1
|
Ana González-Cela-Casamayor M, Rodrigo MJ, Brugnera M, Munuera I, Martínez-Rincón T, Prats-Lluís C, Villacampa P, García-Feijoo J, Pablo LE, Bravo-Osuna I, Garcia-Martin E, Herrero-Vanrell R. Ketorolac, melatonin and latanoprost tri-loaded PLGA microspheres for neuroprotection in glaucoma. Drug Deliv 2025; 32:2484277. [PMID: 40211987 PMCID: PMC11995771 DOI: 10.1080/10717544.2025.2484277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease that affects the retina and optic nerve. The aim of this work was to reach different therapeutics targets by co-encapsulating three neuroprotective substances with hypotensive (latanoprost), antioxidant (melatonin) and anti-inflammatory (ketorolac) activity in biodegradable poly (lactic-co-glycolic acid) (PLGA) microspheres (MSs) capable of releasing the drugs for months after intravitreal injection, avoiding the need for repeated administrations. Multi-loaded PLGA MSs were prepared using the oil-in-water emulsion solvent extraction-evaporation technique and physicochemically characterized. PLGA 85:15 was the polymer ratio selected for the selected formulation. Tri-loaded MSs including vitamin E as additive showed good tolerance in retinal pigment epithelium cells after 24 h exposure (>90% cell viability). The final formulation (KMLVE) resulted in 33.58 ± 5.44 µm particle size and drug content (µg/mg MSs) of 39.70 ± 5.89, 67.28 ± 4.17 and 7.51 ± 0.58 for melatonin, ketorolac and latanoprost respectively. KMLVE were able to release in a sustained manner the three drugs over 70 days. KMLVE were injected at 2 and 12 weeks in Long-Evans rats (n = 20) after the induction of chronic glaucoma. Ophthalmological tests were performed and compared to not treated glaucomatous (n = 45) and healthy (n = 17) animals. Treated glaucomatous rats reached the lowest intraocular pressure, enhanced functionality of bipolar and retinal ganglion cells and showed greater neuroretinal thickness by optical coherence tomography (p < 0.05) compared to not treated glaucomatous rats at 24 weeks follow-up. According to the results, the tri-loaded microspheres can be considered as promising controlled-release system for the treatment of glaucoma.
Collapse
Affiliation(s)
- Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- School of Pharmacy, University Institute for Industrial Pharmacy (IUFI), Complutense University of Madrid, Madrid, Spain
| | - Inés Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Teresa Martínez-Rincón
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Catalina Prats-Lluís
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), l’Hospitalet de Llobregat, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), l’Hospitalet de Llobregat, Spain
| | - Julián García-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- School of Pharmacy, University Institute for Industrial Pharmacy (IUFI), Complutense University of Madrid, Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- School of Pharmacy, University Institute for Industrial Pharmacy (IUFI), Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Story BD, Park S, Roszak K, Shim J, Motta M, Ferneding M, Rudeen KM, Blandino A, Ardon M, Le S, Teixeira LBC, Yiu G, Mieler WF, Thomasy SM, Kang-Mieler JJ. Safety and biocompatibility of a novel biodegradable aflibercept-drug delivery system in rhesus macaques. Drug Deliv 2025; 32:2460671. [PMID: 40038090 PMCID: PMC11884103 DOI: 10.1080/10717544.2025.2460671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/01/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
A clinical need exists for more effective intravitreal (IVT) drug delivery systems (DDS). This study tested the hypothesis that a novel biodegradable, injectable microsphere-hydrogel drug delivery system loaded with aflibercept (aflibercept-DDS) would exhibit long-term safety and biocompatibility in a non-human primate (NHP) model. We generated aflibercept-loaded poly (lactic-co-glycolic acid) microparticles with a modified double emulsion technique then embedded them into a biodegradable, thermo-responsive poly (ethylene glycol)-co-(L-lactic-acid) diacrylate/N-isopropylacrylamide hydrogel. Aflibercept-DDS (50 µL, 15 µg) was injected into the right eye of 23 healthy rhesus macaques. A complete ophthalmic examination, intraocular pressure (IOP), corneal pachymetry, specular microscopy, A-scan biometry, streak retinoscopy, spectral-domain optical coherence tomography (SD-OCT), fluorescein angiography (FA), and electroretinography (ERG) were performed monthly. Globes from 7 NHPs were histologically examined. Aflibercept-DDS was visualized in the vitreous up to 9 months post-IVT injection, slightly impeding fundoscopy in 4 of 23 eyes; no other consistent abnormalities were appreciated during ophthalmic examination. The IOP and total retinal thickness remained normal in all animals over all timepoints. Central corneal thickness, endothelial cell density, axial globe length, and refractive error did not significantly differ from baseline. Scotopic mixed rod-cone implicit times and amplitudes along with photopic cone response implicit times and amplitudes did not significantly differ from control values. No retinal or choroidal vascular abnormalities were detected with FA and normal retinal architecture was preserved using SD-OCT. Intravitreal injection of a biodegradable aflibercept-DDS was safe and well tolerated in NHPs up to 24 months.
