1
|
Cameron J, Luccio TD, Barr J, Rocher L, Kim E, Menary GH, Lennon AB, Kornfield JA. Employing synchrotron X-ray scattering and microscopy to explore microstructural mysteries in bioresorbable vascular scaffolds. Acta Biomater 2025; 192:175-188. [PMID: 39561849 DOI: 10.1016/j.actbio.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
Crystal structure and morphology dictate the mechanical, thermal, and degradation properties of poly l-lactide (PLLA), the structural polymer of the first clinically approved bioresorbable vascular scaffolds (BVS). New experimental methods are developed to reveal the underlying mechanisms governing structure formation during the crimping step of the BVS manufacturing process. Our research specifically examines the "U-bends" - the region where the curvature is highest and stress is maximised during crimping, which can potentially lead to failure of the device with dramatic consequences on patient life. A custom-made crimping rig operated at a synchrotron beamline enabled collection of wide- and small-angle X-ray scattering (WAXS/SAXS) to probe local variations of the polymer morphology as a function of position in the crest of multiple U-bends with 5 μm resolution in situ after crimping and expansion. Additionally, polarised light microscopy (PLM) images of these deformed U-bends revealed areas with varying stress distribution developed during crimping and expansion. These variations were dependant on the initial biaxial stretching processing step. The integrated X-ray scattering-microscopy approach offered a comprehensive work-flow for uncovering the intricate relationship between processing conditions and the corresponding spatially-resolved semicrystalline morphology of a BVS. STATEMENT OF SIGNIFICANCE: This research introduces a new method for gaining critical insights into the structural changes that occur during the manufacturing process of bioresorbable vascular scaffolds (BVS). The crimping and expansion of poly l-lactide (PLLA) - the structural material of BVS - are sequential manufacturing steps characterised by highly non-linear deformations at temperature conditions that remain unexplored. By utilising synchrotron X-ray scattering techniques alongside polarised light microscopy, we have developed new experimental methods to uncover the mechanisms governing structure formation during processing. This innovative approach not only deepens our understanding of the relationship between processing conditions and polymer morphology but also establishes the foundation for real-time observation methods during crimping and expansion. By improving the design and performance of BVS, this study has the potential to advance cardiovascular treatments and improve patient safety, making it highly relevant and impactful to both scientific research and clinical applications.
Collapse
Affiliation(s)
- Jude Cameron
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK
| | - Tiziana Di Luccio
- Department of Natural Sciences, Pitzer and Scripps Colleges, Claremont, CA 91711, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordan Barr
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK
| | - Lison Rocher
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK
| | - Eugene Kim
- Department of Natural Sciences, Pitzer and Scripps Colleges, Claremont, CA 91711, USA
| | - Gary H Menary
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK.
| | - Alex B Lennon
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, UK
| | - Julia A Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Yadgarov L, Tenne R. Nanotubes from Transition Metal Dichalcogenides: Recent Progress in the Synthesis, Characterization and Electrooptical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400503. [PMID: 38953349 DOI: 10.1002/smll.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/02/2024] [Indexed: 07/04/2024]
Abstract
Inorganic layered compounds (2D-materials), particularly transition metal dichalcogenide (TMDC), are the focus of intensive research in recent years. Shortly after the discovery of carbon nanotubes (CNTs) in 1991, it was hypothesized that nanostructures of 2D-materials can also fold and seam forming, thereby nanotubes (NTs). Indeed, nanotubes (and fullerene-like nanoparticles) of WS2 and subsequently from MoS2 were reported shortly after CNT. However, TMDC nanotubes received much less attention than CNT until recently, likely because they cannot be easily produced as single wall nanotubes with well-defined chiral angles. Nonetheless, NTs from inorganic layered compounds have become a fertile field of research in recent years. Much progress has been achieved in the high-temperature synthesis of TMDC nanotubes of different kinds, as well as their characterization and the study of their properties and potential applications. Their multiwall structure is found to be a blessing rather than a curse, leading to intriguing observations. This concise minireview is dedicated to the recent progress in the research of TMDC nanotubes. After reviewing the progress in their synthesis and structural characterization, their contributions to the research fields of energy conversion and storage, polymer nanocomposites, andunique optoelectronic devices are being reviewed. These studies suggest numerous potential applications for TMDC nanotubes in various technologies, which are briefly discussed.
