1
|
Mumme M, Wixmerten A, Ivkovic A, Peretti GM, Yilmaz T, Reppenhagen S, Pullig O, Miot S, Izadpanah K, Jakob M, Mangiavini L, Sosio C, Vuletić F, Bieri O, Biguzzi S, Gahl B, Lehoczky G, Vukojevic R, Häusner S, Gryadunova A, Haug M, Barbero A, Martin I. Clinical relevance of engineered cartilage maturation in a randomized multicenter trial for articular cartilage repair. Sci Transl Med 2025; 17:eads0848. [PMID: 40043142 DOI: 10.1126/scitranslmed.ads0848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/15/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Cartilage lesions do not heal spontaneously and predispose to osteoarthritis. Functional cartilage tissues, engineered using autologous chondrocytes, have a therapeutic advantage over conventional cellular therapies in preclinical studies. Here, we tested whether ex vivo maturation of engineered grafts for cartilage repair leads to improved patient benefit. Using autologous nasal chondrocytes (NCs), we tested whether implantation of in vitro-matured NC-tissue-engineered cartilage (N-TEC) versus undifferentiated NC-cell-activated matrices (N-CAM) in focal cartilage lesions would result in a superior clinical outcome. The prospective, randomized, parallel, open-label phase-2 trial (ClinicalTrials.gov, NCT02673905) enrolled 108 patients in five hospitals from four countries. Patients ranging in age from 30 to 46 years with full-thickness knee cartilage defects (size, 2.7 to 6.0 square centimeters) were equally randomized and treated with N-TEC or N-CAM. The primary preregistered outcome was the overall Knee Injury Osteoarthritis Outcome Score (KOOS) at 24 months. N-TEC, which underwent a longer NC culture time, was phenotypically, structurally, and functionally more like hyaline cartilage than N-CAM. The overall KOOS increased with clinical relevance in both groups compared with preoperative values. KOOS was higher at 24 months for N-TEC [85; interquartile range (IQR), 74 to 91] than for N-CAM (79; IQR, 65 to 85). N-TEC, but not N-CAM, was similarly effective in patients with larger defects or revision surgery. Radiologically, N-TEC resulted in a superior composition of both repair tissue and surrounding cartilage, whereas structural scores were similar. This trial validates the clinical efficacy of NC-based grafts for articular cartilage repair and supports the clinical relevance of engineering mature tissues, even for patients with more challenging cartilage defects.
Collapse
Affiliation(s)
- Marcus Mumme
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
- Orthopaedic Surgery and Traumatology, University Hospital Basel, 4031 Basel, Switzerland
- Sportclinic Zürich, Klinik Hirslanden, 8032 Zürich, Switzerland
| | - Anke Wixmerten
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Alan Ivkovic
- Department of Orthopaedics and Traumatology, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- University of Applied Health Sciences, 10000 Zagreb, Croatia
| | - Giuseppe M Peretti
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Tayfun Yilmaz
- Department of Orthopedic Surgery and Traumatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Stephan Reppenhagen
- Orthopädische Klinik König-Ludwig-Haus, Lehrstuhl für Orthopädie der Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Oliver Pullig
- Fraunhofer ISC - Translational Center Regenerative Therapies, 97070 Würzburg, Germany
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Sylvie Miot
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Kaywan Izadpanah
- Department of Orthopedic Surgery and Traumatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marcel Jakob
- Orthopaedic Surgery and Traumatology, University Hospital Basel, 4031 Basel, Switzerland
| | - Laura Mangiavini
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Corrado Sosio
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| | - Filip Vuletić
- Department of Orthopaedics and Traumatology, University Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, 4031 Basel, Switzerland
| | - Stefano Biguzzi
- Medacta International SA, 6874 Castel San Pietro, Switzerland
| | - Brigitta Gahl
- Surgical Outcome Research Center, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Gyözö Lehoczky
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
- Orthopaedic Surgery and Traumatology, University Hospital Basel, 4031 Basel, Switzerland
- University Children's Hospital Basel, 4031 Basel, Switzerland
| | - Rudolf Vukojevic
- Department of Radiology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Sebastian Häusner
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Anna Gryadunova
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin Haug
- Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
2
|