Collapse
Affiliation(s)
- Brett D. Story
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Sangwan Park
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Karolina Roszak
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Jaeho Shim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Monica Motta
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Michelle Ferneding
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Kayla M. Rudeen
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Local Delivery Translational Sciences, AbbVie, North Chicago, IL, USA
| | - Andrew Blandino
- Department of Statistics, University of California, Davis, CA, USA
| | - Monica Ardon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Sophie Le
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - William F. Mieler
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois, Chicago, IL, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | | |
Collapse
|
3
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2025; 15:1828-1876. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
4
|
So YH, Mishra D, Gite S, Sonawane R, Waite D, Shaikh R, Vora LK, Thakur RRS. Emerging trends in long-acting sustained drug delivery for glaucoma management. Drug Deliv Transl Res 2025; 15:1907-1934. [PMID: 39786666 DOI: 10.1007/s13346-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress. Topical formulations are often used in glaucoma treatment, whereas surgical measures are used in acute glaucoma cases. For most patients, long-term glaucoma treatments are given. Poor patient compliance and low bioavailability are often associated with topical therapy, which suggests that sustained-release, long-acting drug delivery systems could be beneficial in managing glaucoma. This review summarizes the eye's physiology, the pathogenesis of glaucoma, current treatments, including both pharmacological and nonpharmacological interventions, and recent advances in long-acting drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yin Ho So
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Sandip Gite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahul Sonawane
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - David Waite
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Rahamatullah Shaikh
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|
5
|
Menezes Ferreira AÁ, da Silva Felix JH, Chaves de Lima RK, Martins de Souza MC, Sousa Dos Santos JC. Advancements and Prospects in Nanorobotic Applications for Ophthalmic Therapy. ACS Biomater Sci Eng 2025; 11:958-980. [PMID: 39818739 DOI: 10.1021/acsbiomaterials.4c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This study provides a bibliometric and bibliographic review of emerging applications of micro- and nanotechnology in treating ocular diseases, with a primary focus on glaucoma. We aim to identify key research trends and analyze advancements in devices and drug delivery systems for ocular treatments. The methodology involved analyzing 385 documents indexed on the Web of Science using tools such as VOSviewer and Bibliometrix. The results show a marked increase in scientific output, highlighting prominent authors and institutions, with England leading in the field. Key findings suggest that nanotechnology holds the potential to address the limitations of conventional treatments, including low ocular bioavailability and adverse side effects. Nanoparticles, nanovesicles, and polymer-based systems appear promising for prolonged and controlled drug release, potentially offering enhanced therapeutic efficacy. In conclusion, micro- and nanotechnology could transform ocular disease treatment, although challenges remain concerning the biocompatibility and scalability of these devices. Further clinical studies are necessary to establish these innovations within the therapeutic context of ophthalmology.
Collapse
Affiliation(s)
- Antonio Átila Menezes Ferreira
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Rita Karolinny Chaves de Lima
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, Ceará CEP 62790-970, Brazil
| |
Collapse
|
6
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
7
|
Wong JHM, Sim B, Owh C, Ow V, Teo VTA, Ng EWL, Boo YJ, Lin Q, Lim JYC, Loh XJ, Goh R. Modular Synthetic Platform to Tailor Therapeutic-Specific Delivery in Injectable Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65741-65753. [PMID: 39561760 DOI: 10.1021/acsami.4c15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Injectable thermoresponsive hydrogels (thermogels), valued for their conformability and minimal invasiveness, are increasingly used as in situ forming implants for drug delivery and as regenerative scaffolds. These gels exhibit sol-to-gel phase transitions at body temperature. As localized depots and scaffolds, these gels determine the chemical and mechanical environments and could dramatically influence the release kinetics of drugs or the fate of cells. Current synthetic approaches for thermogels, however, often limit the ability to fully exploit interactions between the thermogel matrix and the encapsulated agent. In this study, we introduce a modular synthetic platform for creating a library of functionalized polyurethane thermogels that enables customization of gelation properties and intermolecular interactions. These thermogels can exhibit a wide range of stiffness, offer complementary ionic interactions, and enhance hydrophobic interactions and hydrogen bonding. By leveraging these tunable interactions between the thermogelling scaffold, functional groups, and encapsulated agents, we achieved sustained and controlled release, from days to over 6 months, for both low and high molecular weight drug analogs. Release profiles varied from monophasic to biphasic and triphasic depending on the compatibility between the thermogel properties and the encapsulated agents. The design rules identified here support the development of drug-specific formulations, facilitating precise, sustained, and modulated release tailored to therapeutic needs. Beyond providing an adaptable strategy for customizable injectable drug depots, this synthetic strategy lays the groundwork for future iterations of multi stimuli-responsive thermogels with enhanced bioactivity, advancing the potential for customizable, biointeractive therapeutic systems.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Belynn Sim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Vincent Ting An Teo
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Elson Wei Long Ng
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
8
|
Diress M, Wagle SR, Lim P, Foster T, Kovacevic B, Ionescu CM, Mooranian A, Al-Salami H. Advanced drug delivery strategies for diabetic retinopathy: current therapeutic advancement, and delivery methods overcoming barriers, and experimental modalities. Expert Opin Drug Deliv 2024; 21:1859-1877. [PMID: 39557623 DOI: 10.1080/17425247.2024.2431577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems. Nanoparticles provide promising solutions to improve drug delivery in ocular medicine, overcoming the complexities of ocular anatomy and existing treatment constraints. AREAS COVERED This review explored advanced therapeutic strategies for diabetic retinopathy, focusing on current medications with their limitations, drug delivery methods, device innovations, and overcoming associated barriers. Through comprehensive review, it aimed to contribute to the discovery of more efficient management strategies for diabetic retinopathy in the future. EXPERT OPINION In the next five to ten years, we expect a revolutionary shift in how diabetic retinopathy is treated. As we deepen our understanding of oxidative stress and metabolic dysfunction, antioxidants with specialised delivery matrices are poised to take center stage in prevention and treatment strategies. Our vision is to create a more integrated approach to diabetic retinopathy management that not only improves patient outcomes but also reduces the risks associated to traditional therapies.
