1
|
Dujardin C, Habeler W, Aprile P, Dellaquila A, Monville C, Letourneur D, Simon-Yarza T. Engineered micro-structured biomimetic material for modelling the outer blood-retinal barrier. Biomaterials 2025; 322:123357. [PMID: 40311520 DOI: 10.1016/j.biomaterials.2025.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
The outer blood-retinal barrier (oBRB) is compromised in several retinal pathologies, such as age-related macular degeneration affecting over 200 million people worldwide. This 200-350 μm thick tissue includes the retinal pigment epithelium (RPE), the Bruch's membrane, and the vascularized choroid supplying the outer retina. Degeneration of the RPE and/or choroid leads to photoreceptor loss and, ultimately, blindness. Current in vitro co-culture oBRB models developed to better understand the diseases and to propose therapeutic alternatives are often simplistic, focusing on 2D cultures, or face limitations including non-physiological dimensions or low throughput. This study presents an innovative scaffold-driven approach to model the oBRB using a polysaccharide membrane engineered by freeze-drying. Our specific protocol allowed to mimic the oBRB structure, within physiological dimensions, generating a non-porous surface to culture the hiPSC-derived RPE monolayer, and an internal 3D porous structure for the choroidal network. Results showed that the inner porous structure promoted physiological self-organization of endothelial cells and pericytes. Our single-piece functional material allowed the cultivation of both RPE and choroidal compartments in close proximity, favoring cellular interactions, while maintaining them in their designated locations. This cyto-compatible, easy-to-use, and off-the-shelf membrane, produced at large amounts and low costs, provides a physiologically relevant biomaterial for oBRB tissue modelling.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| | - Walter Habeler
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France; I-Stem, CECS, Corbeil-Essonnes, 91100, France
| | - Paola Aprile
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Christelle Monville
- Université Paris-Saclay, Univ Evry, INSERM, I-Stem, UMR861, Corbeil-Essonnes, 91100, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75018, Paris, France.
| |
Collapse
|
2
|
Li Z, Hu Z, Gao Z. Advances in the Study of Age-Related Macular Degeneration Based on Cell or Cell-Biomaterial Scaffolds. Bioengineering (Basel) 2025; 12:278. [PMID: 40150743 PMCID: PMC11939329 DOI: 10.3390/bioengineering12030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Age-related macular degeneration (AMD), a progressive neurodegenerative disorder affecting the central retina, is pathologically defined by the irreversible degeneration of photoreceptors and retinal pigment epithelium (RPE), coupled with extracellular drusen deposition and choroidal neovascularization (CNV), and AMD constitutes the predominant etiological factor for irreversible vision impairment in adults aged ≥60 years. Cell-based or cell-biomaterial scaffold-based approaches have been popular in recent years as a major research direction for AMD; monotherapy with cell-based approaches typically involves subretinal injection of progenitor-derived or stem cell-derived RPE cells to restore retinal homeostasis. Meanwhile, cell-biomaterial scaffolds delivered to the lesion site by vector transplantation have been widely developed, and the implanted cell-biomaterial scaffolds can promote the reintegration of cells at the lesion site and solve the problems of translocation and discrete cellular structure produced by cell injection. While these therapeutic strategies demonstrate preliminary efficacy, rigorous preclinical validation and clinical trials remain imperative to validate their long-term safety, functional durability, and therapeutic consistency. This review synthesizes current advancements and translational challenges in cell-based and cell-biomaterial scaffold approaches for AMD, aiming to inform future development of targeted interventions for AMD pathogenesis and management.
Collapse
Affiliation(s)
| | | | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai 264003, China; (Z.L.); (Z.H.)
| |
Collapse
|
3
|
Zhou W, Chai Y, Lu S, Yang Q, Tang L, Zhou D. Advances in the study of tissue-engineered retinal pigment epithelial cell sheets. Regen Ther 2024; 27:419-433. [PMID: 38694444 PMCID: PMC11062139 DOI: 10.1016/j.reth.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Regarded as the most promising treatment modality for retinal degenerative diseases, retinal pigment epithelium cell replacement therapy holds significant potential. Common retinal degenerative diseases, including Age-related Macular Degeneration, are frequently characterized by damage to the unit comprising photoreceptors, retinal pigment epithelium, and Bruch's membrane. The selection of appropriate tissue engineering materials, in conjunction with retinal pigment epithelial cells, for graft preparation, can offer an effective treatment for retinal degenerative diseases. This article presents an overview of the research conducted on retinal pigment epithelial cell tissue engineering, outlining the challenges and future prospects.
