1
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Zheng Z, Zhang Y, Xing J, Li X, Zhu Z, Ye M, Shen S, Xu RX. Combinatory electric-field-guided deposition for spatial microparticles patterning. Mater Today Bio 2024; 28:101207. [PMID: 39285943 PMCID: PMC11403263 DOI: 10.1016/j.mtbio.2024.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Spatial deposition and patterning of microparticles are crucial in chemistry, medicine, and biology. Existing technologies like electric force manipulation, despite precise trajectory control, struggle with complex and personalized patterns. Key challenges include adjusting the quantity of particles deposited in different areas and accurately depositing particles in non-continuous patterns. Here, we present a rational process termed combinatory electric-field-guided deposition (CED) for achieving spatially regulated microparticle deposition on insulative substrates. This process involves coating the substrates with insulating materials like PVP and positioning it on a relief-patterned negative electrode. The negative electric field generated by the electrode attracts microparticles, while the positive surface charges on the substrates repel microparticles, resulting in the formation of a potential well over the electrode area. Consequently, this configuration enables precise control over microparticle deposition without the need for direct contact with the substrate's surface, simplifying the process of switching masks to meet varying microparticle deposition requirements. Furthermore, we demonstrate the customization of patterned microparticles on superhydrophobic coatings to regulate cell distribution, as well as the successful loading of drug-laden microparticles onto antibacterial bandages to match the areas of skin lesions. These applications underscore the versatility of CED across chemical, medical, and bioengineering domains.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jinyu Xing
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Li
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Min Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Shuwei Shen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| |
Collapse
|
3
|
Hua M, Pan Y, Jiang C, Yu P, Li X, Gao Y, Xu S, Pan G. A facile strategy for the preparation of polylactide nano-microspheres with enhanced stereo-complexations. RSC Adv 2024; 14:30192-30200. [PMID: 39315020 PMCID: PMC11418589 DOI: 10.1039/d4ra04919e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Stereo-complexed polylactide (sc-PLA) nano-microspheres were separated by adding poor solvent to the poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend solution. The effects of different process parameters (concentration, processing method, ratio of PLLA/PDLA blend solution to poor solvent) on the microsphere particle size were investigated. The microscopic morphology, crystallinity, and thermal properties were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, two-dimensional wide-angle X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results indicated that when the concentration reached 10 wt% and the PLLA/PDLA blend solution to poor solvent ratio was 1 : 5, the sc-PLA nano-microspheres exhibited more regular shape, good sphericity and uniform particle size, and the highest crystallinity. Additionally, the degree of crystallinity of the stereo-complexed crystals was as high as 39.60%, the rate of stereo-complexation was 99.65%, and the melting temperature reached 220 °C, indicating notable improvement in the crystallization and thermal properties. The sc-PLA nano-microspheres obtained in this research could be used as a nucleating agent for fibers and drug delivery carrier, and the sc-PLA nano-microspheres have broad application prospects in the textile and biomedical fields.