Collapse
Affiliation(s)
- Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Medical School, The University of Western Australia, Crawley, AU, Australia
| |
Collapse
|
9
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
10
|
Biswas A, Kumar S, Choudhury AD, Bisen AC, Sanap SN, Agrawal S, Mishra A, Verma SK, Kumar M, Bhatta RS. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers 2024; 115:e23578. [PMID: 38577865 DOI: 10.1002/bip.23578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
11
|
Zhang Y, Watson S, Ramaswamy Y, Singh G. Intravitreal therapeutic nanoparticles for age-related macular degeneration: Design principles, progress and opportunities. Adv Colloid Interface Sci 2024; 329:103200. [PMID: 38788306 DOI: 10.1016/j.cis.2024.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly. The current standard treatment for AMD involves frequent intravitreal administrations of therapeutic agents. While effective, this approach presents challenges, including patient discomfort, inconvenience, and the risk of adverse complications. Nanoparticle-based intravitreal drug delivery platforms offer a promising solution to overcome these limitations. These platforms are engineered to target the retina specifically and control drug release, which enhances drug retention, improves drug concentration and bioavailability at the retinal site, and reduces the frequency of injections. This review aims to uncover the design principles guiding the development of highly effective nanoparticle-based intravitreal drug delivery platforms for AMD treatment. By gaining a deeper understanding of the physiology of ocular barriers and the physicochemical properties of nanoparticles, we establish a basis for designing intravitreal nanoparticles to optimize drug delivery and drug retention in the retina. Furthermore, we review recent nanoparticle-based intravitreal therapeutic strategies to highlight their potential in improving AMD treatment efficiency. Lastly, we address the challenges and opportunities in this field, providing insights into the future of nanoparticle-based drug delivery to improve therapeutic outcomes for AMD patients.
Collapse
Affiliation(s)
- Yuhang Zhang
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Stephanie Watson
- Faculty of Medicine and Health, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia.
| |
Collapse
|
12
|
Zhou X, Zhou D, Zhang X, Zhao Y, Liao L, Wu P, Chen B, Duan X. Research progress of nano delivery systems for intraocular pressure lowering drugs. Heliyon 2024; 10:e32602. [PMID: 39005914 PMCID: PMC11239466 DOI: 10.1016/j.heliyon.2024.e32602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Glaucoma is a chronic ocular disease characterized by optic atrophy and visual field defect. The main risk factor for glaucoma onset and progression is elevated intraocular pressure, which is caused by increased aqueous humor outflow resistance. Currently, the primary method for glaucoma therapy is the use of intraocular pressure lowering drugs. However, these drugs, when administered through eye drops, have low bioavailability, require frequent administration, and often result in adverse effects. To overcome these challenges, the application of nanotechnology for drug delivery has emerged as a promising approach. Nanoparticles can physically adsorb, encapsulate, or chemically graft drugs, thereby improving their efficacy, retention time, and reducing adverse reactions. Moreover, nanotechnology has opened up new avenues for ocular administration. This article provides a comprehensive review of nano systems for intraocular pressure lowering drugs, encompassing cholinergic agonists, β-adrenergic antagonists, α-adrenergic agonists, prostaglandin analogs, carbonic anhydrase inhibitors, Rho kinase inhibitors, and complex preparations. The aim is to offer novel insights for the development of nanotechnology in the field of intraocular pressure lowering drugs.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Dengming Zhou
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyue Zhang
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Yang Zhao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Li Liao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Ping Wu
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Baihua Chen
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuanchu Duan
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha, Hunan, China
| |
Collapse
|
13
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
14
|
Phillips SG, Lankone AR, O'Hagan SS, Ganji N, Fairbrother DH. Gas-Phase Functionalization of Phytoglycogen Nanoparticles and the Role of Reagent Structure in the Formation of Self-Limiting Hydrophobic Shells. Biomacromolecules 2024; 25:2902-2913. [PMID: 38593289 DOI: 10.1021/acs.biomac.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A suite of acyl chloride structural isomers (C6H11OCl) was used to effect gas-phase esterification of starch-based phytoglycogen nanoparticles (PhG NPs). The surface degree of substitution (DS) was quantified using X-ray photoelectron spectroscopy, while the overall DS was quantified using 1H NMR spectroscopy. Gas-phase modification initiates at the NP surface, with the extent of surface and overall esterification determined by both the reaction time and the steric footprint of the acyl chloride reagent. The less sterically hindered acyl chlorides diffuse fully into the NP interior, while the branched isomers are restricted to the near-surface region and form self-limiting hydrophobic shells, with shell thicknesses decreasing with increasing steric footprint. These differences in substitution were also reflected in the solubility of the NPs, with water solubility systematically decreasing with increasing DS. The ability to separately control both the surface and overall degree of functionalization and thereby form thin hydrophobic shells has significant implications for the development of polysaccharide-based biopolymers as nanocarrier delivery systems.
