1
|
Hsieh CC, Dai JZ, Ni CC, Wei SY, Tsai MC, Chen PY, Fang L, Xie RH, Chen GY, Yin GC, Chen YC. Prevascularized Hydrogel Enhancing Innervation and Repair of Full-Thickness Volumetric Muscle Loss in Abdominal Wall Defects. Adv Healthc Mater 2025; 14:e2402433. [PMID: 40059482 DOI: 10.1002/adhm.202402433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/17/2025] [Indexed: 04/26/2025]
Abstract
Current materials for repairing abdominal peritoneal defects face rapid degradation, infection risk, insufficient vascular ingrowth, slow muscle regeneration, and suboptimal postoperative integration, often causing fibrotic healing and hindering volumetric muscle loss (VML) repair exceeding 30%. To address these issues, photo-cross-linkable gelatin hydrogels are combined with blood vessel-forming cells to reconstruct vascular networks, providing temporary nutrient and gas channels that support cell repair. By developing a polymer-chain propagation time technique, hydrogel properties are optimized, avoiding limitations of conventional light exposure. These gels guide blood-vessel formation in vitro and promote robust microvessel and neural development in vivo. Precise control of light exposure and propagation times balances cross-linking and degradation, fostering blood vessel growth and host motor neuron ingrowth. In 55% VML, these hydrogels enable full-thickness abdominal muscle regeneration, restoring up to 70% of lost muscle while mimicking healthy tissue's strength and structure. Achieving higher degradation rates and a vascular density exceeding 50 vessels/mm-2 is essential for functional muscle repair. These strategies effectively bridge current clinical gaps, advancing regenerative medicine. The ability to fine-tune degradation and stiffness underscores gelatin hydrogels' potential as cell carriers, allowing the reconstruction of temporary vascular and neural channels at injury sites and significantly enhancing muscle tissue regeneration.
Collapse
Affiliation(s)
- Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Jun-Zhi Dai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Chuan Ni
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ling Fang
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
2
|
Ling Z, Zhang H, Zhao J, Wang P, An Z, Xiao S, Sun Y, Fu W. Electrostimulation-Based Decellularized Matrix Bladder Patch Promotes Bladder Repair in Rats. ACS Biomater Sci Eng 2024; 10:6498-6508. [PMID: 39240226 DOI: 10.1021/acsbiomaterials.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Bladder tissue engineering offers significant potential for repairing defects resulting from congenital and acquired conditions. However, the effectiveness of engineered grafts is often constrained by insufficient vascularization and neural regeneration. This study utilized four primary biomaterials─gelatin methacryloyl (GelMA), chitin nanocrystals (ChiNC), titanium carbide (MXene), and adipose-derived stem cells (ADSC)─to formulate two types of bioinks, GCM0.2 and GCM0.2-ADSC, in specified proportions. These bioinks were 3D printed onto bladder acellular matrix (BAM) patches to create BAM-GCM0.2 and BAM-GCM0.2-ADSC patches. The BAM-GCM0.2-ADSC patches underwent electrical stimulation to yield GCM0.2-ADSC-ES bladder patches. Employed for the repair of rat bladder defects, these patches were evaluated against a Control group, which underwent partial cystectomy followed by direct suturing. Our findings indicate that the inclusion of ADSC and electrical stimulation significantly enhances the regeneration of rat bladder smooth muscle (from [24.052 ± 2.782] % to [57.380 ± 4.017] %), blood vessels (from [5.326 ± 0.703] % to [12.723 ± 1.440] %), and nerves (from [0.227 ± 0.017] % to [1.369 ± 0.218] %). This research underscores the superior bladder repair capabilities of the GCM0.2-ADSC-ES patch and opens new pathways for bladder defect repair.
