1
|
Snyder Y, Jana S. Innovative Substrate Design with Basement Membrane Components for Enhanced Endothelial Cell Function and Endothelization. Adv Healthc Mater 2024; 13:e2401150. [PMID: 39021293 DOI: 10.1002/adhm.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Cha E, Hong SH, Rai T, La V, Madabhushi P, Teramoto D, Fung C, Cheng P, Chen Y, Keklikian A, Liu J, Fang W, Thankam FG. Ischemic cardiac stromal fibroblast-derived protein mediators in the infarcted myocardium and transcriptomic profiling at single cell resolution. Funct Integr Genomics 2024; 24:168. [PMID: 39302489 PMCID: PMC11415418 DOI: 10.1007/s10142-024-01457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This article focuses on screening the major secreted proteins by the ischemia-challenged cardiac stromal fibroblasts (CF), the assessment of their expression status and functional role in the post-ischemic left ventricle (LV) and in the ischemia-challenged CF culture and to phenotype CF at single cell resolution based on the positivity of the identified mediators. The expression level of CRSP2, HSP27, IL-8, Cofilin-1, and HSP90 in the LV tissues following coronary artery bypass graft (CABG) and myocardial infarction (MI) and CF cells followed the screening profile derived from the MS/MS findings. The histology data unveiled ECM disorganization, inflammation and fibrosis reflecting the ischemic pathology. CRSP2, HSP27, and HSP90 were significantly upregulated in the LV-CABG tissues with a concomitant reduction ion LV-MI whereas Cofilin-1, IL8, Nrf2, and Troponin I were downregulated in LV-CABG and increased in LV-MI. Similar trends were exhibited by ischemic CF. Single cell transcriptomics revealed multiple sub-phenotypes of CF based on their respective upregulation of CRSP2, HSP27, IL-8, Cofilin-1, HSP90, Troponin I and Nrf2 unveiling pathological and pro-healing phenotypes. Further investigations regarding the underlying signaling mechanisms and validation of sub-populations would offer novel translational avenues for the management of cardiac diseases.
Collapse
Affiliation(s)
- Ed Cha
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Sung Ho Hong
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Taj Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Vy La
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Pranav Madabhushi
- Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Darren Teramoto
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Cameron Fung
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Pauline Cheng
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Yu Chen
- Molecular Instrumentation Center, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Angelo Keklikian
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Jeffrey Liu
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - William Fang
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
3
|
Ballester-Servera C, Alonso J, Cañes L, Vázquez-Sufuentes P, Puertas-Umbert L, Fernández-Celis A, Taurón M, Rodríguez-Sinovas A, López-Andrés N, Rodríguez C, Martínez-González J. Lysyl oxidase-dependent extracellular matrix crosslinking modulates calcification in atherosclerosis and aortic valve disease. Biomed Pharmacother 2023; 167:115469. [PMID: 37729730 DOI: 10.1016/j.biopha.2023.115469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Extracellular matrix (ECM) is an active player in cardiovascular calcification (CVC), a major public health issue with an unmet need for effective therapies. Lysyl oxidase (LOX) conditions ECM biomechanical properties; thus, we hypothesized that LOX might impact on mineral deposition in calcific aortic valve disease (CAVD) and atherosclerosis. LOX was upregulated in calcified valves from two cohorts of CAVD patients. Strong LOX immunostaining was detected surrounding calcified foci in calcified human valves and atherosclerotic lesions colocalizing with RUNX2 on valvular interstitial cells (VICs) or vascular smooth muscle cells (VSMCs). Both LOX secretion and organized collagen deposition were enhanced in calcifying VICs exposed to osteogenic media. β-aminopropionitrile (BAPN), an inhibitor of LOX, attenuated collagen deposition and calcification. VICs seeded onto decellularized matrices from BAPN-treated VICs calcified less than cells cultured onto control scaffolds; instead, VICs exposed to conditioned media from cells over-expressing LOX or cultured onto LOX-crosslinked matrices calcified more. Atherosclerosis was induced in WT and transgenic mice that overexpress LOX in VSMC (TgLOXVSMC) by AAV-PCSK9D374Y injection and high-fat feeding. In atherosclerosis-challenged TgLOXVSMC mice both atherosclerosis burden and calcification assessed by near-infrared fluorescence (NIRF) imaging were higher than in WT mice. These animals also exhibited larger calcified areas in atherosclerotic lesions from aortic arches and brachiocephalic arteries. Moreover, LOX transgenesis exacerbated plaque inflammation, and increased VSMC cellularity, the rate of RUNX2-positive cells and both connective tissue content and collagen cross-linking. Our findings highlight the relevance of LOX in CVC and postulate this enzyme as a potential therapeutic target for CVC.