Jeannerat A, Peneveyre C, Jaccoud S, Philippe V, Scaletta C, Hirt-Burri N, Abdel-Sayed P, Martin R, Applegate LA, Pioletti DP, Laurent A. Banked Primary Progenitor Cells for Allogeneic Intervertebral Disc (IVD) Therapy: Preclinical Qualification and Functional Optimization within a Cell Spheroid Formulation Process. Pharmaceutics 2024; 16:1274. [PMID: 39458605 PMCID: PMC11510186 DOI: 10.3390/pharmaceutics16101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Biological products are emerging as therapeutic management options for intervertebral disc (IVD) degenerative affections and lower back pain. Autologous and allogeneic cell therapy protocols have been clinically implemented for IVD repair. Therein, several manufacturing process design considerations were shown to significantly influence clinical outcomes. The primary objective of this study was to preclinically qualify (chondrogenic potential, safety, resistance to hypoxic and inflammatory stimuli) cryopreserved primary progenitor cells (clinical grade FE002-Disc cells) as a potential cell source in IVD repair/regeneration. The secondary objective of this study was to assess the cell source's delivery potential as cell spheroids (optimization of culture conditions, potential storage solutions). Methods/Results: Safety (soft agar transformation, β-galactosidase, telomerase activity) and functionality-related assays (hypoxic and inflammatory challenge) confirmed that the investigated cellular active substance was highly sustainable in defined cell banking workflows, despite possessing a finite in vitro lifespan. Functionality-related assays confirmed that the retained manufacturing process yielded strong collagen II and glycosaminoglycan (GAG) synthesis in the spheroids in 3-week chondrogenic induction. Then, the impacts of various process parameters (induction medium composition, hypoxic incubation, terminal spheroid lyophilization) were studied to gain insights on their criticality. Finally, an optimal set of technical specifications (use of 10 nM dexamethasone for chondrogenic induction, 2% O2 incubation of spheroids) was set forth, based on specific fine tuning of finished product critical functional attributes. Conclusions: Generally, this study qualified the considered FE002-Disc progenitor cell source for further preclinical investigation based on safety, quality, and functionality datasets. The novelty and significance of this study resided in the establishment of defined processes for preparing fresh, off-the-freezer, or off-the-shelf IVD spheroids using a preclinically qualified allogeneic human cell source. Overall, this study underscored the importance of using robust product components and optimal manufacturing process variants for maximization of finished cell-based formulation quality attributes.
Collapse
Affiliation(s)
- Annick Jeannerat
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Orthopedics and Traumatology Unit, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Orthopedics and Traumatology Unit, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Development Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (V.P.); (C.S.); (N.H.-B.); (P.A.-S.); (L.A.A.)
| |
Collapse
|
3
|
Jansen JU, Teixeira GQ, Vernengo A, Grad S, Neidlinger-Wilke C, Wilke HJ. Papain Injection Creates a Nucleotomy-like Cavity for Testing Gels in Intervertebral Discs. Gels 2024; 10:571. [PMID: 39330173 PMCID: PMC11430882 DOI: 10.3390/gels10090571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Biomaterials, such as hydrogels, have an increasingly important role in the development of regenerative approaches for the intervertebral disc. Since animal models usually resist biomaterial injection due to high intradiscal pressure, preclinical testing of the biomechanical performance of biomaterials after implantation remains difficult. Papain reduces the intradiscal pressure, creates cavities within the disc, and allows for biomaterial injections. But papain digestion needs time, and cadaver experiments that are limited to 24 h for measuring range of motion (ROM) cannot not be combined with papain digestion just yet. In this study, we successfully demonstrate a new organ culture approach, facilitating papain digestion to create cavities in the disc and the testing of ROM, neutral zone (NZ), and disc height. Papain treatment increased the ROM by up to 109.5%, extended NZ by up to 210.9%, and decreased disc height by 1.96 ± 0.74 mm. A median volume of 0.73 mL hydrogel could be injected after papain treatment, and histology revealed a strong loss of proteoglycans in the remaining nucleus tissue. Papain has the same biomechanical effects as known from nucleotomies or herniations and thus creates a disc model to study such pathologies in vitro. This new model can now be used to test the performance of biomaterials.