Collapse
Affiliation(s)
- Zhengyun Ling
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoqian Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Jian Zhao
- Department of Urology, 960th Hospital of PLA, Jinan 250031, China
| | | | - Ziyan An
- Medical School of PLA, Beijing 100853, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing 100142, China
| | - Yanfeng Sun
- Department of Pediatrics, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Weijun Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| |
Collapse
|
3
|
Karageorgos FF, Alexiou M, Tsoulfas G, Alexopoulos AH. Hydrogel-Based Vascularized Organ Tissue Engineering: A Systematized Review on Abdominal Organs. Gels 2024; 10:653. [PMID: 39451306 PMCID: PMC11507150 DOI: 10.3390/gels10100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biomedical engineering, especially tissue engineering, is trying to provide an alternative solution to generate functional organs/tissues for use in various applications. These include beyond the final goal of transplantation, disease modeling and drug discovery as well. The aim of this study is to comprehensively review the existing literature on hydrogel-based vascularized organ (i.e., liver, pancreas, kidneys, intestine, stomach and spleen) tissue engineering of the abdominal organs. METHODS A comprehensive literature search was conducted on the Scopus database (latest search 1 September 2024). The research studies including hydrogel-based vascularized organ tissue engineering in the organs examined here were eligible for the review. RESULTS Herein, 18 studies were included. Specifically, 10 studies included the liver or hepatic tissue, 5 studies included the pancreas or pancreatic islet tissue, 3 studies included the kidney or renal tissue, 1 study included the intestine or intestinal or bowel tissue, 1 study included the stomach or gastric tissue, and 0 studies included spleen tissue. CONCLUSION Hydrogels are biocompatible materials with ideal characteristics for use as scaffolds. Even though organ tissue engineering is a rapidly growing field, there are still many obstacles to overcome to create a fully functional and long-lasting organ.
Collapse
Affiliation(s)
- Filippos F. Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece; (F.F.K.); (M.A.)
| | - Maria Alexiou
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece; (F.F.K.); (M.A.)
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece; (F.F.K.); (M.A.)
| | - Aleck H. Alexopoulos
- Chemical Process & Energy Resources Institute, 6th Km Harilaou-Thermi Rd., P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
4
|
Zhao J, Zhang H, Ling Z, An Z, Xiao S, Wang P, Fu Z, Shao J, Sun Y, Fu W. A bilayer bioengineered patch with sequential dual-growth factor release to promote vascularization in bladder reconstruction. Regen Biomater 2024; 11:rbae083. [PMID: 39077683 PMCID: PMC11286312 DOI: 10.1093/rb/rbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Bladder tissue engineering holds promise for addressing bladder defects resulting from congenital or acquired bladder diseases. However, inadequate vascularization significantly impacts the survival and function of engineered tissues after transplantation. Herein, a novel bilayer silk fibroin (BSF) scaffold was fabricated with the capability of vascular endothelial growth factor (VEGF) and platelet derived growth factor-BB (PDGF-BB) sequential release. The outer layer of the scaffold was composed of compact SF film with waterproofness to mimic the serosa of the bladder. The inner layer was constructed of porous SF matrix incorporated with SF microspheres (MS) loaded with VEGF and PDGF-BB. We found that the 5% (w/v) MS-incorporated scaffold exhibited a rapid release of VEGF, whereas the 0.2% (w/v) MS-incorporated scaffold demonstrated a slow and sustained release of PDGF-BB. The BSF scaffold exhibited good biocompatibility and promoted endothelial cell migration, tube formation and enhanced endothelial differentiation of adipose derived stem cells (ADSCs) in vitro. The BSF patch was constructed by seeding ADSCs on the BSF scaffold. After in vivo transplantation, not only could the BSF patch facilitate the regeneration of urothelium and smooth muscle, but more importantly, stimulate the regeneration of blood vessels. This study demonstrated that the BSF patch exhibited excellent vascularization capability in bladder reconstruction and offered a viable functional bioengineered patch for future clinical studies.