Collapse
Affiliation(s)
- Carme Ballester-Servera
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Judith Alonso
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Paula Vázquez-Sufuentes
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Lídia Puertas-Umbert
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, IdiSNA, UPNA, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Manel Taurón
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, IdiSNA, UPNA, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, Spain.
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Barcelona, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.
| |
Collapse
|
4
|
Immohr MB, Teichert HL, Dos Santos Adrego F, Schmidt V, Sugimura Y, Bauer SJ, Barth M, Lichtenberg A, Akhyari P. Three-Dimensional Bioprinting of Ovine Aortic Valve Endothelial and Interstitial Cells for the Development of Multicellular Tissue Engineered Tissue Constructs. Bioengineering (Basel) 2023; 10:787. [PMID: 37508814 PMCID: PMC10376021 DOI: 10.3390/bioengineering10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the pathogenic mechanisms of calcified aortic valve disease (CAVD), it is necessary to develop a new three-dimensional model that contains valvular interstitial cells (VIC) and valvular endothelial cells (VEC). For this purpose, ovine aortic valves were processed to isolate VIC and VEC that were dissolved in an alginate/gelatin hydrogel. A 3D-bioprinter (3D-Bioplotter® Developer Series, EnvisionTec, Gladbeck, Germany) was used to print cell-laden tissue constructs containing VIC and VEC which were cultured for up to 21 days. The 3D-architecture, the composition of the culture medium, and the hydrogels were modified, and cell viability was assessed. The composition of the culture medium directly affected the cell viability of the multicellular tissue constructs. Co-culture of VIC and VEC with a mixture of 70% valvular interstitial cell and 30% valvular endothelial cell medium components reached the cell viability best tested with about 60% more living cells compared to pure valvular interstitial cell medium (p = 0.02). The tissue constructs retained comparable cell viability after 21 days (p = 0.90) with different 3D-architectures, including a "sandwich" and a "tube" design. Good long-term cell viability was confirmed even for thick multilayer multicellular tissue constructs. The 3D-bioprinting of multicellular tissue constructs with VEC and VIC is a successful new technique to design tissue constructs that mimic the structure of the native aortic valve for research applications of aortic valve pathologies.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Helena Lauren Teichert
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Fabió Dos Santos Adrego
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Vera Schmidt
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Sebastian Johannes Bauer
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Duesseldorf, Germany
- Department of Cardiac Surgery, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Schroeder ME, Batan D, Gonzalez Rodriguez A, Speckl KF, Peters DK, Kirkpatrick BE, Hach GK, Walker CJ, Grim JC, Aguado BA, Weiss RM, Anseth KS. Osteopontin activity modulates sex-specific calcification in engineered valve tissue mimics. Bioeng Transl Med 2023; 8:e10358. [PMID: 36684107 PMCID: PMC9842038 DOI: 10.1002/btm2.10358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue. Recognizing that OPN mediates calcification processes, we hypothesized that aortic valvular interstitial cells (VICs) in female tissue have reduced expression of osteogenic markers in the presence of elevated OPN relative to male VICs. Human female valve leaflets displayed reduced and smaller microcalcifications, but increased OPN expression relative to male leaflets. To understand how OPN expression contributes to observed sex dimorphisms in valve tissue, we employed enzymatically degradable hydrogels as a 3D cell culture platform to recapitulate male or female VIC interactions with the extracellular matrix. Using this system, we recapitulated sex differences observed in human tissue, specifically demonstrating that female VICs exposed to calcifying medium have smaller mineral deposits within the hydrogel relative to male VICs. We identified a change in OPN dynamics in female VICs in the presence of calcification stimuli, where OPN deposition localized from the extracellular matrix to perinuclear regions. Additionally, exogenously delivered endothelin-1 to encapsulated VICs increased OPN gene expression in male cells, which resulted in reduced calcification. Collectively, our results suggest that increased OPN in female valve tissue may play a sex-specific role in mitigating mineralization during AVS progression.