Collapse
Affiliation(s)
- Savannah G Phillips
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alyssa R Lankone
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Nasim Ganji
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Datta N, Jinan T, Wong SY, Chakravarty S, Li X, Anwar I, Arafat MT. Self-assembled sodium alginate polymannuronate nanoparticles for synergistic treatment of ophthalmic infection and inflammation: Preparation optimization and in vitro/vivo evaluation. Int J Biol Macromol 2024; 262:130038. [PMID: 38336323 DOI: 10.1016/j.ijbiomac.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Frequent administrations are often needed during the treatment of ocular diseases due to the low bioavailability of the existing eye drops owing to inadequate corneal penetration and rapid drug washout. Herein, sodium alginate polymannuronate (SA) nanocarriers were developed using ionic gelation method that can provide better bioavailability through mucoadhesivity and sustained drug release by binding to the ocular mucus layer. This study disproves the common belief that only the G block of SA participates in the crosslinking reaction during ionic gelation. Self-assembly capability due to the linear flexible structure of the M block, better biocompatibility than G block along with the feasibility of controlling physicochemical characteristics postulate a high potential for designing efficient ocular drug delivery systems. Initially, four crosslinkers of varied concentrations were investigated. Taguchi design of experiment revealed the statistically significant effect of the crosslinker type and concentration on the particle size and stability. The best combination was detected by analyzing the particle size and zeta potential values that showed the desired microstructural properties for ocular barrier penetration. The desired combination was SA-Ca-1 that had particle size within the optimal corneal penetration range, that is 10-200 nm (135 nm). The drug carriers demonstrated excellent entrapment efficiency (∼89 % for Ciprofloxacin and ∼96 % for Dexamethasone) along with a sustained and simultaneous release of dual drug for at least 2 days. The nanoparticles also showed biocompatibility (4 ± 0.6 % hemolysis) and high mucoadhesivity (73 ± 2 % for 0.25 g) which was validated by molecular docking analysis. The prepared formulation was able to reduce the scleral inflammation of the rabbit uveitis models significantly within 3 days. Thus, the eye drop showed remarkable potential for efficient drug delivery leading to faster recovery.
Collapse
Affiliation(s)
- Nondita Datta
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Tohfatul Jinan
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | | | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
| |
Collapse
|
16
|
Dang M, Shoichet MS. Long-Acting Ocular Injectables: Are We Looking In The Right Direction? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306463. [PMID: 38018313 PMCID: PMC10885661 DOI: 10.1002/advs.202306463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Indexed: 11/30/2023]
Abstract
The complex anatomy and physiological barriers of the eye make delivering ocular therapeutics challenging. Generally, effective drug delivery to the eye is hindered by rapid clearance and limited drug bioavailability. Biomaterial-based approaches have emerged to enhance drug delivery to ocular tissues and overcome existing limitations. In this review, some of the most promising long-acting injectables (LAIs) in ocular drug delivery are explored, focusing on novel design strategies to improve therapeutic outcomes. LAIs are designed to enable sustained therapeutic effects, thereby extending local drug residence time and facilitating controlled and targeted drug delivery. Moreover, LAIs can be engineered to enhance drug targeting and penetration across ocular physiological barriers.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
17
|
van Mechelen RJS, Wolters JEJ, Fredrich S, Bertens CJF, Gijbels MJJ, Schenning APHJ, Pinchuk L, Gorgels TGMF, Beckers HJM. A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery. Macromol Biosci 2023; 23:e2300075. [PMID: 37249127 DOI: 10.1002/mabi.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.
Collapse
Affiliation(s)
- Ralph J S van Mechelen
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jarno E J Wolters
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Sebastian Fredrich
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Christian J F Bertens
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Marion J J Gijbels
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, A.M. Vree G1-146, Amsterdam, 1100 DD, Netherlands
| | - Albert P H J Schenning
- Laboratory of Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Technical University of Eindhoven, Eindhoven, 5600 MB, The Netherlands
| | - Leonard Pinchuk
- InnFocus Inc. a Santen company, 12415 S.W. 136 Avenue, Miami, FL, 33186, USA
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| | - Henny J M Beckers
- University Eye Clinic Maastricht, Maastricht University Medical Center+ (MUMC+), Maastricht, 6202 AZ, The Netherlands
| |
Collapse
|
18
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
19
|
Raveendran R, Prabakaran L, Senthil R, Yesudhason BV, Dharmalingam S, Sathyaraj WV, Atchudan R. Current Innovations in Intraocular Pressure Monitoring Biosensors for Diagnosis and Treatment of Glaucoma-Novel Strategies and Future Perspectives. BIOSENSORS 2023; 13:663. [PMID: 37367028 DOI: 10.3390/bios13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.