Collapse
Affiliation(s)
- Ming Hua
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Ying Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Changmei Jiang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Peiyan Yu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Xingang Li
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Yao Gao
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Sijun Xu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| | - Gangwei Pan
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University Nantong 226019 China
| |
Collapse
|
4
|
Li J, Xu J, Wang Y, Chen Y, Ding Y, Gao W, Tan Y, Ge N, Chen Y, Ge S, Yang Q, He B, Ye X. Fusible and Radiopaque Microspheres for Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405224. [PMID: 39118578 DOI: 10.1002/adma.202405224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Indexed: 08/10/2024]
Abstract
In this work, fusible microspheres loaded with radiopaque agents as an embolic agent for transcatheter arterial embolization (TAE) are developed. A poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) multi-block copolymer basing polyurethane (PCEU) is synthesized and fabricated into blank microspheres (BMs). The microspheres are elastic in compression test. A clinical contrast agent lipiodol is encapsulated in the microspheres to receive fusible radiopaque microspheres (FRMs). The sizes of FRMs are uniform and range from 142.2 to 343.1 µm. The encapsulated lipiodol acts as the plasticizer to reduce the melting temperature point (Tm) of PECU microspheres, thus, leading to the fusion of microspheres to exhibit efficient embolization in vivo. The performance of FRMs is carried out on a rabbit ear embolization model. Serious ischemic necrosis is observed and the radiopacity of FRMs sustains much longer time than that of commercial contrast agent Loversol in vivo. The fusible and radiopaque microsphere is promising to be developed as an exciting embolic agent.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Jingyi Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yue Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yexiong Tan
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Naijian Ge
- Intervention Center, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yibin Chen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Shennian Ge
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Qi Yang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
5
|
Liu X, Bai Y, Zhou B, Yao W, Song S, Liu J, Zheng C. Recent advances in hepatocellular carcinoma-targeted nanoparticles. Biomed Mater 2024; 19:042004. [PMID: 38697209 DOI: 10.1088/1748-605x/ad46d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the field of medicine, we often brave the unknown like interstellar explorers, especially when confronting the formidable opponent of hepatocellular carcinoma (HCC). The global burden of HCC remains significant, with suboptimal treatment outcomes necessitating the urgent development of novel drugs and treatments. While various treatments for liver cancer, such as immunotherapy and targeted therapy, have emerged in recent years, improving their transport and therapeutic efficiency, controlling their targeting and release, and mitigating their adverse effects remains challenging. However, just as we grope through the darkness, a glimmer of light emerges-nanotechnology. Recently, nanotechnology has attracted attention because it can increase the local drug concentration in tumors, reduce systemic toxicity, and has the potential to enhance the effectiveness of precision therapy for HCC. However, there are also some challenges hindering the clinical translation of drug-loaded nanoparticles (NPs). Just as interstellar explorers must overcome interstellar dust, we too must overcome various obstacles. In future researches, the design and development of nanodelivery systems for novel drugs treating HCC should be the first attention. Moreover, researchers should focus on the active targeting design of various NPs. The combination of the interventional therapies and drug-loaded NPs will greatly advance the process of precision HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Binqian Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Song W, Li L, Liu X, Zhu Y, Yu S, Wang H, Wang L. Hydrogel microrobots for biomedical applications. Front Chem 2024; 12:1416314. [PMID: 38841335 PMCID: PMC11150770 DOI: 10.3389/fchem.2024.1416314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Recent years have witnessed a surge in the application of microrobots within the medical sector, with hydrogel microrobots standing out due to their distinctive advantages. These microrobots, characterized by their exceptional biocompatibility, adjustable physico-mechanical attributes, and acute sensitivity to biological environments, have emerged as pivotal tools in advancing medical applications such as targeted drug delivery, wound healing enhancement, bio-imaging, and precise surgical interventions. The capability of hydrogel microrobots to navigate and perform tasks within complex biological systems significantly enhances the precision, efficiency, and safety of therapeutic procedures. Firstly, this paper delves into the material classification and properties of hydrogel microrobots and compares the advantages of different hydrogel materials. Furthermore, it offers a comprehensive review of the principal categories and recent innovations in the synthesis, actuation mechanisms, and biomedical application of hydrogel-based microrobots. Finally, the manuscript identifies prevailing obstacles and future directions in hydrogel microrobot research, aiming to furnish insights that could propel advancements in this field.