Collapse
Affiliation(s)
- Megan E. Schroeder
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kelly F. Speckl
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Douglas K. Peters
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Grace K. Hach
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Cierra J. Walker
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Sanford Consortium for Regenerative MedicineLa JollaCaliforniaUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
6
|
Immohr MB, Dos Santos Adrego F, Teichert HL, Schmidt V, Sugimura Y, Bauer S, Barth M, Lichtenberg A, Akhyari P. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Biomed Mater 2022; 18. [PMID: 36322974 DOI: 10.1088/1748-605x/ac9f91] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
Calcific aortic valve disease (CAVD) is a frequent cardiac pathology in the aging society. Although valvular interstitial cells (VICs) seem to play a crucial role, mechanisms of CAVD are not fully understood. Development of tissue-engineered cellular models by 3D-bioprinting may help to further investigate underlying mechanisms of CAVD. VIC were isolated from ovine aortic valves and cultured in Dulbecco's modified Eagle's Medium (DMEM). VIC of passages six to ten were dissolved in a hydrogel consisting of 2% alginate and 8% gelatin with a concentration of 2 × 106VIC ml-1. Cell-free and VIC-laden hydrogels were printed with an extrusion-based 3D-bioprinter (3D-Bioplotter®Developer Series, EnvisionTec, Gladbeck, Germany), cross-linked and incubated for up to 28 d. Accuracy and durability of scaffolds was examined by microscopy and cell viability was tested by cell counting kit-8 assay and live/dead staining. 3D-bioprinting of scaffolds was most accurate with a printing pressure ofP< 400 hPa, nozzle speed ofv< 20 mm s-1, hydrogel temperature ofTH= 37 °C and platform temperature ofTP= 5 °C in a 90° parallel line as well as in a honeycomb pattern. Dissolving the hydrogel components in DMEM increased VIC viability on day 21 by 2.5-fold compared to regular 0.5% saline-based hydrogels (p< 0.01). Examination at day 7 revealed dividing and proliferating cells. After 21 d the entire printed scaffolds were filled with proliferating cells. Live/dead cell viability/cytotoxicity staining confirmed beneficial effects of DMEM-based cell-laden VIC hydrogel scaffolds even 28 d after printing. By using low pressure printing methods, we were able to successfully culture cell-laden 3D-bioprinted VIC scaffolds for up to 28 d. Using DMEM-based hydrogels can significantly improve the long-term cell viability and overcome printing-related cell damage. Therefore, future applications 3D-bioprinting of VIC might enable the development of novel tissue engineered cellular 3D-models to examine mechanisms involved in initiation and progression of CAVD.
Collapse
Affiliation(s)
- Moritz Benjamin Immohr
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fabió Dos Santos Adrego
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Helena Lauren Teichert
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Vera Schmidt
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Bauer
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,CARID-Cardiovascular Research Institute Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Nogueira LFB, Maniglia BC, Buchet R, Millán JL, Ciancaglini P, Bottini M, Ramos AP. Three-dimensional cell-laden collagen scaffolds: From biochemistry to bone bioengineering. J Biomed Mater Res B Appl Biomater 2021; 110:967-983. [PMID: 34793621 DOI: 10.1002/jbm.b.34967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022]
Abstract
The bones can be viewed as both an organ and a material. As an organ, the bones give structure to the body, facilitate skeletal movement, and provide protection to internal organs. As a material, the bones consist of a hybrid organic/inorganic three-dimensional (3D) matrix, composed mainly of collagen, noncollagenous proteins, and a calcium phosphate mineral phase, which is formed and regulated by the orchestrated action of a complex array of cells including chondrocytes, osteoblasts, osteocytes, and osteoclasts. The interactions between cells, proteins, and minerals are essential for the bone functions under physiological loading conditions, trauma, and fractures. The organization of the bone's organic and inorganic phases stands out for its mechanical and biological properties and has inspired materials research. The objective of this review is to fill the gaps between the physical and biological characteristics that must be achieved to fabricate scaffolds for bone tissue engineering with enhanced performance. We describe the organization of bone tissue highlighting the characteristics that have inspired the development of 3D cell-laden collagenous scaffolds aimed at replicating the mechanical and biological properties of bone after implantation. The role of noncollagenous macromolecules in the organization of the collagenous matrix and mineralization ability of entrapped cells has also been reviewed. Understanding the modulation of cell activity by the extracellular matrix will ultimately help to improve the biological performance of 3D cell-laden collagenous scaffolds used for bone regeneration and repair as well as for in vitro studies aimed at unravelling physiological and pathological processes occurring in the bone.