Collapse
Affiliation(s)
- Jan Ulrich Jansen
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| | - Graciosa Quelhas Teixeira
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| | | | - Sybille Grad
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
4
|
Li X, Sheng S, Li G, Hu Y, Zhou F, Geng Z, Su J. Research Progress in Hydrogels for Cartilage Organoids. Adv Healthc Mater 2024; 13:e2400431. [PMID: 38768997 DOI: 10.1002/adhm.202400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The repair and regeneration of cartilage has always been a hot topic in medical research. Cartilage organoids (CORGs) are special cartilage tissue created using tissue engineering techniques outside the body. These engineered organoids tissues provide models that simulate the complex biological functions of cartilage, opening new possibilities for cartilage regenerative medicine and treatment strategies. However, it is crucial to establish suitable matrix scaffolds for the cultivation of CORGs. In recent years, utilizing hydrogel to culture stem cells and induce their differentiation into chondrocytes has emerged as a promising method for the in vitro construction of CORGs. In this review, the methods for establishing CORGs are summarized and an overview of the advantages and limitations of using matrigel in the cultivation of such organoids is provided. Furthermore, the importance of cartilage tissue ECM and alternative hydrogel substitutes for Matrigel, such as alginate, peptides, silk fibroin, and DNA derivatives is discussed, and the pros and cons of using these hydrogels for the cultivation of CORGs are outlined. Finally, the challenges and future directions in hydrogel research for CORGs are discussed. It is hoped that this article provides valuable references for the design and development of hydrogels for CORGs.
Collapse
Affiliation(s)
- Xiaolong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530000, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
5
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
6
|
Snuggs JW, Emanuel KS, Rustenburg C, Janani R, Partridge S, Sammon C, Smit TH, Le Maitre CL. Injectable biomaterial induces regeneration of the intervertebral disc in a caprine loaded disc culture model. Biomater Sci 2023; 11:4630-4643. [PMID: 37204288 PMCID: PMC10294806 DOI: 10.1039/d3bm00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Back pain is the leading cause of disability with half of cases attributed to intervertebral disc (IVD) degeneration, yet currently no therapies target this cause. We previously reported an ex vivo caprine loaded disc culture system (LDCS) that accurately represents the cellular phenotype and biomechanical environment of human IVD degeneration. Here, the efficacy of an injectable hydrogel system (LAPONITE® crosslinked pNIPAM-co-DMAc, (NPgel)) to halt or reverse the catabolic processes of IVD degeneration was investigated within the LDCS. Following enzymatic induction of degeneration using 1 mg mL-1 collagenase and 2 U mL-1 chondroitinase ABC within the LDCS for 7 days, IVDs were injected with NPgel alone or with encapsulated human bone marrow progenitor cells (BMPCs). Un-injected caprine discs served as degenerate controls. IVDs were cultured for a further 21 days within the LDCS. Tissues were then processed for histology and immunohistochemistry. No extrusion of NPgel was observed during culture. A significant decrease in histological grade of degeneration was seen in both IVDs injected with NPgel alone and NPgel seeded with BMPCs, compared to un-injected controls. Fissures within degenerate tissue were filled by NPgel and there was evidence of native cell migration into injected NPgel. The expression of healthy NP matrix markers (collagen type II and aggrecan) was increased, whereas the expression of catabolic proteins (MMP3, ADAMTS4, IL-1β and IL-8) was decreased in NPgel (±BMPCs) injected discs, compared to degenerate controls. This demonstrates that NPgel promotes new matrix production at the same time as halting the degenerative cascade within a physiologically relevant testing platform. This highlights the potential of NPgel as a future therapy for IVD degeneration.
