1
|
Balukova A, Bokea K, Barber PR, Ameer-Beg SM, MacRobert AJ, Yaghini E. Cellular Imaging and Time-Domain FLIM Studies of Meso-Tetraphenylporphine Disulfonate as a Photosensitising Agent in 2D and 3D Models. Int J Mol Sci 2024; 25:4222. [PMID: 38673807 PMCID: PMC11050357 DOI: 10.3390/ijms25084222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS2a, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers. Light-induced intracellular redistribution of TPPS2a was observed, consistent with rupture of endolysosomes where the porphyrin localises. Using the same range of light doses, time-lapse confocal imaging permitted observation of PDT-induced generation of ROS in both 2D and 3D cancer models using fluorescence-based ROS together with specific ROS inhibitors. In addition, the use of red light excitation of the photosensitiser to minimise auto-oxidation of the probes was investigated. In the second part of the study, the photophysical properties of TPPS2a in cells were studied using a time-domain FLIM system with time-correlated single photon counting detection. Owing to the high sensitivity and spatial resolution of this system, we acquired FLIM images that enabled the fluorescence lifetime determination of the porphyrin within the endolysosomal vesicles. Changes in the lifetime dynamics upon prolonged illumination were revealed as the vesicles degraded within the cells.
Collapse
Affiliation(s)
- Andrea Balukova
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| | - Kalliopi Bokea
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| | - Paul R. Barber
- Department of Oncology, UCL Cancer Institute, University College London, London WC1E 6DD, UK;
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK;
| | - Simon M. Ameer-Beg
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK;
| | - Alexander J. MacRobert
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| | - Elnaz Yaghini
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK; (A.B.); (K.B.)
| |
Collapse
|
2
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Mohammad Hadi L, Stamati K, Yaghini E, MacRobert AJ, Loizidou M. Treatment of 3D In Vitro Tumoroids of Ovarian Cancer Using Photochemical Internalisation as a Drug Delivery Method. Biomedicines 2023; 11:biomedicines11020572. [PMID: 36831108 PMCID: PMC9953023 DOI: 10.3390/biomedicines11020572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
Photochemical internalisation (PCI) is a means of achieving spatio-temporal control of cytosolic drug delivery using sub-lethal photodynamic therapy (PDT), with a photosensitiser that can be activated by non-ionising visible light. Various 3D models including those developed at our laboratory, where spheroids are grown in a compressed collagen matrix, have been used for studying anti-cancer drug effects. However, the use of a more biomimetic tumouroid model which consists of a relatively hypoxic central cancer mass surrounded by its microenvironment (stroma) has not yet been explored in either toxicity or phototoxicity studies involving PCI. Here, we examined the efficacy of PCI using a porphyrin photosensitiser and a cytotoxin (Saporin) on ovarian cancer tumouroids, with HEY ovarian cancer cells in the central cancer compartment, and HDF fibroblast cells and HUVEC endothelial cells in the surrounding stromal compartment. The efficacy was compared to tumouroids treated with either Saporin or PDT alone, or no treatment. PCI treatment was shown to be effective in the tumouroids (determined through viability assays and imaging) and caused a considerable decrease in the viability of cancer cells both within the central cancer mass and those which had migrated into the stroma, as well as a reduction in the cell density of surrounding HUVEC and HDFs. Post-treatment, the mean distance of stromal invasion by cancer cells from the original cancer mass following treatment with Saporin alone was 730 μm vs. 125 μm for PCI. PDT was also effective at reducing viability in the central cancer mass and stroma but required a higher photosensitiser dose and light dose than PCI. Tumouroids, as tissue mimics, are suitable models for interrogating multicellular events following pharmacological assault.