Collapse
Affiliation(s)
- Rubiya Raveendran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
20
|
Shen Y, Sun J, Sun X. Intraocular nano-microscale drug delivery systems for glaucoma treatment: design strategies and recent progress. J Nanobiotechnology 2023; 21:84. [PMID: 36899348 PMCID: PMC9999627 DOI: 10.1186/s12951-023-01838-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Glaucoma is a leading cause of irreversible visual impairment and blindness, affecting over 76.0 million people worldwide in 2020, with a predicted increase to 111.8 million by 2040. Hypotensive eye drops remain the gold standard for glaucoma treatment, while inadequate patient adherence to medication regimens and poor bioavailability of drugs to target tissues are major obstacles to effective treatment outcomes. Nano/micro-pharmaceuticals, with diverse spectra and abilities, may represent a hope of removing these obstacles. This review describes a set of intraocular nano/micro drug delivery systems involved in glaucoma treatment. Particularly, it investigates the structures, properties, and preclinical evidence supporting the use of these systems in glaucoma, followed by discussing the route of administration, the design of systems, and factors affecting in vivo performance. Finally, it concludes by highlighting the emerging notion as an attractive approach to address the unmet needs for managing glaucoma.
Collapse
Affiliation(s)
- Yuening Shen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jianguo Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
21
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
22
|
Nguyen DD, Luo LJ, Yang CJ, Lai JY. Highly Retina-Permeating and Long-Acting Resveratrol/Metformin Nanotherapeutics for Enhanced Treatment of Macular Degeneration. ACS NANO 2023; 17:168-183. [PMID: 36524981 DOI: 10.1021/acsnano.2c05824] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of therapeutics for effective treatments of retinal diseases is significantly constrained by various biological barriers. We herein report a nanomedicine strategy to develop nanotherapeutics featured with not only high retinal permeability but also sustained bioactive delivery. Specifically, the nanotherapeutics are rationally designed via aminolysis of resveratrol-encapsulated polycaprolactone nanoparticles (R@PCL NPs), followed by the formation of amide linkages with carboxyl-terminated transacting activator of transcription cell penetrating peptide (T) and metformin (M). The R@PCL-T/M NP nanotherapeutics are demonstrated in vitro to possess persistent drug release profiles, good ocular biocompatibility, and potent bioactive activities for targeting prevailing risk factors associated with retinal diseases. In vivo studies indicate that single-dose intravitreal administration of the R@PCL-T/M NPs can effectively improve retinal permeability (∼15-fold increase), prevent loss of endogenous antioxidants, and suppress the growth of abnormal vessels in the retina with macular degeneration for 56 days. This high treatment efficacy can be ascribed to the enhanced retinal permeability of the nanotherapeutics in conjunction with the sustained pharmacological activity of the dual drugs (R and M) in the retinal pigment epithelial region. These findings show a great promise for the development of pharmacological nanoformulations capable of targeting the retina and thereby treating complex posterior segment diseases with improved efficacies.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Jyuan Luo
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
23
|
Belamkar A, Harris A, Zukerman R, Siesky B, Oddone F, Verticchio Vercellin A, Ciulla TA. Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications. Ann Med 2022; 54:343-358. [PMID: 35076329 PMCID: PMC8794062 DOI: 10.1080/07853890.2021.1955146] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness. The disease has conventionally been characterized by an elevated intraocular pressure (IOP); however, recent research has built the consensus that glaucoma is not only dependent on IOP but rather represents a multifactorial optic neuropathy. Although many risk factors have been identified ranging from demographics to co-morbidities to ocular structural predispositions, IOP is currently the only modifiable risk factor, most often treated by topical IOP-lowering medications. However, topical hypotensive regimens are prone to non-adherence and are largely inefficient, leading to disease progression in spite of treatment. As a result, several companies are developing sustained release (SR) drug delivery systems as alternatives to topical delivery to potentially overcome these barriers. Currently, Bimatoprost SR (DurystaTM) from Allergan plc is the only FDA-approved SR therapy for POAG. Other SR therapies under investigation include: bimatoprost ocular ring (Allergan) (ClinicalTrials.gov identifier: NCT01915940), iDose® (Glaukos Corporation) (NCT03519386), ENV515 (Envisia Therapeutics) (NCT02371746), OTX-TP (Ocular Therapeutix) (NCT02914509), OTX-TIC (Ocular Therapeutix) (NCT04060144), and latanoprost free acid SR (PolyActiva) (NCT04060758). Additionally, a wide variety of technologies for SR therapeutics are under investigation including ocular surface drug delivery systems such as contact lenses and nanotechnology. While challenges remain for SR drug delivery technology in POAG management, this technology may shift treatment paradigms and dramatically improve outcomes.