Collapse
Affiliation(s)
- Joseph W Snuggs
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Kaj S Emanuel
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Christine Rustenburg
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ronak Janani
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Simon Partridge
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Christopher Sammon
- Materials Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Theo H Smit
- Amsterdam UMC, University of Amsterdam, Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
7
|
Kasamkattil J, Gryadunova A, Schmid R, Gay-Dujak MHP, Dasen B, Hilpert M, Pelttari K, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Front Bioeng Biotechnol 2023; 11:1119009. [PMID: 36865027 PMCID: PMC9971624 DOI: 10.3389/fbioe.2023.1119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raphael Schmid
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Max Hans Peter Gay-Dujak
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,Department of Biomedicine, Institute of Anatomy, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Morgane Hilpert
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,*Correspondence: Olga Krupkova,
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Bhujel B, Yang SS, Kim HR, Kim SB, Min BH, Choi BH, Han I. An Injectable Engineered Cartilage Gel Improves Intervertebral Disc Repair in a Rat Nucleotomy Model. Int J Mol Sci 2023; 24:3146. [PMID: 36834559 PMCID: PMC9966384 DOI: 10.3390/ijms24043146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Lower back pain is a major problem caused by intervertebral disc degeneration. A common surgical procedure is lumbar partial discectomy (excision of the herniated disc causing nerve root compression), which results in further disc degeneration, severe lower back pain, and disability after discectomy. Thus, the development of disc regenerative therapies for patients who require lumbar partial discectomy is crucial. Here, we investigated the effectiveness of an engineered cartilage gel utilizing human fetal cartilage-derived progenitor cells (hFCPCs) on intervertebral disc repair in a rat tail nucleotomy model. Eight-week-old female Sprague-Dawley rats were randomized into three groups to undergo intradiscal injection of (1) cartilage gel, (2) hFCPCs, or (3) decellularized extracellular matrix (ECM) (n = 10/each group). The treatment materials were injected immediately after nucleotomy of the coccygeal discs. The coccygeal discs were removed six weeks after implantation for radiologic and histological analysis. Implantation of the cartilage gel promoted degenerative disc repair compared to hFCPCs or hFCPC-derived ECM by increasing the cellularity and matrix integrity, promoting reconstruction of nucleus pulposus, restoring disc hydration, and downregulating inflammatory cytokines and pain. Our results demonstrate that cartilage gel has higher therapeutic potential than its cellular or ECM component alone, and support further translation to large animal models and human subjects.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam 13496, Republic of Korea
| | | | | | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byoung-Hyun Min
- ATEMs Inc., Seoul 02447, Republic of Korea
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA
| | - Byung Hyune Choi
- ATEMs Inc., Seoul 02447, Republic of Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
9
|
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol 2023; 11:1125405. [PMID: 36824369 PMCID: PMC9941961 DOI: 10.3389/fcell.2023.1125405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cartilage organoids have emerged as powerful modelling technology for recapitulation of joint embryonic events, and cartilage regeneration, as well as pathophysiology of cartilage-associated diseases. Recent breakthroughs have uncovered "mini-joint" models comprising of multicellular components and extracellular matrices of joint cartilage for development of novel disease-modifying strategies for personalized therapeutics of cartilage-associated diseases. Here, we hypothesized that LGR5-expressing embryonic joint chondroprogenitor cells are ideal stem cells for the generation of cartilage organoids as "mini-joints" ex vivo "in a dish" for embryonic joint development, cartilage repair, and cartilage-associated disease modelling as essential research models of drug screening for further personalized regenerative therapy. The pilot research data suggested that LGR5-GFP-expressing embryonic joint progenitor cells are promising for generation of cartilage organoids through gel embedding method, which may exert various preclinical and clinical applications for realization of personalized regenerative therapy in the future.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Min Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Liangliang Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China,Drug Discovery Pipeline at the Guangzhou Institutes for Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China,*Correspondence: Weiping Lin, ; Liangliang Xu, ; Micky Tortorella, ; Gang Li,
| |
Collapse
|
10
|