Collapse
Affiliation(s)
- Wang Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Yujiao Chai
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Shan Lu
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liying Tang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
| | - Di Zhou
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering Research Center of Human Stem Cells, Changsha, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| |
Collapse
|
4
|
Gao Y, Zhong M, Yu J, Zhao Z, Yu C, Yu Q, Yao F, Li J, Zhang H. Large-Scale Fabrication of Freestanding Polymer Ultrathin Porous Membranes for Transparent Transwell Coculture Systems. ACS NANO 2024; 18:8168-8179. [PMID: 38437515 DOI: 10.1021/acsnano.3c11946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Advancements in cell coculture systems with porous membranes have facilitated the simulation of human-like in vitro microenvironments for diverse biomedical applications. However, conventional Transwell membranes face limitations in low porosity (ca. 6%) and optical opacity due to their large thickness (ca. 10 μm). In this study, we demonstrated a one-step, large-scale fabrication of freestanding polymer ultrathin porous (PUP) membranes with thicknesses of hundreds of nanometers. PUP membranes were produced by using a gap-controlled bar-coating process combined with polymer blend phase separation. They are 20 times thinner than Transwell membranes, possessing 3-fold higher porosity and exhibiting high transparency. These membranes demonstrate outstanding molecular permeability and significantly reduce the cell-cell distance, thereby facilitating efficient signal exchange pathways between cells. This research enables the establishment of a cutting-edge in vitro cell coculture system, enhancing optical transparency, and streamlining the large-scale manufacturing of porous membranes.
Collapse
Affiliation(s)
- Yi Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengyao Zhong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jiajun Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
6
|
Gu Y, Sheng F, Gao M, Zhang L, Hao S, Chen S, Chen R, Xu Y, Wu D, Han Y, Chen L, Liu Y, Lu B, Zhao W, Lou X, Chen Z, Li P, Wang X, Yao K, Fu Q. Acute and continuous exposure of airborne fine particulate matter (PM 2.5): diverse outer blood-retinal barrier damages and disease susceptibilities. Part Fibre Toxicol 2023; 20:50. [PMID: 38110941 PMCID: PMC10726629 DOI: 10.1186/s12989-023-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND The association between air pollution and retinal diseases such as age-related macular degeneration (AMD) has been demonstrated, but the pathogenic correlation is unknown. Damage to the outer blood-retinal barrier (oBRB), which consists of the retinal pigment epithelium (RPE) and choriocapillaris, is crucial in the development of fundus diseases. OBJECTIVES To describe the effects of airborne fine particulate matter (PM2.5) on the oBRB and disease susceptibilities. METHODS A PM2.5-exposed mice model was established through the administration of eye drops containing PM2.5. Optical coherence tomography angiography, transmission electron microscope, RPE immunofluorescence staining and Western blotting were applied to study the oBRB changes. A co-culture model of ARPE-19 cells with stretching vascular endothelial cells was established to identify the role of choroidal vasodilatation in PM2.5-associated RPE damage. RESULTS Acute exposure to PM2.5 resulted in choroidal vasodilatation, RPE tight junctions impairment, and ultimately an increased risk of retinal edema in mice. These manifestations are very similar to the pachychoroid disease represented by central serous chorioretinopathy (CSC). After continuous PM2.5 exposure, the damage to the RPE was gradually repaired, but AMD-related early retinal degenerative changes appeared under continuous choroidal inflammation. CONCLUSION This study reveals oBRB pathological changes under different exposure durations, providing a valuable reference for the prevention of PM2.5-related fundus diseases and public health policy formulation.