Collapse
Affiliation(s)
- Lucas Fabricio Bahia Nogueira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil.,Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Bianca C Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), São Paulo, Brazil
| |
Collapse
|
8
|
Antognelli C, Marinucci L, Frosini R, Macchioni L, Talesa VN. Metastatic Prostate Cancer Cells Secrete Methylglyoxal-Derived MG-H1 to Reprogram Human Osteoblasts into a Dedifferentiated, Malignant-like Phenotype: A Possible Novel Player in Prostate Cancer Bone Metastases. Int J Mol Sci 2021; 22:ijms221910191. [PMID: 34638532 PMCID: PMC8508123 DOI: 10.3390/ijms221910191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Bone metastases from prostate cancer (PCa) result from a complex cross-talk between PCa cells and osteoblasts (OB). Thus, targeting this interplay has become an attractive strategy to interfere with PCa bone dissemination. The agents currently used in clinical trials have proved ineffective, boosting research to identify additional mechanisms that may be involved in this two-directional talk. Here, we investigated whether and how 5-hydro-5-methylimidazolone (MG-H1), a specific methylglyoxal (MG)-derived advanced glycation end product (AGE), was a novel player in the dialogue between PCa and OB to drive PCa bone metastases. Conditioned medium from osteotropic PC3 PCa cells, pre-treated or not with a specific MG scavenger, was administrated to human primary OB and cell morphology, mesenchymal trans-differentiation, pro-osteogenic determinants, PCa-specific molecules, and migration/invasion were studied by phase-contrast microscopy, real-time PCR, western blot and specific assays, respectively. We found that PC3 cells were able to release MG-H1 that, by binding to the receptor for AGEs (RAGE) on OB, reprogrammed them into a less-differentiate phenotype, endowed with some PCa-specific molecular features and malignant properties, in a mechanism involving reactive oxidative species (ROS) production and NF-kB pathway activation. These findings provide novel insights into the mechanisms of PCa osteoblastic metastases and foster in vivo research toward new therapeutic strategies interfering with PCa/OB cross-talk.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
- Correspondence: ; Tel.: +39-075-585-8354
| | - Lorella Marinucci
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| | - Roberta Frosini
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| | - Lara Macchioni
- Department of Medicine and Surgery, Biochemistry and Physiology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy;
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Bioscience and Medical Embryology Division, University of Perugia, L. Severi Square, 06129 Perugia, Italy; (L.M.); (R.F.); (V.N.T.)
| |
Collapse
|
9
|
Kim S, Nowicki KW, Gross BA, Wagner WR. Injectable hydrogels for vascular embolization and cell delivery: The potential for advances in cerebral aneurysm treatment. Biomaterials 2021; 277:121109. [PMID: 34530233 DOI: 10.1016/j.biomaterials.2021.121109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral aneurysms are vascular lesions caused by the biomechanical failure of the vessel wall due to hemodynamic stress and inflammation. Aneurysmal rupture results in subarachnoid hemorrhage often leading to death or disability. Current treatment options include open surgery and minimally invasive endovascular options aimed at secluding the aneurysm from the circulation. Cerebral aneurysm embolization with appropriate materials is a therapeutic approach to prevent rupture and the resultant clinical sequelae. Metallic platinum coils are a typical, practical option to embolize cerebral aneurysms. However, the development of an alternative treatment modality is of interest because of poor occlusion permanence, coil migration, and coil compaction. Moreover, minimizing the implanted foreign materials during therapy is of importance not just to patients, but also to clinicians in the event an open surgical approach has to be pursued in the future. Polymeric injectable hydrogels have been investigated for transcatheter embolization and cell therapy with the potential for permanent aneurysm repair. This review focuses on how the combination of injectable embolic biomaterials and cell therapy may achieve minimally invasive remodeling of a degenerated cerebral artery with promise for superior outcomes in treatment of this devastating disease.
Collapse
Affiliation(s)
- Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kamil W Nowicki
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Engineering the aortic valve extracellular matrix through stages of development, aging, and disease. J Mol Cell Cardiol 2021; 161:1-8. [PMID: 34339757 DOI: 10.1016/j.yjmcc.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
For such a thin tissue, the aortic valve possesses an exquisitely complex, multi-layered extracellular matrix (ECM), and disruptions to this structure constitute one of the earliest hallmarks of fibrocalcific aortic valve disease (CAVD). The native valve structure provides a challenging target for engineers to mimic, but the development of advanced, ECM-based scaffolds may enable mechanistic and therapeutic discoveries that are not feasible in other culture or in vivo platforms. This review first discusses the ECM changes that occur during heart valve development, normal aging, onset of early-stage disease, and progression to late-stage disease. We then provide an overview of the bottom-up tissue engineering strategies that have been used to mimic the valvular ECM, and opportunities for advancement in these areas.
Collapse
|
11
|
Effects of basic fibroblast growth factor combined with an injectable in situ crosslinked hyaluronic acid hydrogel for a dermal filler. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|