients with severe TMJ diseases that were commonly met but difficult to treat in clinics.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jialin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland.
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Jiang H, Zhang J, Yu H, Hou A, Wang S, Wang X, Zheng S, Yang L, Kuang H. Anti-rheumatoid arthritis effects of Xanthii Fructus by affecting the PI3K-AKT signaling pathway based on TMT-labeled quantitative proteomics. Biomed Chromatogr 2023; 37:e5520. [PMID: 36205398 DOI: 10.1002/bmc.5520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by chronic symmetrical multiple arthritis. Current traditional counter-therapies are expensive and have side effects. Xanthii Fructus has effects in expelling wind and cold, draining the nasal orifice, and removing wind and dampness. However, its mechanism of action against rheumatoid arthritis is unknown. In this paper, the mechanism of the anti- rheumatoid arthritis effect of Xanthii Fructus is studied by proteomics. The experimental results show that it could significantly reduce serum inflammatory factor levels, alleviate joint edema, improve vasodilation and congestion, and significantly reduce the number of inflammatory cells. Proteomics results show that the PI3K-AKT signaling pathway is the key pathway for Xanthii Fructus to treat rheumatoid arthritis. In this study, we obtained a new understanding of the mechanism of Xanthii Fructus in the treatment of rheumatoid arthritis, which provided a theoretical basis for its prevention and treatment and laid the foundation for further research.
Collapse
Affiliation(s)
- Hai Jiang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Jiaxu Zhang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Huan Yu
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Ajiao Hou
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Song Wang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Xuejiao Wang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Senwang Zheng
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Liu Yang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Haixue Kuang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| |
Collapse
|
9
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
10
|
Cai J, Wang J, Sun C, Dai J, Zhang C. Biomaterials with Stiffness Gradient for Interface Tissue Engineering. Biomed Mater 2022; 17. [PMID: 35985317 DOI: 10.1088/1748-605x/ac8b4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
Abstract
Interface tissue engineering is a rapidly growing field that aims to develop engineered tissue alternates with the goal of promoting integration between multiple tissue types. Engineering interface tissues is a complex process, which requires a specialized biomaterials with organized material composition, stiffness, cell types, and signaling molecules. Among these, stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior. Especially these substrates with graded stiffness are advantageous since they allow the differentiation of multiple cell phenotypes and subsequent tissue development. In this review, we highlight the various types of manufacturing techniques that can be leveraged to fabricate scaffolds with stiffness gradient, discuss methods to characterize them, and gradient biomaterials for controlling cellular behavior including attachment, migration, proliferation, and differentiation. We also address fundamentals of interface tissue organization, and stiffness gradient biomaterials for interface tissue regeneration. Potential challenges and future directions in this emerging field are also discussed.
Collapse
Affiliation(s)
- Jialun Cai
- Hunan University, #27 Tianma Road, Changsha, Hunan, 410082, CHINA
| | - Junjuan Wang
- Hangzhou Medical College, Binwen Road, Hangzhou, Zhejiang, 310053, CHINA
| | - Chenxuan Sun
- Hunan University, 27# Tianma Road, ChangSha, Hunan, 410000, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Can Zhang
- Biomedical Engineering, Hunan University, #27 Tianma Road, Changsha, 410000, CHINA
| |
Collapse
|
11
|
Zhao C, Qiu P, Li M, Liang K, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio 2021; 12:100142. [PMID: 34647005 PMCID: PMC8495177 DOI: 10.1016/j.mtbio.2021.100142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Bone defects associated with soft tissue injuries are an important cause of deformity that threatens people’s health and quality of life. Although bone substitutes have been extensively explored, effective biomaterials that can coordinate early inflammation regulation and subsequent repair events are still lacking. We prepared a spatial form periosteal bone extracellular matrix (ECM) scaffold, which has advantages in terms of low immunogenicity, good retention of bioactive ingredients, and a natural spatial structure. The periosteal bone ECM scaffold with the relatively low-stiffness periosteum (41.6 ± 3.7 kPa) could inhibit iNOS and IL-1β expression, which might be related to actin-mediated YAP translocation. It also helped to promote CD206 expression with the potential influence of proteins related to immune regulation. Moreover, the scaffold combined the excellent properties of decalcified bone and periosteum, promoted the formation of blood vessels, and good osteogenic differentiation (RUNX2, Col 1α1, ALP, OPN, and OCN), and achieved good repair of a cranial defect in rats. This scaffold, with its natural structural and biological advantages, provides a new idea for bone healing treatment that is aligned with bone physiology. We provided a spatial form periosteal-bone complex. The scaffold preserved major biological components and spatial structure. The periosteum part of the scaffold acted as a physical barrier. The scaffold participated in the transformation of the macrophage phenotype. The scaffold promoted osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- C. Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - M. Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - K. Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Z. Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - J. Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - S. Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| | - X. Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| |
Collapse
|
12
|
Martinez GZ, Grillo BAC, Rocha LC, Jacob CDS, Pimentel Neto J, Tomiate AN, Barbosa GK, Watanabe IS, Ciena AP. Morphological Changes in the Myotendinous Junction of mdx Mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-5. [PMID: 34376263 DOI: 10.1017/s1431927621012496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The myotendinous junction (MTJ) is the interface between muscle and tendon, and it is the main area of force transmission of the locomotor apparatus. Dystrophic processes promote pathological injury which affects the skeletal muscle and can influence the morphology of the MTJ. This study aimed to investigate the adaptations in MTJ morphology of mdx mice in the tibialis anterior muscle. Male mice (n = 24) were divided into Control—C57bl/10 and mdx—C57bl/10mdx (Duchenne muscular dystrophy experimental model). In the mdx group, centralized nuclei with a large area and greater deposition of type III collagen (fibrosis) were observed. Also, shorter sarcomeres and sarcoplasmatic projections of MTJ were observed. We concluded that the adaptations in mdx mice demonstrated extensive impairment in the MTJ region with reduced ultrastructures.
Collapse
Affiliation(s)
- Giovana Zerbo Martinez
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Bruna Aléxia Cristofoletti Grillo
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - André Neri Tomiate
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences III, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), São Paulo State University (UNESP), Institute of Biosciences (IB), Avenue 24A, n. 1515, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
13
|
Gaffney L, Davis Z, Mora-Navarro C, Fisher MB, Freytes DO. Extracellular Matrix Hydrogels Promote Expression of Muscle-Tendon Junction Proteins. Tissue Eng Part A 2021; 28:270-282. [PMID: 34375125 DOI: 10.1089/ten.tea.2021.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue resulting in junction specific features. ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue specific pre-hydrogel digests. ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities which were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. ECM conditioned media had only a minor effect on upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, the extracellular matrix protein type XXII collagen had similar expression patterns as paxillin, with smaller effect sizes. Using tissue specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of MTJ specific proteins.
Collapse
Affiliation(s)
- Lewis Gaffney
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| | - Zachary Davis
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| | - Camilo Mora-Navarro
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States.,North Carolina State University, 6798, Comparative Medicine Institute, Raleigh, North Carolina, United States;
| | - Matthew B Fisher
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States.,University of North Carolina at Chapel Hill School of Medicine, 6797, Department of Orthopaedics, Chapel Hill, North Carolina, United States;
| | - Donald O Freytes
- University of North Carolina at Chapel Hill & North Carolina State University, Biomedical Engineering, Raleigh, North Carolina, United States;
| |
Collapse
|
14
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
15
|
Sensini A, Massafra G, Gotti C, Zucchelli A, Cristofolini L. Tissue Engineering for the Insertions of Tendons and Ligaments: An Overview of Electrospun Biomaterials and Structures. Front Bioeng Biotechnol 2021; 9:645544. [PMID: 33738279 PMCID: PMC7961092 DOI: 10.3389/fbioe.2021.645544] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
The musculoskeletal system is composed by hard and soft tissue. These tissues are characterized by a wide range of mechanical properties that cause a progressive transition from one to the other. These material gradients are mandatory to reduce stress concentrations at the junction site. Nature has answered to this topic developing optimized interfaces, which enable a physiological transmission of load in a wide area over the junction. The interfaces connecting tendons and ligaments to bones are called entheses, while the ones between tendons and muscles are named myotendinous junctions. Several injuries can affect muscles, bones, tendons, or ligaments, and they often occur at the junction sites. For this reason, the main aim of the innovative field of the interfacial tissue engineering is to produce scaffolds with biomaterial gradients and mechanical properties