Collapse
Affiliation(s)
- Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of HIT, Chongqing, China
| | - Leike Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Department of Medical Imaging, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
8
|
Guo B, Chen T, Hu X, Yang C, Shi Z, Wang Z, Wu X, Shen S, Ding W, Huang F, Zhu Z, Xu RX. Programmable Photoswitchable Microcapsules Enable Precise and Tailored Drug Delivery from Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6447-6461. [PMID: 38266393 DOI: 10.1021/acsami.3c17621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The development of precision personalized medicine poses a significant need for the next generation of advanced diagnostic and therapeutic technologies, and one of the key challenges is the development of highly time-, space-, and dose-controllable drug delivery systems that respond to the complex physiopathology of patient populations. In response to this challenge, an increasing number of stimuli-responsive smart materials are integrated into biomaterial systems for precise targeted drug delivery. Among them, responsive microcapsules prepared by droplet microfluidics have received much attention. In this study, we present a UV-visible light cycling mediated photoswitchable microcapsule (PMC) with dynamic permeability-switching capability for precise and tailored drug release. The PMCs were fabricated using a programmable pulsed aerodynamic printing (PPAP) technique, encapsulating an aqueous core containing magnetic nanoparticles and the drug doxorubicin (DOX) within a poly(lactic-co-glycolic acid) (PLGA) composite shell modified by PEG-b-PSPA. Selective irradiation of PMCs with ultraviolet (UV) or visible light (Vis) allows for high-precision time-, space-, and dose-controlled release of the therapeutic agent. An experimentally validated theoretical model was developed to describe the drug release pattern, holding promise for future customized programmable drug release applications. The therapeutic efficacy and value of patternable cancer cell treatment activated by UV radiation is demonstrated by our experimental results. After in vitro transcatheter arterial chemoembolization (TACE), PMCs can be removed by external magnetic fields to mitigate potential side effects. Our findings demonstrate that PMCs have the potential to integrate embolization, on-demand drug delivery, magnetic actuation, and imaging properties, highlighting their immense potential for tailored drug delivery and embolic therapy.
Collapse
Affiliation(s)
- Buyun Guo
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xianglong Hu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Chen Yang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengdi Shi
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaojun Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shuwei Shen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
9
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
10
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
11
|
Xiao L, Li Y, Geng R, Chen L, Yang P, Li M, Luo X, Yang Y, Li L, Cai H. Polymer composite microspheres loading 177Lu radionuclide for interventional radioembolization therapy and real-time SPECT imaging of hepatic cancer. Biomater Res 2023; 27:110. [PMID: 37925456 PMCID: PMC10625707 DOI: 10.1186/s40824-023-00455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Transarterial radioembolization (TARE) with 90Y-labeled glass and resin microspheres is one of the primary treatment strategies for advanced-stage primary and metastatic hepatocellular carcinoma (HCC). However, difficulties of real-time monitoring post administration and embolic hypoxia influence treatment prognosis. In this study, we developed a new biodegradable polymer microsphere that can simultaneously load 177Lu and MgO nanoparticle, and evaluated the TARE therapeutic efficacy and biosafety of 177Lu-PDA-CS-MgO microspheres for HCC treatment. METHODS Chitosan microspheres were synthesized through emulsification crosslink reaction and then conducted surface modification with polydopamine (PDA). The 177Lu and nano MgO were conjugated to microspheres using active chemical groups of PDA. The characteristics of radionuclide loading efficiency, biodegradability, blood compatibility, and anti-tumor effectwere evaluated both in vitro and in vivo. SPECT/CT imaging was performed to monitor bio-distribution and bio-stability of 177Lu-PDA-CS-MgO after TARE treatment. The survival duration of each rat was monitored. HE analysis, TUNEL analysis, immunohistochemical analysis, and western blot analysis were conducted to explore the anti-tumor effect and mechanism of composited microspheres. Body weight, liver function, blood routine examination were monitored at different time points to evaluate the bio-safety of microspheres. RESULTS The composite 177Lu-PDA-CS-MgO microsphere indicated satisfactory degradability, biocompatibility, radionuclide loading efficiency and radiochemical stability in vitro. Cellular evaluation showed that 177Lu-PDA-CS-MgO had significant anti-tumor effect and blocked tumor cell cycles in S phase. Surgical TARE treatment with 177Lu-PDA-CS-MgO significantly prolonged the medial survival time from 49 d to 105 d, and effectively inhibited primary tumor growth and small metastases spreading. Moreover, these microspheres indicated ideal in vivo stability and allowed real-time SPECT/CT monitoring for up to 8 weeks. Immunostaining and immunoblotting results also confirmed that 177Lu-PDA-CS-MgO had potential in suppressing tumor invasion and angiogenesis, and improved embolic hypoxia in HCC tissues. Further evaluations of body weight, blood test, and pathological analysis indicated good biosafety of 177Lu-PDA-CS-MgO microspheres in vivo. CONCLUSION Our study demonstrated that 177Lu-PDA-CS-MgO microsphere hold great potential as interventional brachytherapy candidate for HCC therapy. Polymer composite microspheres loading 177Lu radionuclide and MgO nanoparticles for interventional radioembolization therapy and real-time SPECT imaging of hepatic cancer.