Collapse
Affiliation(s)
- Aditya Belamkar
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alon Harris
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Zukerman
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Opthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brent Siesky
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Thomas A Ciulla
- Indiana University School of Medicine, Indianapolis, IN, USA.,Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
24
|
Torres-Vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-Brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022; 10:974218. [PMID: 36186591 PMCID: PMC9521742 DOI: 10.3389/fchem.2022.974218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12–24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| |
Collapse
|
25
|
Ke P, Qin Y, Shao Y, Han M, Jin Z, Zhou Y, Zhong H, Lu Y, Wu X, Zeng K. Preparation and evaluation of liposome with ropivacaine ion-pairing in local pain management. Drug Dev Ind Pharm 2022; 48:255-264. [PMID: 36026436 DOI: 10.1080/03639045.2022.2106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Local analgesia is one of the most desirable methods for postoperative pain control, while the existing local anesthetics have a short duration of analgesic effect. Nano-drug carriers have been widely used in various fields and provide an excellent strategy for traditional drugs. Although the existing liposomes for local anesthetics have certain advantages, their instability and complexity of the preparation process still cannot be ignored. Here, we developed novel ropivacaine hydrochloride liposomes with improved stability and sustained release performance by combining ropivacaine hydrochloride with sodium oleate in liposomes via hydrophobic ion-pairing (HIP). The liposomes are easy to prepare, inexpensive, and suitable for mass production. The infrared (IR), particle size, and Zeta potential measurements adequately characterized the complex, which showed a diameter of 81.09 nm and a zeta potential of -83.3 mV. Animal behavioral experiments, including the hot plate test and von Frey fiber test, demonstrated that the liposome system had a prolonged analgesic effect of 2 h versus conventional liposome preparations, consistent with the results of in vitro release experiments. In addition, in vitro cytotoxicity evaluations in RAW264.7 cells and in vivo evaluations revealed the biocompatibility and safety of the ropivacaine-sodium oleate ion-paired liposome (Rop-Ole-Lipo) system as a suitable local anesthetic for local pain management. Our findings provide a new idea for the preparation of local anesthetics.
Collapse
Affiliation(s)
- Peng Ke
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou, PR China
| | - Yaxin Qin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yeting Shao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Zihao Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaodan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College, Fujian Medical University, Fuzhou, PR China
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
26
|
Zhao Y, Huang C, Zhang Z, Hong J, Xu J, Sun X, Sun J. Sustained release of brimonidine from BRI@SR@TPU implant for treatment of glaucoma. Drug Deliv 2022; 29:613-623. [PMID: 35174743 PMCID: PMC8856066 DOI: 10.1080/10717544.2022.2039806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is the leading cause of irreversible vision loss worldwide, and reduction of intraocular pressure (IOP) is the only factor that can be interfered to delay disease progression. As the first line and preferred method to treat glaucoma, eye drops have many shortcomings, such as low bioavailability, poor patient compliance, and unsustainable therapeutic effect. In this study, a highly efficient brimonidine (BRI) silicone rubber implant (BRI@SR@TPU implant) has been designed, prepared, characterized, and administrated for sustained relief of IOP to treat glaucoma. The in vitro BRI release from BRI@SR@TPU implants shows a sustainable release profile for up to 35 d, with decreased burst release and increased immediate drug concentration. The carrier materials are not cytotoxic to human corneal epithelial cells and conjunctival epithelial cells, and show good biocompatibility, which can be safely administrated into rabbit’s conjunctival sac. The BRI@SR@TPU implant sustainably released BRI and effectively reduced IOP for 18 d (72 times) compared to the commercial BRI eye drops (6 h). The BRI@SR@TPU implant is thus a promising noninvasive platform product for long-term IOP-reducing in patients with glaucoma and ocular hypertension.
Collapse
Affiliation(s)
- Yujin Zhao
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhutian Zhang
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J Nanobiotechnology 2021; 19:436. [PMID: 34930292 PMCID: PMC8686547 DOI: 10.1186/s12951-021-01199-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Oxidative stress contributes to retina ganglion cells (RGCs) loss in variety of ocular diseases, including ocular trauma, ocular vein occlusion, and glaucoma. Scavenging the excessed reactive oxygen species (ROS) in retinal neurovascular unit could be beneficial to RGCs survival. In this study, a polydopamine (PDA)-based nanoplatform is developed to protect RGCs. Results The PDA nanoparticles efficiently eliminate multi-types of ROS, protect endothelia and neuronal cells from oxidative damage, and inhibit microglia activation in retinas. In an optic nerve crush (ONC) model, single intravitreal injection of PDA nanoparticles could significantly attenuate RGCs loss via eliminating ROS in retinas, reducing the inflammatory response and maintaining barrier function of retinal vascular endothelia. Comparative transcriptome analysis of the retina implied that PDA nanoparticles improve RGCs survival probably by altering the expression of genes involved in inflammation and ROS production. Importantly, as a versatile drug carrier, PDA nanoparticles could deliver brimonidine (a neuroprotection drug) to synergistically attenuate RGCs loss and promote axon regeneration, thus restore visual function. Conclusions The PDA nanoparticle-based therapeutic nanoplatform displayed excellent performance in ROS elimination, providing a promising probability for treating retinal degeneration diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01199-3.