to guide the cell growth and differentiation. Among the several strategies explored to mimic these tissues, the electrospinning technique is one of the most promising, allowing to generate polymeric nanofibers similar to the musculoskeletal extracellular matrix. Thanks to its extreme versatility, electrospinning has allowed the production of sophisticated scaffolds suitable for the regeneration of both the entheses and the myotendinous junctions. The aim of this review is to analyze the most relevant studies that applied electrospinning to produce scaffolds for the regeneration of the enthesis and the myotendinous junction, giving a comprehensive overview on the progress made in the field, in particular focusing on the electrospinning strategies to produce these scaffolds and their mechanical, in vitro, and in vivo outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Advanced Applications in Mechanical Engineering and Materials Technology – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gabriele Massafra
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Advanced Applications in Mechanical Engineering and Materials Technology – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Health Sciences and Technologies – Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
16
|
Balestri W, Morris RH, Hunt JA, Reinwald Y. Current Advances on the Regeneration of Musculoskeletal Interfaces. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:548-571. [PMID: 33176607 DOI: 10.1089/ten.teb.2020.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Robert H Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - John A Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Yvonne Reinwald
- Department of Engineering and School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
17
|
Narayanan N, Calve S. Extracellular matrix at the muscle - tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res 2021; 62:53-71. [PMID: 32856502 PMCID: PMC7718290 DOI: 10.1080/03008207.2020.1814263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The muscle-tendon interface is an anatomically specialized region that is involved in the efficient transmission of force from muscle to tendon. Due to constant exposure to loading, the interface is susceptible to injury. Current treatment methods do not meet the socioeconomic demands of reduced recovery time without compromising the risk of reinjury, requiring the need for developing alternative strategies. The extracellular matrix (ECM) present in muscle, tendon, and at the interface of these tissues consists of unique molecules that play significant roles in homeostasis and repair. Better, understanding the function of the ECM during development, injury, and aging has the potential to unearth critical missing information that is essential for accelerating the repair at the muscle-tendon interface. Recently, advanced techniques have emerged to explore the ECM for identifying specific roles in musculoskeletal biology. Simultaneously, there is a tremendous increase in the scope for regenerative medicine strategies to address the current clinical deficiencies. Advancements in ECM research can be coupled with the latest regenerative medicine techniques to develop next generation therapies that harness ECM for treating defects at the muscle-tendon interface. The current work provides a comprehensive review on the role of muscle and tendon ECM to provide insights about the role of ECM in the muscle-tendon interface and discusses the latest research techniques to explore the ECM to gathered information for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| |
Collapse
|
18
|
Barajaa MA, Nair LS, Laurencin CT. Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:451-483. [PMID: 33344758 PMCID: PMC7747886 DOI: 10.1007/s40883-019-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
The musculoskeletal system works at a very advanced level of synchrony, where all the physiological movements of the body are systematically performed through well-organized actions of bone in conjunction with all the other musculoskeletal soft tissues, such as ligaments, tendons, muscles, and cartilage through tissue-tissue interfaces. Interfaces are structurally and compositionally complex, consisting of gradients of extracellular matrix components, cell phenotypes as well as biochemical compositions and are important in mediating load transfer between the distinct orthopedic tissues during body movement. When an injury occurs at interface, it must be re-established to restore its function and stability. Due to the structural and compositional complexity found in interfaces, it is anticipated that they presuppose a concomitant increase in the complexity of the associated regenerative engineering approaches and scaffold designs to achieve successful interface regeneration and seamless integration of the engineered orthopedic tissues. Herein, we discuss the various bioinspired scaffold designs utilized to regenerate orthopedic tissue interfaces. First, we start with discussing the structure-function relationship at the interface. We then discuss the current understanding of the mechanism underlying interface regeneration, followed by discussing the current treatment available in the clinic to treat interface injuries. Lastly, we comprehensively discuss the state-of-the-art scaffold designs utilized to regenerate orthopedic tissue interfaces.