Nanofiber reinforced alginate hydrogel for leak-proof delivery and higher stress loading in nucleus pulposus. Carbohydr Polym 2023; 299:120193. [PMID: 36876807 DOI: 10.1016/j.carbpol.2022.120193] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/08/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Injectable hydrogels effectively remodel degenerative nucleus pulposus (NP) with a resemblance to the in vivo microenvironment. However, the pressure within the intervertebral disc requires load-bearing implants. The hydrogel must undergo a rapid phase transition upon injection to avoid leakage. In this study, an injectable sodium alginate hydrogel was reinforced with silk fibroin nanofibers with core-shell structures. The nanofiber-embedded hydrogel provided support to adjacent tissues and facilitated cell proliferation. Platelet-rich plasma (PRP) was incorporated into the core-shell nanofibers for sustained release and enhanced NP regeneration. The composite hydrogel exhibited excellent compressive strength and enabled leak-proof delivery of PRP. In rat intervertebral disc degeneration models, radiography and MRI signal intensities were significantly reduced after 8 weeks of injections with the nanofiber-reinforced hydrogel. The biomimetic fiber gel-like structure was constructed in situ, providing mechanical support for NP repair, promoting the reconstruction of the tissue microenvironment, and finally realizing the regeneration of NP.
Collapse
|
11
|
Grottkau BE, Hui Z, Pang Y. Articular Cartilage Regeneration through Bioassembling Spherical Micro-Cartilage Building Blocks. Cells 2022; 11:cells11203244. [PMID: 36291114 PMCID: PMC9600996 DOI: 10.3390/cells11203244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Articular cartilage lesions are prevalent and affect one out of seven American adults and many young patients. Cartilage is not capable of regeneration on its own. Existing therapeutic approaches for articular cartilage lesions have limitations. Cartilage tissue engineering is a promising approach for regenerating articular neocartilage. Bioassembly is an emerging technology that uses microtissues or micro-precursor tissues as building blocks to construct a macro-tissue. We summarize and highlight the application of bioassembly technology in regenerating articular cartilage. We discuss the advantages of bioassembly and present two types of building blocks: multiple cellular scaffold-free spheroids and cell-laden polymer or hydrogel microspheres. We present techniques for generating building blocks and bioassembly methods, including bioprinting and non-bioprinting techniques. Using a data set of 5069 articles from the last 28 years of literature, we analyzed seven categories of related research, and the year trends are presented. The limitations and future directions of this technology are also discussed.
Collapse
|
12
|
Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Acta Biomater 2022:S1742-7061(22)00141-6. [PMID: 35288312 DOI: 10.1016/j.actbio.2022.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022]
Abstract
Since its inception, tissue engineering and regenerative medicine (TERM) has been relying on either scaffold-based or scaffold-free strategies. Recent reports outlined the possibility of a synergistic, convergence approach, referred to as the third TERM strategy, which could alleviate bottlenecks of the two previous options. This strategy requires the fabrication of highly porous microscaffolds, allowing to create single spheroids within each of them. The resulting tissue units can then be combined and used as modular building blocks for creating tissue constructs through a bottom-up self-assembly. Such strategy can have a significant impact for the future of TERM, but so far, no reports have assessed its feasibility in detail. This work reports a first systematic study, which includes a comparison of the in vitro behavior of tissue units based on adipose derived stem cell spheroids cultured within microscaffolds versus conventional spheroids. We first proved that the presence of the microscaffold neither impairs the cells 'ability to form spheroids nor impacts their viability. Importantly, the fusiogenic and the differentiation potential (i.e. chondrogenesis and osteogenesis), which are important features for cellularized building blocks to be used in TERM, are preserved when spheroids are cultured within microscaffolds. Significant benefits of microscaffold-based tissue units include the enhanced cell retention, the decreased compaction and the better control over the size observed when larger tissue constructs are formed through self-assembly. The proof of concept study presented here demonstrates the great potential offered by those microsize tissue units to be used as building blocks for directed tissue self-assembly. STATEMENT OF SIGNIFICANCE: One of the most exciting and recent advances in tissue engineering and regenerative medicine (TERM) is to combine together multiple micro-size cellularized units, which are able to self-assemble altogether to recreate larger tissue constructs. In this work, we produce such modules by forming single spheroids within highly porous microscaffolds, and study how this new microenvironment impacts on the spheroid's behavior and stemness potential. This work highlights as well that such novel route is enabled by two-photon polymerization, which is an additive manufacturing technique offering high spatial resolution down to 100 nm. These findings provide a first scientific evidence about the utilization of hybrid spheroid microscaffold-based tissue units with great perspective as a modular tool for TERM.