Collapse
|
4
|
Hashemkhani M, Demirci G, Bayir A, Muti A, Sennaroglu A, Mohammad Hadi L, Yaghini E, Loizidou M, MacRobert AJ, Yagci Acar H. Cetuximab-Ag 2S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells. NANOSCALE 2021; 13:14879-14899. [PMID: 34533177 DOI: 10.1039/d1nr03507j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) has a poor prognosis and urgently needs better therapeutic approaches. 5-Aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) based photodynamic therapy (PDT) is already used in the clinic for several cancers but not yet well investigated for CRC. Currently, systemic administration of ALA offers a limited degree of tumour selectivity, except for intracranial tumours, limiting its wider use in the clinic. The combination of effective ALA-PDT and chemotherapy may provide a promising alternative approach for CRC treatment. Herein, theranostic Ag2S quantum dots (AS-2MPA) optically trackable in near-infrared (NIR), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) and loaded with ALA for PDT monotherapy or ALA/5-fluorouracil (5FU) for the combination therapy are proposed for enhanced treatment of EGFR(+) CRC. AS-2MPA-Cet exhibited excellent targeting of the high EGFR expressing cells and showed a strong intracellular signal for NIR optical detection in a comparative study performed on SW480, HCT116, and HT29 cells, which exhibit high, medium and low EGFR expression, respectively. Targeting provided enhanced uptake of the ALA loaded nanoparticles by strong EGFR expressing cells and formation of higher levels of PpIX. Cells also differ in their efficiency to convert ALA to PpIX, and SW480 was the best, followed by HT29, while HCT116 was determined as unsuitable for ALA-PDT. The therapeutic efficacy was evaluated in 2D cell cultures and 3D spheroids of SW480 and HT29 cells using AS-2MPA with either electrostatically loaded, hydrazone or amide linked ALA to achieve different levels of pH or enzyme sensitive release. Most effective phototoxicity was observed in SW480 cells using AS-2MPA-ALA-electrostatic-Cet due to enhanced uptake of the particles, fast ALA release and effective ALA-to-PpIX conversion. Targeted delivery reduced the effective ALA concentration significantly which was further reduced with codelivery of 5FU. Delivery of ALA via covalent linkages was also effective for PDT, but required a longer incubation time for the release of ALA in therapeutic doses. Phototoxicity was correlated with high levels of reactive oxygen species (ROS) and apoptotic/necrotic cell death. Hence, both AS-2MPA-ALA-Cet based PDT and AS-2MPA-ALA-Cet-5FU based chemo/PDT combination therapy coupled with strong NIR tracking of the nanoparticles demonstrate an exceptional therapeutic effect on CRC cells and excellent potential for synergistic multistage tumour targeting therapy.
Collapse
Affiliation(s)
- Mahshid Hashemkhani
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Gozde Demirci
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Ali Bayir
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
| | - Abdullah Muti
- Koc University, Departments of Physics and Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
| | - Alphan Sennaroglu
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
- Koc University, Departments of Physics and Electrical-Electronics Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
- Koc University, KUYTAM, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
| | - Layla Mohammad Hadi
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Alexander J MacRobert
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | - Havva Yagci Acar
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey.
- Koc University, Department of Chemistry, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey
| |
Collapse
|
5
|
Majtnerova P, Capek J, Petira F, Handl J, Rousar T. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells. Sci Rep 2021; 11:11921. [PMID: 34099803 PMCID: PMC8184882 DOI: 10.1038/s41598-021-91380-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.