Collapse
Grants
- 82271063, 81670833, 81870641, 8207939, 81300641 National Natural Science Foundation of China
- 82271063, 81670833, 81870641, 8207939, 81300641 National Natural Science Foundation of China
- 2019C03091, 2020C03035 Key Research and Development Program of Zhejiang Province
- 2019C03091, 2020C03035 Key Research and Development Program of Zhejiang Province
- 2019QNA7026 Fundamental Research Funds for the Central Universities
Collapse
Affiliation(s)
- Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Feiyin Sheng
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Mengqin Gao
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Li Zhang
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Shuying Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Rongrong Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Di Wu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Yu Han
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Lu Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Ye Liu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Wei Zhao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - Peng Li
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China.
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Medical College of Zhejiang University, Zhejiang University, Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
7
|
Dopierała K, Knitter M, Dobrzyńska-Mizera M, Andrzejewski J, Bartkowska A, Prochaska K. Surface Functionalization of Poly(lactic acid) via Deposition of Hydroxyapatite Monolayers for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15610-15619. [PMID: 37882695 PMCID: PMC10634356 DOI: 10.1021/acs.langmuir.3c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The surface modification of poly(lactic acid) (PLA) using hydroxyapatite (HAP) particles via Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) approaches has been reported. The HAP monolayer was characterized at the air/water interface and deposited on three-dimensional (3D) printed poly(lactic acid). The deposition of HAP particles using the LS approach led to a larger surface coverage in comparison to the LB method, which produces a less uniform coating because of the aggregation of the particles. After the transfer of HAP on the PLA surface, the wettability values remained within the desired range. The presence of HAP on the surface of the polymer altered the topography and roughness in the nanoscale, as evidenced by the atomic force microscopy (AFM) images. This effect can be beneficial for the osteointegration of polymeric implants at an early stage, as well as for the reduction of the adherence of the microbial biofilm. Overall, the results suggest that the LS technique could be a promising approach for surface modification of PLA by hydroxyapatite with respective advantages in the biomedical field.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Monika Knitter
- Institute
of Material Technology, Poznan University
of Technology, Piotrowo
3, 61-138 Poznań, Poland
| | - Monika Dobrzyńska-Mizera
- Institute
of Material Technology, Poznan University
of Technology, Piotrowo
3, 61-138 Poznań, Poland
| | - Jacek Andrzejewski
- Institute
of Material Technology, Poznan University
of Technology, Piotrowo
3, 61-138 Poznań, Poland
| | - Aneta Bartkowska
- Poznan
University of Technology, Faculty of Materials Engineering and Technical
Physics, Institute of Material Science and
Engineering, Jana Pawła
II 24, 61-138 Poznań, Poland
| | - Krystyna Prochaska
- Institute
of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
8
|
Buchmann S, Enrico A, Holzreuter MA, Reid M, Zeglio E, Niklaus F, Stemme G, Herland A. Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling. Mater Today Bio 2023; 21:100706. [PMID: 37435551 PMCID: PMC10331311 DOI: 10.1016/j.mtbio.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type is necessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometric precision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalized microfluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial characterization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structures printed with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-step strategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms networks on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-culture seeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentalization of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complex tissue, such as the human brain.
Collapse
Affiliation(s)
- Sebastian Buchmann
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alessandro Enrico
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
- Synthetic Physiology lab, Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Muriel Alexandra Holzreuter
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Michael Reid
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Erica Zeglio
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44, Stockholm, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, KTH Royal Institute of Technology, Tomtebodavägen 23a, 171 65, Solna, Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
9
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol 2023; 41:214-227. [PMID: 36030108 DOI: 10.1016/j.tibtech.2022.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Porous membranes play a critical role in in vitro heterogeneous cell coculture systems because they recapitulate the in vivo microenvironment to mediate physical and biochemical crosstalk between cells. While the conventionally available Transwell® system has been widely used for heterogeneous cell coculture, there are drawbacks to precise control over cell-cell interactions and separation for implantation. The size and numbers of the pores and the thickness of the porous membranes are crucial in determining the efficiency of paracrine signaling and direct junctions between cocultured cells, and significantly impact on the performance of heterogeneous cell cultures. These opportunities and challenges have motivated the design of advanced coculture platforms through improvement of the structural and functional properties of porous membranes.