Collapse
Affiliation(s)
- Liu Xiao
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yuhao Li
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ruiman Geng
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P.R. China
| | - Mingyu Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Xia Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, P.R. China
| | - Lin Li
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Huawei Cai
- Department of Nuclear Medicine & Laboratary of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
12
|
Zheng Z, Zhang H, Qian K, Li L, Shi D, Zhang R, Li L, Yu H, Zheng C, Xie S, Zhao Y, Yang X. Wood structure-inspired injectable lignin-based nanogels as blood-vessel-embolic sustained drug-releasing stent for interventional therapies on liver cancer. Biomaterials 2023; 302:122324. [PMID: 37738740 DOI: 10.1016/j.biomaterials.2023.122324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/17/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
An embolic reagent with easy injection, well-controlled target embolization, and sustained release of chemotherapy drugs is urgently needed for successful trans-arterial chemo-embolization (TACE) treatment. However, the development of a highly effective embolic reagent is still challenged. Here, inspired and guided by the structural supporting properties and defense mechanisms of wood cell walls, an ideal lignin-based embolic nanogel (DOX-pN-KL) was explored. Based on the mechanical support of branched lignin and the π-π stacking force between the lignin aromatic ring with anti-tumor drug doxorubicin (DOX), DOX-pN-KL showed the highest mechanical strength among the reported thermosensitive embolization nanogel and performed high drug-loading and favorable sustained-release. Moreover, further TACE treatment and tumor microenvironment evaluation of VX2 tumor-bearing rabbits showed that this nanogel can completely block all levels of vessels in long term and continuously release DOX, thus having effective inhibition on tumor growth and metastasis. DOX-pN-KL is expected to be a promising alternative reagent for interventional therapy.
Collapse
Affiliation(s)
- Ze Zheng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China
| | - Hongsen Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Kun Qian
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ling Li
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China; Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074, Wuhan City, China
| | - Ran Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Ling Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China
| | - Hongbo Yu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Shangxian Xie
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China.
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China; Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074, Wuhan City, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China; Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074, Wuhan City, China
| |
Collapse
|
13
|
Chi H, Qiu Y, Ye X, Shi J, Li Z. Preparation strategy of hydrogel microsphere and its application in skin repair. Front Bioeng Biotechnol 2023; 11:1239183. [PMID: 37555079 PMCID: PMC10405935 DOI: 10.3389/fbioe.2023.1239183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
In recent years, hydrogel microsphere has attracted much attention due to its great potential in the field of skin repair. This paper reviewed the recent progress in the preparation strategy of hydrogel microsphere and its application in skin repair. In this review, several preparation methods of hydrogel microsphere were summarized in detail. In addition, the related research progress of hydrogel microspheres for skin repair was reviewed, and focused on the application of bioactive microspheres, antibacterial microspheres, hemostatic microspheres, and hydrogel microspheres as delivery platforms (hydrogel microspheres as a microcarrier of drugs, bioactive factors, or cells) in the field of skin repair. Finally, the limitations and future prospects of the development of hydrogel microspheres and its application in the field of skin repair were presented. It is hoped that this review can provide a valuable reference for the development of the preparation strategy of hydrogel microspheres and promote the application of hydrogel microspheres in skin repair.