Collapse
Affiliation(s)
- Mohammed A Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
19
|
Wu D, Li X, Yu Y, Gong B, Zhou X. Heparin stimulates biofilm formation of Escherichia coli strain Nissle 1917. Biotechnol Lett 2020; 43:235-246. [PMID: 33011901 DOI: 10.1007/s10529-020-03019-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Escherichia coli strain Nissle 1917 (EcN), a gut probiotic competing with pathogenic bacteria, has been used to attenuate various intestinal dysfunctions. Heparin is a sulfated glycosaminoglycan enriched in the human and animal intestinal mucosa, which has a close connection with bacterial biofilm formation. However, the characteristics of heparin affecting bacterial biofilm formation remain obscure. In this study, we investigated the influence of heparin and its derivatives on EcN biofilm formation. RESULTS Here, we found that heparin stimulated EcN biofilm formation in a dose-dependent manner. With the addition of native heparin, the EcN biofilm formation increased 6.9- to 10.8-fold than that without heparin, and was 1.4-, 3.1-, 3.0-, and 3.8-fold higher than that of N-desulfated heparin (N-DS), 2-O-desulfated heparin (2-O-DS), 6-O-desulfated heparin (6-O-DS), and N-/2-O-/6-O-desulfated heparin (N-/2-O-/6-O-DS), respectively. Depolymerization of heparin produced chain-shortened heparin fragments with decreased molecular weight. The depolymerized heparins did not stimulate EcN biofilm formation. The OD570 value of EcN biofilm with the addition of chain-shortened heparin fragments was 8.7-fold lower than that of the native heparin. Furthermore, the biofilm formation of Salmonella enterica serovar Typhimurium was also investigated with the addition of heparin derivatives, and the results were consistent with that of EcN biofilm formation. CONCLUSIONS We conclude that heparin stimulated EcN biofilm formation. Both the sulfation and chain-length of heparin contributed to the enhancement of EcN biofilm formation. This study increases the understanding of how heparin affects biofilm formation, indicating the potential role of heparin in promoting intestinal colonization of probiotics that antagonize pathogen infections.
Collapse
Affiliation(s)
- Dandan Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaomei Li
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yanying Yu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bingxue Gong
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
20
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
21
|
Chen YW, Chen CC, Ng HY, Lou CW, Chen YS, Shie MY. Additive Manufacturing of Nerve Decellularized Extracellular Matrix-Contained Polyurethane Conduits for Peripheral Nerve Regeneration. Polymers (Basel) 2019; 11:E1612. [PMID: 31590259 PMCID: PMC6835403 DOI: 10.3390/polym11101612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
The nervous system is the part of our body that plays critical roles in the coordination of actions and sensory information as well as communication between different body parts through electrical signal transmissions. Current studies have shown that patients are likely to experience a functional loss if they have to go through a nerve repair for >15 mm lesion. The ideal treatment methodology is autologous nerve transplant, but numerous problems lie in this treatment method, such as lack of harvesting sites. Therefore, researchers are attempting to fabricate alternatives for nerve regeneration, and nerve conduit is one of the potential alternatives for nerve regeneration. In this study, we fabricated polyurethane/polydopamine/extracellular matrix (PU/PDA/ECM) nerve conduits using digital light processing (DLP) technology and assessed for its physical properties, biodegradability, cytocompatibility, neural related growth factor, and proteins secretion and expression and its potential in allowing cellular adhesion and proliferation. It was reported that PU/PDA/ECM nerve conduits were more hydrophilic and allowed enhanced cellular adhesion, proliferation, expression, and secretion of neural-related proteins (collagen I and laminin) and also enhanced expression of neurogenic proteins, such as nestin and microtubule-associated protein 2 (MAP2). In addition, PU/PDA/ECM nerve conduits were reported to be non-cytotoxic, had sustained biodegradability, and had similar physical characteristics as PU conduits. Therefore, we believed that PU/PDA/ECM nerve conduits could be a potential candidate for future nerve-related research or clinical applications.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
- D Printing Medical Research Institute, Asia University, Taichung 40447, Taiwan.
| | - Chien-Chang Chen
- D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Hooi Yee Ng
- D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Ching-Wen Lou
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| | - Yueh-Sheng Chen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
| | - Ming-You Shie
- D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
| |
Collapse
|
22
|
Li H, Dai J, Xu Q, Lu C, Yang G, Wang F, Nie J, Hu X, Dong N, Shi J. Synthesis of thiol-terminated PEG-functionalized POSS cross-linkers and fabrication of high-strength and hydrolytic degradable hybrid hydrogels in aqueous phase. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Liu S, Wang Y, Wang J, Qiu P, Wang S, Shi Y, Li M, Chen P, Lin X, Fang X. A cancellous bone matrix system with specific mineralisation degrees for mesenchymal stem cell differentiation and bone regeneration. Biomater Sci 2019; 7:2452-2467. [PMID: 30942200 DOI: 10.1039/c8bm01657g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone regenerative therapies have been explored using various biomaterial systems.