Collapse
|
28
|
Xing Y, Zhu L, Zhang K, Li T, Huang S. Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:308-316. [PMID: 33739906 DOI: 10.1080/21691401.2021.1895184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Triamcinolone acetonide (TA) is widely indicated in the treatment of several ocular disorders, but the free drug suspension limits its clinical benefits and commercial compositions cause adverse ocular effects. In this study, TA was formulated in poly(d,l-lactide-co-glycolide) (PLGA)-chitosan (PLC) nanoparticles (NPs) for the treatment of ocular inflammatory diseases. TA-loaded PLC NPs exhibited excellent anti-inflammatory activity against human corneal epithelial (HCE) cells and significantly reduced the secretion of interleukin (IL)-6 in tumour necrosis factor (TNF)-α activated cells. In a rabbit model, TA-loaded PLC NPs did not show any typical clinical signs of eye inflammation and significantly alleviated inflammatory signs, compared with free TA suspension, at 24 h after a single dose. TA-loaded PLC NPs exhibited a greater aqueous humour transparency (%AHT), compared with that of normal saline (NS) or free TA suspension, indicating reduction in anterior chamber fogginess. Pharmacokinetic analysis of rabbit eyes revealed that TA-loaded PLC NPs peaked at 6 h. Substantial concentrations of TA were observed until 24 h, indicating the superiority of this PLC-based nanocarrier system. Overall, PLC-based NP formulations offer a new approach for the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yi Xing
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijuan Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaohua Huang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm 2021; 606:120926. [PMID: 34303818 DOI: 10.1016/j.ijpharm.2021.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated. Finally, the effect of varying polymer properties such as end functionalities, molecular weights, and lactide to glycolide ratios, on the characteristics of the produced microcapsules was studied. This was done by utilizing seven different grades of the polyester polymers. It was demonstrated that, within certain limits, drug loading is nearly proportional to the initial amounts of drug and water. Furthermore, drug encapsulation studies demonstrated that ester termination and increases in polymeric molecular weight result in lower drug loading and encapsulation efficiency. Moreover, drug release studies demonstrated that ester termination, increases in molecular weight, and increases in the lactide to glycolide ratio all result in slower drug release; this grants the ability to tailor the drug release duration from a few days to several weeks. In conclusion, such minor variations in polymer characteristics and formulation composition can result in dramatic changes in the properties of the produced microcapsules. These changes can be fine-tuned to obtain desirable long-acting microcapsules capable of encapsulating a variety of hydrophilic drugs which can be used in a wide range of applications.
Collapse
Affiliation(s)
| | - Bayan H Al-Anati
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yazan Al Thaher
- School of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ziad A Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
30
|
Stability and ocular biodistribution of topically administered PLGA nanoparticles. Sci Rep 2021; 11:12270. [PMID: 34112822 PMCID: PMC8192547 DOI: 10.1038/s41598-021-90792-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/11/2021] [Indexed: 11/08/2022] Open
Abstract
Polymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.
Collapse
|
31
|
Zhai Z, Cheng Y, Hong J. Nanomedicines for the treatment of glaucoma: Current status and future perspectives. Acta Biomater 2021; 125:41-56. [PMID: 33601065 DOI: 10.1016/j.actbio.2021.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Glaucoma is the global leading cause of irreversible blindness. It is a chronic progressive disorder and, therefore, often requires long-term management with drugs on patients' discretion. However, there is a shortage of antiglaucoma drugs in the current market due to their low bioavailability. This is because there are multiple biological barriers of the human eyes, thereby leading to increased demands for frequent dosage regimen per day of these drugs, which could result in concomitant side effects and eventually reduced patient compliance. Recently, nanomedicines have become optimized alternatives to conventional ophthalmic formulations due to advantages of improved barrier permeability, sustained drug release, tissue targeting, and lowered systemic absorption of instilled medications. These merits provide the active ingredients in these nanomedicines an effective manner to reach the ideal concentrations at sites of damaged nerves, offering a promising platform for neuroprotective treatment of these conditions. In this study, nanomedicines and nanomedicine-based novel strategies for pharmacotherapy of glaucoma were reviewed, including liposomes, niosomes, nanoparticles, and dendrimers. This article intends to offer a comprehensive review of frontier progresses as well as hotspots and issues that appeared in the field of nanomedicines, which may enable a practical flourish in the future. STATEMENT OF SIGNIFICANCE: Recent novel pharmaceutical strategies toward glaucoma, a chronic blinding ocular disease that currently requires frequent daily dosage regimen, based on nanomedicines and nanomaterials have been comprehensively reviewed in this manuscript. The collection of field hotspots and issues in the late years should offer a quick grasp of the general concept and up-to-date threads upon the refinement of existing treatment patterns for glaucoma. Meanwhile, the Conclusion and Future Perspective section given at the end of the text brings out the possible shortages and opinions in terms of ideal research direction, which hopefully could facilitate a future practical flourish in the area.