Collapse
Affiliation(s)
- Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Yunqi Qiu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Ye
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jielin Shi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| |
Collapse
|
14
|
Shen Y, Zhang B, Yi Z, Zhang L, Ling J, Wang S, Sun Z, Iqbal MZ, Kong X. Microfluidic fabrication of X-ray-visible sodium hyaluronate microspheres for embolization. RSC Adv 2023; 13:20512-20519. [PMID: 37435366 PMCID: PMC10331790 DOI: 10.1039/d3ra02812g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Catheter embolization is a minimally invasive technique that relies on embolic agents and is now widely used to treat various high-prevalence medical diseases. Embolic agents usually need to be combined with exogenous contrasts to visualize the embolotherapy process. However, the exogenous contrasts are quite simply washed away by blood flow, making it impossible to monitor the embolized location. To solve this problem, a series of sodium hyaluronate (SH) loaded with bismuth sulfide (Bi2S3) nanorods (NRs) microspheres (Bi2S3@SH) were prepared in this study by using 1,4-butaneglycol diglycidyl ether (BDDE) as a crosslinker through single-step microfluidics. Bi2S3@SH-1 microspheres showed the best performance among other prepared microspheres. The fabricated microspheres had uniform size and good dispersibility. Furthermore, the introduction of Bi2S3 NRs synthesized by a hydrothermal method as Computed Tomography (CT) contrast agents improved the mechanical properties of Bi2S3@SH-1 microspheres and endowed the microspheres with excellent X-ray impermeability. The blood compatibility and cytotoxicity test showed that the Bi2S3@SH-1 microspheres had good biocompatibility. In particular, the in vitro simulated embolization experiment results indicate that the Bi2S3@SH-1 microspheres had excellent embolization effect, especially for the small-sized blood vessels of 500-300 and 300 μm. The results showed the prepared Bi2S3@SH-1 microspheres have good biocompatibility and mechanical properties, as well as certain X-ray visibility and excellent embolization effects. We believe that the design and combination of this material has good guiding significance in the field of embolotherapy.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Baoqu Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zihan Yi
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Lan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Jing Ling
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zhichao Sun
- The Department of Medical Imaging, The First Medical College of Zhejiang Chinese Medical University Hangzhou 310053 China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| |
Collapse
|
15
|
Wang Y, Wu X, Bao X, Mou X. Progress in the Mechanism of the Effect of Fe 3O 4 Nanomaterials on Ferroptosis in Tumor Cells. Molecules 2023; 28:molecules28114562. [PMID: 37299036 DOI: 10.3390/molecules28114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Ferroptosis is a new form of iron-dependent programmed cell death discovered in recent years, which is caused by the accumulation of lipid peroxidation (LPO) and reactive oxygen species (ROS). Recent studies have shown that cellular ferroptosis is closely related to tumor progression, and the induction of ferroptosis is a new means to inhibit tumor growth. Biocompatible Fe3O4 nanoparticles (Fe3O4-NPs), rich in Fe2+ and Fe3+, act as a supplier of iron ions, which not only promote ROS production but also participate in iron metabolism, thus affecting cellular ferroptosis. In addition, Fe3O4-NPs combine with other techniques such as photodynamic therapy (PDT); heat stress and sonodynamic therapy (SDT) can further induce cellular ferroptosis effects, which then enhance the antitumor effects. In this paper, we present the research progress and the mechanism of Fe3O4-NPs to induce ferroptosis in tumor cells from the perspective of related genes and chemotherapeutic drugs, as well as PDT, heat stress, and SDT techniques.