Collapse
|
11
|
Gullapalli VK, Zarbin MA. New Prospects for Retinal Pigment Epithelium Transplantation. Asia Pac J Ophthalmol (Phila) 2022; 11:302-313. [PMID: 36041145 DOI: 10.1097/apo.0000000000000521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Retinal pigment epithelium (RPE) transplants rescue photoreceptors in selected animal models of retinal degenerative disease. Early clinical studies of RPE transplants as treatment for age-related macular degeneration (AMD) included autologous and allogeneic transplants of RPE suspensions and RPE sheets for atrophic and neovascular complications of AMD. Subsequent studies explored autologous RPE-Bruch membrane-choroid transplants in patients with neovascular AMD with occasional marked visual benefit, which establishes a rationale for RPE transplants in late-stage AMD. More recent work has involved transplantation of autologous and allogeneic stem cell-derived RPE for patients with AMD and those with Stargardt disease. These early-stage clinical trials have employed RPE suspensions and RPE monolayers on biocompatible scaffolds. Safety has been well documented, but evidence of efficacy is variable. Current research involves development of better scaffolds, improved modulation of immune surveillance, and modification of the extracellular milieu to improve RPE survival and integration with host retina.
Collapse
Affiliation(s)
| | - Marco A Zarbin
- Iinstitute of Ophthalmology and visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, US
| |
Collapse
|
12
|
Shukla AK, Gao G, Kim BS. Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering. MICROMACHINES 2022; 13:155. [PMID: 35208280 PMCID: PMC8876961 DOI: 10.3390/mi13020155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are essentially produced by the genetic reprogramming of adult cells. Moreover, iPSC technology prevents the genetic manipulation of embryos. Hence, with the ensured element of safety, they rarely cause ethical concerns when utilized in tissue engineering. Several cumulative outcomes have demonstrated the functional superiority and potency of iPSCs in advanced regenerative medicine. Recently, an emerging trend in 3D bioprinting technology has been a more comprehensive approach to iPSC-based tissue engineering. The principal aim of this review is to provide an understanding of the applications of 3D bioprinting in iPSC-based tissue engineering. This review discusses the generation of iPSCs based on their distinct purpose, divided into two categories: (1) undifferentiated iPSCs applied with 3D bioprinting; (2) differentiated iPSCs applied with 3D bioprinting. Their significant potential is analyzed. Lastly, various applications for engineering tissues and organs have been introduced and discussed in detail.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- Department of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
13
|
Nishimura S, Murakami Y. Facile preparation of porous polymeric sheets with different sizes of pores on both sides using spontaneous emulsification. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Design and development of poly-L/D-lactide copolymer and barium titanate nanoparticle 3D composite scaffolds using breath figure method for tissue engineering applications. Colloids Surf B Biointerfaces 2021; 199:111530. [DOI: 10.1016/j.colsurfb.2020.111530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
|
15
|
Ghareeb AE, Lako M, Steel DH. Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine. Stem Cells Transl Med 2020; 9:1531-1548. [PMID: 32767661 PMCID: PMC7695644 DOI: 10.1002/sctm.20-0201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cell-derived retinal organoids offer the opportunity to cure retinal degeneration of wide-ranging etiology either through the study of in vitro models or the generation of tissue for transplantation. However, despite much work in animals and several human pilot studies, satisfactory therapies have not been developed. Two major challenges for retinal regenerative medicine are (a) physical cell-cell interactions, which are critical to graft function, are not formed and (b) the host environment does not provide suitable queues for development. Several strategies offer to improve the delivery, integration, maturation, and functionality of cell transplantation. These include minimally invasive delivery, biocompatible material vehicles, retinal cell sheets, and optogenetics. Optimizing several variables in animal models is practically difficult, limited by anatomical and disease pathology which is often different to humans, and faces regulatory and ethical challenges. High-throughput methods are needed to experimentally optimize these variables. Retinal organoids will be important to the success of these models. In their current state, they do not incorporate a representative retinal pigment epithelium (RPE)-photoreceptor interface nor vascular elements, which influence the neural retina phenotype directly and are known to be dysfunctional in common retinal diseases such as age-related macular degeneration. Advanced coculture techniques, which emulate the RPE-photoreceptor and RPE-Bruch's-choriocapillaris interactions, can incorporate disease-specific, human retinal organoids and overcome these drawbacks. Herein, we review retinal coculture models of the neural retina, RPE, and choriocapillaris. We delineate the scientific need for such systems in the study of retinal organogenesis, disease modeling, and the optimization of regenerative cell therapies for retinal degeneration.