Collapse
Affiliation(s)
- Zimeng Zhai
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China.
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China; Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| |
Collapse
|
32
|
Arbeiter D, Reske T, Teske M, Bajer D, Senz V, Schmitz KP, Grabow N, Oschatz S. Influence of Drug Incorporation on the Physico-Chemical Properties of Poly(l-Lactide) Implant Coating Matrices-A Systematic Study. Polymers (Basel) 2021; 13:292. [PMID: 33477626 PMCID: PMC7831498 DOI: 10.3390/polym13020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Local drug delivery has become indispensable in biomedical engineering with stents being ideal carrier platforms. While local drug release is superior to systemic administration in many fields, the incorporation of drugs into polymers may influence the physico-chemical properties of said matrix. This is of particular relevance as minimally invasive implantation is frequently accompanied by mechanical stresses on the implant and coating. Thus, drug incorporation into polymers may result in a susceptibility to potentially life-threatening implant failure. We investigated spray-coated poly-l-lactide (PLLA)/drug blends using thermal measurements (DSC) and tensile tests to determine the influence of selected drugs, namely sirolimus, paclitaxel, dexamethasone, and cyclosporine A, on the physico-chemical properties of the polymer. For all drugs and PLLA/drug ratios, an increase in tensile strength was observed. As for sirolimus and dexamethasone, PLLA/drug mixed phase systems were identified by shifted drug melting peaks at 200 °C and 240 °C, respectively, whereas paclitaxel and dexamethasone led to cold crystallization. Cyclosporine A did not affect matrix thermal properties. Altogether, our data provide a contribution towards an understanding of the complex interaction between PLLA and different drugs. Our results hold implications regarding the necessity of target-oriented thermal treatment to ensure the shelf life and performance of stent coatings.
Collapse
Affiliation(s)
- Daniela Arbeiter
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
| | - Thomas Reske
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany;
| | - Michael Teske
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
| | - Dalibor Bajer
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
| | - Klaus-Peter Schmitz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
- Institute for Implant Technology and Biomaterials e.V., Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany;
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (M.T.); (D.B.); (V.S.); (K.-P.S.); (N.G.); (S.O.)
| |
Collapse
|
33
|
Kansara VS, Cooper M, Sesenoglu-Laird O, Muya L, Moen R, Ciulla TA. Suprachoroidally Delivered DNA Nanoparticles Transfect Retina and Retinal Pigment Epithelium/Choroid in Rabbits. Transl Vis Sci Technol 2020; 9:21. [PMID: 33364076 PMCID: PMC7745627 DOI: 10.1167/tvst.9.13.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose This study evaluated ocular tolerability and transfectability of nonviral DNA nanoparticles (DNPs) after microneedle-based suprachoroidal (SC) administration, in comparison to subretinal (SR) administration. Methods The DNPs consisted of a single copy of plasmid DNA with a polyubiquitin C/luciferase transcriptional cassette compacted with 10 kDa PEG-substituted lysine 30-mer peptides (CK30PEG10k). New Zealand White rabbits (n = 4 per group) received a unilateral SC injection (0.1 mL via a microneedle technique) of ellipsoid-shaped DNPs, rod-shaped DNPs, or saline (negative control). A cohort of rabbits (n = 4) also received a single unilateral SR injection (0.05 mL via a transvitreal approach) of rod-shaped DNPs. At day 7, luciferase activity was measured in the retina and retinal pigment epithelium (RPE)–choroid via bioluminescence assay. A cohort of rabbits received a SC injection of analogous DNPs to assess spread of DNP injectate in the suprachoroidal space (SCS) via optical coherent tomography and histology. Results Suprachoroidal injection of DNPs resulted in reversible opening of the SCS circumferentially and posteriorly and was generally well tolerated, with no significant ocular examination score changes, intraocular pressure abnormalities, or changes in electroretinography amplitudes on day 7 compared to the baseline. High luciferase activity was observed in the retina and RPE-choroid of eyes that received SC DNPs (rod and ellipsoid shape) and SR DNPs (rod shape) compared to controls. The mean luciferase activity in RPE-choroid and retina was comparable between SC and SR administrations. Transfection in the RPE-choroid was approximately 10-fold higher than in the retina after either SC or SR administration of DNPs. Conclusions Suprachoroidal and SR administration of DNPs resulted in comparable transfection of retina and RPE-choroid. Translational Relevance Suprachoroidal delivery of DNPs offers the potential to precisely target chorioretinal tissues while avoiding surgical risks associated with SR injection, and it may offer an office-based nonsurgical gene therapy option for the treatment of retinal diseases.
Collapse
Affiliation(s)
| | - Mark Cooper
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | | - Leroy Muya
- Clearside Biomedical, Inc., Alpharetta, GA, USA
| | - Robert Moen
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | |
Collapse
|