Collapse
Affiliation(s)
- Pavlina Majtnerova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
6
|
α 3 integrin-binding peptide-functionalized polymersomes loaded with volasertib for dually-targeted molecular therapy for ovarian cancer. Acta Biomater 2021; 124:348-357. [PMID: 33561562 DOI: 10.1016/j.actbio.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Ovarian cancer (OC) is a high-mortality malignancy in women with a five-year survival rate of 30-40%. There is an urgent need to develop high-efficacy and low toxic treatments for OC. Herein, we report an appealing strategy that combines α3 integrin targeted polymersomes (A3-Ps) and targeted molecular drug, polo-like kinase 1 (PLK1) inhibitor volasertib (Vol) for dually targeted molecular therapy of OC in vivo. A3-Ps had good Vol loading of 7.7-8.0 wt.% and small size of 25-32 nm, depending on the density of α3 integrin binding peptide A3. Interestingly, cellular uptake studies using FITC-labeled Vol revealed that A3-Ps with 20% peptide gave 2.3 and 3.3-fold better internalization in SKOV-3 OC cells compared with non-targeted Ps and free Vol, respectively. Accordingly, Vol loaded in A3-Ps showed the best inhibitory activity to SKOV-3 cells with an IC50 of 49 nM, which was 3.5 times lower than free Vol. Importantly, the in vivo experiments demonstrated that A3-Ps-Vol proficiently repressed the growth of SKOV-3 tumors in mice while continuous tumor growth was observed for Ps-Vol and free Vol-treated mice. A3-Ps-Vol besides boosting anti-OC activity also reduced the systemic toxicity of Vol. This dually targeted molecular drug nanoformulation has appeared to be an especially potent and low toxic treatment modality for human ovarian cancers. STATEMENT OF SIGNIFICANCE: Volasertib provides a potential molecular therapy for PLK1-positive advanced OC patients. The initial clinical outcomes, nevertheless, showed a suboptimal efficacy, possibly resulting from its fast clearance, deficient tumor deposition and dose-limiting toxicities. Here, we show for the first time that dually targeted molecular therapy of OC using α3 integrin-binding peptide-modified polymersomes as a vehicle gives markedly improved potency, better toleration, and depleted adverse effects in SKOV-3 tumor models, greatly outperforming free volasertib. This dually targeted strategy has emerged as an appealing treatment for malignant PLK1-positive ovarian tumors.
Collapse
|
7
|
Demir Duman F, Sebek M, Thanh NTK, Loizidou M, Shakib K, MacRobert AJ. Enhanced photodynamic therapy and fluorescence imaging using gold nanorods for porphyrin delivery in a novel in vitro squamous cell carcinoma 3D model. J Mater Chem B 2020; 8:5131-5142. [PMID: 32420578 DOI: 10.1039/d0tb00810a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanocomposites of gold nanorods (Au NRs) with the cationic porphyrin TMPyP (5,10,15,20-tetrakis(1- methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate)) were investigated as a nanocarrier system for photodynamic therapy (PDT) and fluorescence imaging. To confer biocompatibility and facilitate the cellular uptake, the NRs were encapsulated with polyacrylic acid (PAA) and efficiently loaded with the cationic porphyrin by electrostatic interaction. The nanocomposites were tested with and without light exposure following incubation in 2D monolayer cultures and a 3D compressed collagen construct of head and neck squamous cell carcinoma (HNSCC). The results showed that Au NRs enhance the absorption and emission intensity of TMPyP and improve its photodynamic efficiency and fluorescence imaging capability in both 2D cultures and 3D cancer constructs. Au NRs are promising theranostic agents for delivery of photosensitisers for HNSCC treatment and imaging.
Collapse
Affiliation(s)
- Fatma Demir Duman
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London, NW3 2PE, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Mohammad Hadi L, Yaghini E, MacRobert AJ, Loizidou M. Synergy between Photodynamic Therapy and Dactinomycin Chemotherapy in 2D and 3D Ovarian Cancer Cell Cultures. Int J Mol Sci 2020; 21:E3203. [PMID: 32366058 PMCID: PMC7247344 DOI: 10.3390/ijms21093203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023] Open
Abstract
In this study we explored the efficacy of combining low dose photodynamic therapy using a porphyrin photosensitiser and dactinomycin, a commonly used chemotherapeutic agent. The studies were carried out on compressed collagen 3D constructs of two human ovarian cancer cell lines (SKOV3 and HEY) versus their monolayer counterparts. An amphiphilc photosensitiser was employed, disulfonated tetraphenylporphine, which is not a substrate for ABC efflux transporters that can mediate drug resistance. The combination treatment was shown to be effective in both monolayer and 3D constructs of both cell lines, causing a significant and synergistic reduction in cell viability. Compared to dactinomycin alone or PDT alone, higher cell kill was found using 2D monolayer culture vs. 3D culture for the same doses. In 3D culture, the combination therapy resulted in 10 and 22 times higher cell kill in SKOV3 and HEY cells at the highest light dose compared to dactinomycin monotherapy, and 2.2 and 5.5 times higher cell kill than PDT alone. The combination of low dose PDT and dactinomycin appears to be a promising way to repurpose dactinomycin and widen its therapeutic applications.