Collapse
Affiliation(s)
- Yaxuan Wang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xiao Wu
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
| | - Xiaoying Bao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
16
|
Chen M, Guo X, Shen L, Ding J, Yu J, Chen X, Wu F, Tu J, Zhao Z, Nakajima M, Song J, Shu G, Ji J. Monodisperse CaCO 3-loaded gelatin microspheres for reversing lactic acid-induced chemotherapy resistance during TACE treatment. Int J Biol Macromol 2023; 231:123160. [PMID: 36610575 DOI: 10.1016/j.ijbiomac.2023.123160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Transarterial chemoembolization (TACE) is an important approach for the treatment of unresectable hepatocellular carcinoma (HCC). However, the lactic acid-induced acidic tumor microenvironment (TME) may reduce the therapeutic outcome of TACE. Herein, monodispersed gelatin microspheres loaded with calcium carbonate nanoparticles (CaNPs@Gel-MS) as novel embolic agents were prepared by a simplified microfluidic device. It was found that the particle size and homogeneity of as-prepared CaNPs@Gel-MS were strongly dependent on the flow rates of continuous and dispersed phases, and the inner diameter of syringe needle. The introduction of CaNPs provided the gelatin microspheres with an enhanced ability to encapsulate the chemotherapeutic drug of DOX, as well as a pH-responsive sustained drug release behavior. In vitro results revealed that CaNPs@Gel-MS could largely increase the cellular uptake and chemotoxicity of DOX by neutralizing the lactic acid in the culture medium. In addition, CaNPs@Gel-MS exhibited an excellent and persistent embolic efficiency in a rabbit renal model. Finally, we found that TACE treatment with DOX-loaded CaNPs@Gel-MS (DOX/CaNPs@Gel-MS) had a much stronger ability to inhibit tumor growth than the DOX-loaded gelatin microspheres without CaNPs (DOX@Gel-MS). Overall, CaNPs@Gel-MS could be a promising embolic microsphere that can significantly improve anti-HCC ability by reversing lactic acid-induced chemotherapy resistance during TACE treatment.
Collapse
Affiliation(s)
- Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Xiaoju Guo
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoxiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Fazong Wu
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China.
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China.
| |
Collapse
|
17
|
Yang M, Abdalkarim SYH, Yu HY, Asad RA, Ge D, Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics. Carbohydr Polym 2022; 301:120350. [DOI: 10.1016/j.carbpol.2022.120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
|
18
|
Wei C, Wu C, Jin X, Yin P, Yu X, Wang C, Zhang W. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization. Acta Biomater 2022; 153:453-464. [PMID: 36167241 DOI: 10.1016/j.actbio.2022.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
The embolic microspheres containing magnetic nanoparticles and anti-tumor drugs have been proposed for transcatheter arterial chemoembolization (TACE). However, this technique still suffers the poor control of hyperthermia temperature and drug release behavior. Herein, the magnetic microspheres based on low Curie temperature superparamagnetic iron oxide nanoparticles are developed by emulsification cross-linking of gelatin, genipin, and sodium alginate. The magnetic microspheres can self-regulate the hyperthermia temperature at around 50°C, un-necessitating any temperature control facilities. The magnetic microspheres can load doxorubicin hydrochloride and the loaded drug can be released in a controllable way by using an alternating magnetic field. Cytocompatibility and hemolysis evaluations confirm the non-cytotoxicity and negligible hemolysis of magnetic microspheres. The embolization model on rabbit auricular artery demonstrates that the magnetic microspheres can occlude the targeted blood vessel and are visualized under CT/MR imaging. All these findings suggest that the prepared magnetic microspheres could be used as the embolic agent in TACE. STATEMENT OF SIGNIFICANCE: The existing magnetic embolic microspheres suffer the poor control of hyperthermia temperature and drug release behavior in TACE. In this work, we developed the magnetic embolic microspheres based on superparamagnetic iron oxide nanoparticles with a low Curie temperature. Upon the application of alternating magnetic field, the embolic microspheres can self-regulate the hyperthermia temperature at around 50°C and the drug loaded in the microspheres can be released in a somewhat controllable manner. The embolic microspheres are also detectable to both CT and MR. These characteristics enable the developed microspheres to simultaneously realize self-regulating temperature hyperthermia, on-demand drug release, embolism, and CT/MR imaging.