Collapse
Affiliation(s)
- Jian Zhao
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- Department of Urology, 960th Hospital of PLA, Jinan 250031, China
| | - Haoqian Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ziyan An
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing 100142, China
| | - Pengchao Wang
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Zhouyang Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Jinpeng Shao
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Yanfeng Sun
- Department of Pediatrics, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Weijun Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| |
Collapse
|
5
|
Wei SY, Chen PY, Tsai MC, Hsu TL, Hsieh CC, Fan HW, Chen TH, Xie RH, Chen GY, Chen YC. Enhancing the Repair of Substantial Volumetric Muscle Loss by Creating Different Levels of Blood Vessel Networks Using Pre-Vascularized Nerve Hydrogel Implants. Adv Healthc Mater 2024; 13:e2303320. [PMID: 38354361 DOI: 10.1002/adhm.202303320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Volumetric muscle loss (VML), a severe muscle tissue loss from trauma or surgery, results in scarring, limited regeneration, and significant fibrosis, leading to lasting reductions in muscle mass and function. A promising approach for VML recovery involves restoring vascular and neural networks at the injury site, a process not extensively studied yet. Collagen hydrogels have been investigated as scaffolds for blood vessel formation due to their biocompatibility, but reconstructing blood vessels and guiding innervation at the injury site is still difficult. In this study, collagen hydrogels with varied densities of vessel-forming cells are implanted subcutaneously in mice, generating pre-vascularized hydrogels with diverse vessel densities (0-145 numbers/mm2) within a week. These hydrogels, after being transplanted into muscle injury sites, are assessed for muscle repair capabilities. Results showed that hydrogels with high microvessel densities, filling the wound area, effectively reconnected with host vasculature and neural networks, promoting neovascularization and muscle integration, and addressing about 63% of the VML.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Ting-Lun Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Hsiu-Wei Fan
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15289, USA
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300193, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
6
|
Wei SY, Chen PY, Hsieh CC, Chen YS, Chen TH, Yu YS, Tsai MC, Xie RH, Chen GY, Yin GC, Melero-Martin JM, Chen YC. Engineering large and geometrically controlled vascularized nerve tissue in collagen hydrogels to restore large-sized volumetric muscle loss. Biomaterials 2023; 303:122402. [PMID: 37988898 PMCID: PMC11606314 DOI: 10.1016/j.biomaterials.2023.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, PA, USA
| | - Yu-Shan Yu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Chen CL, Wei SY, Chen WL, Hsu TL, Chen YC. Reconstructing vascular networks promotes the repair of skeletal muscle following volumetric muscle loss by pre-vascularized tissue constructs. J Tissue Eng 2023; 14:20417314231201231. [PMID: 37744322 PMCID: PMC10517612 DOI: 10.1177/20417314231201231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Current treatment for complex and large-scale volumetric muscle loss (VML) injuries remains a limited success and have substantial disadvantages, due to the irreversible loss of muscle mass, slow muscle regeneration, and rapid formation of non-functional fibrosis scars. These VML injuries are accompanied by denervation and the destruction of native vasculature which increases difficulties in the functional restoration of muscle. Here, reconstruction of the vascular network at the injury site was offered as a possible solution for improving the repair of muscle defects through the timely supply of nutrients and oxygen to surrounding cells. A hydrogel-based tissue construct containing various densities of the vascular network was successfully created in the subcutaneous space of mice by manipulating hydrogel properties, and then implanted into the VML injury site. One month after implantation, the mouse treated with the highly vascularized tissue had extensive muscle repair at the injury site and only spent a shorter time completing the inclined plane tests. These findings suggest that the reconstruction of the functional vascular network at the VML injury site accelerated muscle fiber repair through a timely supply of sufficient blood and avoided invasion by host fibroblasts.
Collapse
Affiliation(s)
- Chih-Long Chen
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei
| | - Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| | - Wei-Lin Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| | - Ting-Lun Hsu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu
| |
Collapse
|
8
|
Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications. Polymers (Basel) 2022; 14:351. [PMID: 35054758 PMCID: PMC8780324 DOI: 10.3390/polym14020351] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The search for higher-quality nanomaterials for medicinal applications continues. There are similarities between electrospun fibers and natural tissues. This property has enabled electrospun fibers to make significant progress in medical applications. However, electrospun fibers are limited to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue engineering in the last two years.
Collapse
Affiliation(s)
- Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yingning Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|