Collapse
Affiliation(s)
- Ali E. Ghareeb
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Majlinda Lako
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - David H. Steel
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
16
|
Yuan H, Li G, Dai E, Lu G, Huang X, Hao L, Tan Y. Ordered
Honeycomb‐Pattern
Membrane
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Yuan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guangzhen Li
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Enhao Dai
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guolin Lu
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Xiaoyu Huang
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Longyun Hao
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Yeqiang Tan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| |
Collapse
|
17
|
Liang J, Li B, Wu L. Recent advances on porous interfaces for biomedical applications. SOFT MATTER 2020; 16:7231-7245. [PMID: 32734999 DOI: 10.1039/d0sm00997k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous structures on solid surfaces prepared artificially through the water droplet template method have the features of easy operation, low cost and self-removal of templates, and thus are widely applied in the fields of medicine, biomedicine, adsorption, catalysis, and separation, optical and electronic materials. Due to their tunable dimensions, abundant selection of materials, mechanical stability, high porosity, and enlarged pore surface, the formed porous interfaces show specific significance in bio-related systems. In this study, recent achievements related to applications of porous interfaces and a focus into biological and medical-related systems are summarized. The discussion involves the preparation of porous interfaces, and porous interface-induced cell behaviors including culture, growth, proliferation, adhesion, and differentiation of cells. The inhibitory effect of bacteria and separated features of microorganisms supported by porous interfaces, the immobilization of biomolecules related to proteins, DNA and enzymes, and the controllable drug delivery are also discussed. The summary of recent advances pointed out in the study, are suggestive of insights for motivating unique potential applications including their extension to porous interfaces in biomedical materials.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
18
|
Hongisto H, Dewing JM, Christensen DR, Scott J, Cree AJ, Nättinen J, Määttä J, Jylhä A, Aapola U, Uusitalo H, Kaarniranta K, Ratnayaka JA, Skottman H, Lotery AJ. In vitro stem cell modelling demonstrates a proof-of-concept for excess functional mutant TIMP3 as the cause of Sorsby fundus dystrophy. J Pathol 2020; 252:138-150. [PMID: 32666594 DOI: 10.1002/path.5506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Sorsby fundus dystrophy (SFD) is a rare autosomal dominant disease of the macula that leads to bilateral loss of central vision and is caused by mutations in the TIMP3 gene. However, the mechanisms by which TIMP3 mutations cause SFD are poorly understood. Here, we generated human induced pluripotent stem cell-derived retinal pigmented epithelial (hiPSC-RPE) cells from three SFD patients carrying TIMP3 p.(Ser204Cys) and three non-affected controls to study disease-related structural and functional differences in the RPE. SFD-hiPSC-RPE exhibited characteristic RPE structure and physiology but showed significantly reduced transepithelial electrical resistance associated with enriched expression of cytoskeletal remodelling proteins. SFD-hiPSC-RPE exhibited basolateral accumulation of TIMP3 monomers, despite no change in TIMP3 gene expression. TIMP3 dimers were observed in both SFD and control hiPSC-RPE, suggesting that mutant TIMP3 dimerisation does not drive SFD pathology. Furthermore, mutant TIMP3 retained matrix metalloproteinase activity. Proteomic profiling showed increased expression of ECM proteins, endothelial cell interactions and angiogenesis-related pathways in SFD-hiPSC-RPE. By contrast, there were no changes in VEGF secretion. However, SFD-hiPSC-RPE secreted higher levels of monocyte chemoattractant protein 1, PDGF and angiogenin. Our findings provide a proof-of-concept that SFD patient-derived hiPSC-RPE mimic mature RPE cells and support the hypothesis that excess accumulation of mutant TIMP3, rather than an absence or deficiency of functional TIMP3, drives ECM and angiogenesis-related changes in SFD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heidi Hongisto
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jennifer M Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Rg Christensen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jennifer Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela J Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janika Nättinen
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Määttä
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Jylhä
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ulla Aapola
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Uusitalo
- SILK, Department of Ophthalmology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020; 26:309-329. [PMID: 32142662 PMCID: PMC7159985 DOI: 10.1016/j.stem.2020.02.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|