Collapse
|
13
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
14
|
Mainardi A, Cambria E, Occhetta P, Martin I, Barbero A, Schären S, Mehrkens A, Krupkova O. Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Front Bioeng Biotechnol 2022; 9:826867. [PMID: 35155416 PMCID: PMC8832503 DOI: 10.3389/fbioe.2021.826867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Discogenic back pain is one of the most diffused musculoskeletal pathologies and a hurdle to a good quality of life for millions of people. Existing therapeutic options are exclusively directed at reducing symptoms, not at targeting the underlying, still poorly understood, degenerative processes. Common intervertebral disc (IVD) disease models still do not fully replicate the course of degenerative IVD disease. Advanced disease models that incorporate mechanical loading are needed to investigate pathological causes and processes, as well as to identify therapeutic targets. Organs-on-chip (OoC) are microfluidic-based devices that aim at recapitulating tissue functions in vitro by introducing key features of the tissue microenvironment (e.g., 3D architecture, soluble signals and mechanical conditioning). In this review we analyze and depict existing OoC platforms used to investigate pathological alterations of IVD cells/tissues and discuss their benefits and limitations. Starting from the consideration that mechanobiology plays a pivotal role in both IVD homeostasis and degeneration, we then focus on OoC settings enabling to recapitulate physiological or aberrant mechanical loading, in conjunction with other relevant features (such as inflammation). Finally, we propose our view on design criteria for IVD-on-a-chip systems, offering a future perspective to model IVD mechanobiology.
Collapse
Affiliation(s)
- Andrea Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Arne Mehrkens
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Spine Surgery, University Hospital Basel, Basel, Switzerland
- Lepage Research Institute, University of Prešov, Prešov, Slovakia
| |
Collapse
|
15
|
Jelodari S, Ebrahimi Sadrabadi A, Zarei F, Jahangir S, Azami M, Sheykhhasan M, Hosseini S. New Insights into Cartilage Tissue Engineering: Improvement of Tissue-Scaffold Integration to Enhance Cartilage Regeneration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7638245. [PMID: 35118158 PMCID: PMC8807044 DOI: 10.1155/2022/7638245] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023]
Abstract
Distinctive characteristics of articular cartilage such as avascularity and low chondrocyte conversion rate present numerous challenges for orthopedists. Tissue engineering is a novel approach that ameliorates the regeneration process by exploiting the potential of cells, biodegradable materials, and growth factors. However, problems exist with the use of tissue-engineered construct, the most important of which is scaffold-cartilage integration. Recently, many attempts have been made to address this challenge via manipulation of cellular, material, and biomolecular composition of engineered tissue. Hence, in this review, we highlight strategies that facilitate cartilage-scaffold integration. Recent advances in where efficient integration between a scaffold and native cartilage could be achieved are emphasized, in addition to the positive aspects and remaining problems that will drive future research.
Collapse
Affiliation(s)
- Sahar Jelodari
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Zarei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Samaneh Hosseini
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|