Collapse
|
24
|
Chen CC, Yu J, Ng HY, Lee AKX, Chen CC, Chen YS, Shie MY. The Physicochemical Properties of Decellularized Extracellular Matrix-Coated 3D Printed Poly(ε-caprolactone) Nerve Conduits for Promoting Schwann Cells Proliferation and Differentiation. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1665. [PMID: 30205596 PMCID: PMC6164117 DOI: 10.3390/ma11091665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Although autologous nerve grafting remains the gold standard treatment for peripheral nerve injuries, alternative methods such as development of nerve guidance conduits have since emerged and evolved to counter the many disadvantages of nerve grafting. However, the efficacy and viability of current nerve conduits remain unclear in clinical trials. Here, we focused on a novel decellularized extracellular matrix (dECM) and polydopamine (PDA)-coated 3D-printed poly(ε-caprolactone) (PCL)-based conduits, whereby the PDA surface modification acts as an attachment platform for further dECM attachment. We demonstrated that dECM/PDA-coated PCL conduits possessed higher mechanical properties when compared to human or animal nerves. Such modifications were proved to affect cell behaviors. Cellular behaviors and neuronal differentiation of Schwann cells were assessed to determine for the efficacies of the conduits. There were some cell-specific neuronal markers, such as Nestin, neuron-specific class III beta-tubulin (TUJ-1), and microtubule-associated protein 2 (MAP2) analyzed by enzyme-linked immunosorbent assay, and Nestin expressions were found to be 0.65-fold up-regulated, while TUJ1 expressions were 2.3-fold up-regulated and MAP2 expressions were 2.5-fold up-regulated when compared to Ctl. The methodology of PDA coating employed in this study can be used as a simple model to immobilize dECM onto PCL conduits, and the results showed that dECM/PDA-coated PCL conduits can as a practical and clinically viable tool for promoting regenerative outcomes in larger peripheral nerve defects.
Collapse
Affiliation(s)
- Chung-Chia Chen
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung 40447, Taiwan.
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10341, Taiwan.
| | - Joyce Yu
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Hooi-Yee Ng
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Chien-Chang Chen
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Master Program for Biomedical Engineering, China Medical University, Taichung 40447, Taiwan.
| | - Yueh-Sheng Chen
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Lab of Biomaterials, School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
| |
Collapse
|
25
|
Qiu X, Liu S, Zhang H, Zhu B, Su Y, Zheng C, Tian R, Wang M, Kuang H, Zhao X, Jin Y. Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Res Ther 2018; 9:88. [PMID: 29615126 PMCID: PMC5883419 DOI: 10.1186/s13287-018-0821-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/14/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Skeletal muscle plays an important role in the body’s physiology but there are still no effective treatments for volumetric muscle loss (VML) resulting from severe traumatic injury or tumor excision. Recent studies show that a tissue engineering strategy using a compound containing mesenchymal stem cells (MSCs) and decellularized extracellular matrix (ECM) scaffold generates significant regenerative effects on VML injury, but the underlying mechanisms are not fully understood. Methods The characteristics of human umbilical cord MSCs, including multiplication capacity and multidifferentiation ability, were determined. We constructed a compound containing MSCs and decellularized ECM scaffold which was used for tissue regeneration in a VML model. Results We found that MSCs and decellularized ECM scaffold generated synergistic effects on promoting skeletal muscle tissue regeneration. Interestingly, both MSCs and decellularized ECM scaffold could promote macrophage polarization toward the M2 phenotype and suppress macrophage polarization toward the M1 phenotype, which is widely regarded as an important promoting factor in tissue regeneration. More importantly, MSCs and decellularized ECM scaffold generate synergistic promoting effects on macrophage polarization toward the M2 phenotype, not just an additive effect. Conclusions Our findings uncover a previously unknown mechanism that MSCs and decellularized ECM scaffold promote tissue regeneration via collaboratively regulating macrophage polarization. Electronic supplementary material The online version of this article (10.1186/s13287-018-0821-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bin Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Department of Stomatology, General Hospital of Tibet Military Region, Lhasa, Tibet, 850007, China
| | - Yuting Su
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chenxi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Rong Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Miao Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Huijuan Kuang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinyi Zhao
- State Key Laboratory of Military Stomatology, Department of Dental Materials, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Department of Dental Materials, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|