Collapse
Affiliation(s)
- Chengxiong Wei
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xin Jin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Peinan Yin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xiaogang Yu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chao Wang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
19
|
Zhao J, Tian H, Shang F, Lv T, Chen D, Feng J. Injectable, Anti-Cancer Drug-Eluted Chitosan Microspheres against Osteosarcoma. J Funct Biomater 2022; 13:jfb13030091. [PMID: 35893459 PMCID: PMC9326769 DOI: 10.3390/jfb13030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
The purpose of this study is to fabricate different anti-cancer drug-eluted chitosan microspheres for combination therapy of osteosarcoma. In this study, electrospray in combination with ground liquid nitrogen was utilized to manufacture the microspheres. The size of obtained chitosan microspheres was uniform, and the average diameter was 532 μm. The model drug release rate and biodegradation rate of chitosan microspheres could be controlled by the glutaraldehyde vapor crosslinking time. Then the 5-fluorouracil (5-FU), paclitaxel (PTX), and Cis-dichlorodiammine-platinum (CDDP) eluted chitosan microspheres were prepared, and two osteosarcoma cell lines, namely, HOS and MG-63, were selected as cell models for in vitro demonstration. We found the 5-FU microspheres, PTX microspheres, and CDDP microspheres could significantly inhibit the growth and migration of both HOS and MG-63 cells. The apoptosis of both cells treated with 5-FU microspheres, PTX microspheres, and CDDP microspheres was significantly increased compared to the counterparts of control and blank groups. The anti-cancer drug-eluted chitosan microspheres show great potential for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiebing Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Hao Tian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (F.S.); (D.C.)
| | - Tao Lv
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; (F.S.); (D.C.)
| | - Jianjun Feng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (J.Z.); (H.T.); (T.L.)
- Fudan Zhangjiang Institute, Fudan University, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18918366263
| |
Collapse
|
20
|
Chen M, Li J, Shu G, Shen L, Qiao E, Zhang N, Fang S, Chen X, Zhao Z, Tu J, Song J, Du Y, Ji J. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization. J Nanobiotechnology 2022; 20:179. [PMID: 35366904 PMCID: PMC8976998 DOI: 10.1186/s12951-022-01385-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.
Collapse
|
21
|
Yang X, Wang S, Zhang X, Ye C, Wang S, An X. Development of PVA-based microsphere as a potential embolization agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112677. [PMID: 35581062 DOI: 10.1016/j.msec.2022.112677] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
The development of tissue adhesive embolization microspheres with imaging ability is one of the important methods to improve the efficacy of interventional embolization. This study reported the synthesis of iodine (I)-polyvinyl alcohol (PVA)@polydopamine (PDA) microspheres to achieve the computed tomography image, drug loading and controlled release, and the enhanced embolization of liver portal vein. The I-PVA@PDA microspheres with a diameter of 147.9 μm showed an excellent computed tomography imaging ability. Moreover, the introduction of PDA endowed the I-PVA@PDA microspheres with tissue adhesive ability and therefore the in vivo embolization effect was improved. The in vivo embolization results showed that focal necrosis of hepatocytes with necrotic cell fragments and inflammatory cell infiltration was observed in the liver tissue, proving that the I-PVA@PDA microspheres have an enhanced embolization effect than PVA particles. The I-PVA@PDA microspheres were further used to deliver and release of chemotherapeutic drugs (5-fluorouracil), which displayed an initial fast release (release amount: 29.74%) in the first 24 h and then a sustained release of 34.48% within 72 h. Moreover, as a universal platform, the PVA@PDA microspheres could combine with other imaging agents like Bi2S3, thus holding a great potential in the interventional treatment of different diseases.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Shizhen Wang
- Department of Basic Medicine, Jiangsu College of Nursing, No. 9 Keji Road, Huai'an 223005, PR China
| | - Xiang Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), No. 100 Haining Road, Shanghai 200080, PR China
| | - Changqing Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| | - Xiao An
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), No. 100 Haining Road, Shanghai 200080, PR China.