Collapse
Affiliation(s)
- Layla Mohammad Hadi
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London NW3 2QG, UK; (E.Y.); (A.J.M.)
| | | | | | - Marilena Loizidou
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London NW3 2QG, UK; (E.Y.); (A.J.M.)
| |
Collapse
|
9
|
Stamati K, Redondo PA, Nyga A, Neves JB, Tran MGB, Emberton M, Cheema U, Loizidou M. The anti-angiogenic tyrosine kinase inhibitor Pazopanib kills cancer cells and disrupts endothelial networks in biomimetic three-dimensional renal tumouroids. J Tissue Eng 2020; 11:2041731420920597. [PMID: 32489578 PMCID: PMC7238304 DOI: 10.1177/2041731420920597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Pazopanib is a tyrosine kinase inhibitor used to treat renal cell carcinoma. Few in vitro studies investigate its effects towards cancer cells or endothelial cells in the presence of cancer. We tested the effect of Pazopanib on renal cell carcinoma cells (CAKI-2,786-O) in two-dimensional and three-dimensional tumouroids made of dense extracellular matrix, treated in normoxia and hypoxia. Finally, we engineered complex tumouroids with a stromal compartment containing fibroblasts and endothelial cells. Simple CAKI-2 tumouroids were more resistant to Pazopanib than 786-O tumouroids. Under hypoxia, while the more 'resistant' CAKI-2 tumouroids showed no decrease in viability, 786-O tumouroids required higher Pazopanib concentrations to induce cell death. In complex tumouroids, Pazopanib exposure led to a reduction in the overall cell viability (p < 0.0001), disruption of endothelial networks and direct killing of renal cell carcinoma cells. We report a biomimetic multicellular tumouroid for drug testing, suitable for agents whose primary target is not confined to cancer cells.
Collapse
Affiliation(s)
- Katerina Stamati
- Research Department of Surgical
Biotechnology, Division of Surgery & Interventional Science, University College
London, London, UK
| | - Patricia A Redondo
- Research Department of Surgical
Biotechnology, Division of Surgery & Interventional Science, University College
London, London, UK
| | - Agata Nyga
- Research Department of Surgical
Biotechnology, Division of Surgery & Interventional Science, University College
London, London, UK
| | - Joana B Neves
- Research Department of Surgical
Biotechnology, Division of Surgery & Interventional Science, University College
London, London, UK
- Specialist Centre for Kidney Cancer,
Royal Free London NHS Foundation Trust, London, UK
| | - Maxine GB Tran
- Research Department of Surgical
Biotechnology, Division of Surgery & Interventional Science, University College
London, London, UK
- Specialist Centre for Kidney Cancer,
Royal Free London NHS Foundation Trust, London, UK
| | - Mark Emberton
- Research Department of Targeted
Intervention, Division of Surgery & Interventional Science, University College
London, London, UK
- Department of Urology, University
College London Hospitals NHS Foundation Trust, London, UK
| | - Umber Cheema
- Research Department of Targeted
Intervention, Division of Surgery & Interventional Science, University College
London, London, UK
| | - Marilena Loizidou
- Research Department of Surgical
Biotechnology, Division of Surgery & Interventional Science, University College
London, London, UK
| |
Collapse
|