| |
Collapse
|
22
|
Yin P, Wei C, Jin X, Yu X, Wu C, Zhang W. Magnetic polyvinyl alcohol microspheres with self-regulating temperature hyperthermia and CT/MR imaging for arterial embolization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04192-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Taheri-Ledari R, Asl FR, Saeidirad M, Kashtiaray A, Maleki A. Convenient synthesis of dipeptide structures in solution phase assisted by a thioaza functionalized magnetic nanocatalyst. Sci Rep 2022; 12:4719. [PMID: 35304475 PMCID: PMC8933478 DOI: 10.1038/s41598-022-07303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, a heterogeneous nanocatalyst is presented that is capable to efficiently catalyze the synthetic reactions of amide bond formation between the amino acids. This nanocatalyst which is named Fe3O4@SiO2/TABHA (TABHA stands for thio-aza-bicyclo-hepten amine), was composed of several layers that increased the surface area to be functionalized with 2-aminothiazole rings via Diels-Alder approach. Firstly, various analytic methods such as Fourier-transform infrared (FTIR) and energy-dispersive X-ray (EDX) spectroscopic methods, thermogravimetric analysis (TGA), electron microscopy (EM), and UV-vis diffuse reflectance spectroscopy (UV-DRS) have been used to characterize the desired structure of the Fe3O4@SiO2/TABHA catalyst. Afterward, the application of the presented catalytic system has been studied in the peptide bond formation reactions. Due to the existence of a magnetic core in the structure of the nanocatalyst, the nanoparticles (NPs) could be easily separated from the reaction medium by an external magnet. This special feature has been corroborated by the obtained results from vibrating-sample magnetometer (VSM) analysis that showed 24 emu g-1 magnetic saturation for the catalytic system. Amazingly, a small amount of Fe3O4@SiO2/TABHA particles (0.2 g) has resulted in ca. 90% efficiency in catalyzing the peptide bond formation at ambient temperature, over 4 h. Also, this nanocatalyst has demonstrated an acceptable recycling ability, where ca. 76% catalytic performance has been observed after four recycles. Due to high convenience in the preparation, application, and recyclization processes, and also because of lower cost than the traditional coupling reagents (like TBTU), the presented catalytic system is recommended for the industrial utilization.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
24
|
Yi Z, Sun Z, Shen Y, Luo D, Zhang R, Ma S, Zhao R, Farheen J, Iqbal MZ, Kong X. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization. J Mater Chem B 2022; 10:4105-4114. [DOI: 10.1039/d2tb00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcatheter arterial embolization (TAE) is an effective therapeutic method for several clinical ailments. Interminably, the polymer microsphere is reflected as one of the idyllic embolic materials due to the exceptional...
Collapse
|
25
|
Taheri-Ledari R, Fazeli A, Kashtiaray A, Salek Soltani S, Maleki A, Zhang W. Cefixime-Containing Silica Nanoseeds Coated by a Hybrid PVA-Gold Network with a Cys-Arg Dipeptide Conjugation: Enhanced Antimicrobial and Drug Release Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 38:132-146. [PMID: 34961315 DOI: 10.1021/acs.langmuir.1c02233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapeutic nano-bioconjugates (TNBCs) as an advanced class of drug delivery systems have attracted much attention due to more efficacy than the individual medications. Hence, in this study, a novel anti-infection TNBC system is designed based on highly porous silica nanoparticles, gold nanoparticles (AuNPs), and hybridized polyvinyl alcohol (PVA) for the efficient delivery of cefixime (CFM). Furthermore, a conjugation of cysteine-arginine (CR) dipeptide is made onto the surfaces for the enhancement of cell adhesion. Concisely, the AuNPs incorporated inside the PVA network play the key role in the controlled release process triggered by localized surface plasmon resonance (LSPR) heating. The drug content of the CFM-containing cargo (named as CFM@SiO2/PVA/Au-CR) and related release profile have been precisely studied by the confirmed analytical methods. Eventually, confocal microscopy on the stained cells has revealed that the TNBC particles are capable of entering the Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) bacterial cells better than the individual CFM. Also, optical density experiments (OD600) have corroborated that the prepared CFM@SiO2/PVA/Au-CR TNBC includes a high antimicrobial effect on K. pneumoniae and E. coli cells with (93.0 ± 1.5) % and (86.8 ± 1.0) % success rates, respectively, whereas the same dosage of the individual CFM has shown a lower effect on the cell growth rate. Also, estimation of minimum inhibitory/bactericidal concentrations (MIC/MBC) confirmed the enhanced antibacterial property of the CFM through the presented delivery method. Overall, this product is suggested to be clinically administrated instead of the individual CFM due to its high efficacy and containing lower dosage of the antibiotic drug.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Atefeh Fazeli
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Siavash Salek Soltani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu 610041, Sichuan Province, P. R. China
| |
Collapse
|