Collapse
Affiliation(s)
- Lena Yadgarov
- The Department of Chemical Engineering, Ariel University, Ramat HaGolan St 65, Ariel, 4077625, Israel
| | - Reshef Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Hertzl Street 234, Rehovot, 7610010, Israel
| |
Collapse
|
3
|
Babai D, Pinkas I, Naveh D, Tenne R. Polyetherimide (PEI) nanocomposite with WS 2 nanotubes. NANOSCALE 2024; 16:9917-9934. [PMID: 38686740 DOI: 10.1039/d4nr00818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Nanocomposite materials, integrating nanoscale additives into a polymer matrix, hold immense promise for their exceptional property amalgamation. This study delves into the fabrication and characterization of polyetherimide (PEI) nanocomposite strings fortified with multiwall WS2 nanotubes. The manufacturing process capitalizes on the preferential alignment of WS2 nanotubes along the string axis, corroborated by scanning electron microscopy (SEM). Mechanical measurements unveil a remarkable acceleration of strain hardening in the nanocomposite strings, chiefly attributed to the WS2 nanotubes. Structural analyses via X-ray diffraction (XRD) and wide-angle X-ray scattering (WAXS) reveal intriguing structural alterations during tensile deformation. Notably a semi-crystalline framework ∼100 nm in diameter surrounding the WS2 nanotubes emerges, which is stabilized by the π-π interactions between the PEI chains. The amorphous majority phase (97% by volume) undergoes also major structural changes upon strain becoming more compact and closing-up of the distance beweeetn the PEI chains. Dynamic mechanical analysis (DMA) demonstrates improved thermal stability of the evolved semi-crystalline π-π oriented PEI molecules, characterized by delayed thermal "structural melting", underscoring the pivotal role of the WS2 nanotubes in reinforcing the nanocomposite. The insight gained in this study of WS2 nanotube-reinforced PEI nanocomposite strings, could offer diverse applications for such tailor-made polymeric materials.
Collapse
Affiliation(s)
- Dotan Babai
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel.
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 7600001, Israel.
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Doron Naveh
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Reshef Tenne
- Department of Molecular Chemistry and Materials Science, Weizmann Institute, Rehovot 7600001, Israel.
| |
Collapse
|
4
|
Kundrát V, Novák L, Bukvišová K, Zálešák J, Kolíbalová E, Rosentsveig R, Sreedhara M, Shalom H, Yadgarov L, Zak A, Kolíbal M, Tenne R. Mechanism of WS 2 Nanotube Formation Revealed by in Situ/ ex Situ Imaging. ACS NANO 2024; 18:12284-12294. [PMID: 38698720 PMCID: PMC11100282 DOI: 10.1021/acsnano.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM μReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.
Collapse
Affiliation(s)
- Vojtěch Kundrát
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
| | - Libor Novák
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
| | - Kristýna Bukvišová
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Jakub Zálešák
- Thermo Fisher
Scientific, Vlastimila
Pecha 12, 62700 Brno, Czech Republic
- Chemistry
and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2A, 5020 Salzburg, Austria
| | - Eva Kolíbalová
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Rita Rosentsveig
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - M.B. Sreedhara
- Solid State
and Structural Chemistry Unit, Indian Institute
of Science, CV Raman Road, Bangalore 560012, India
| | - Hila Shalom
- Department
of Chemical Engineering, Ariel University, Ariel 4070814, Israel
| | - Lena Yadgarov
- Department
of Chemical Engineering, Ariel University, Ariel 4070814, Israel
| | - Alla Zak
- Faculty of
Science, Holon Institute of Technology, Golomb Street 52, Holon 5810201, Israel
| | - Miroslav Kolíbal
- Central European
Institute of Technology, Brno University
of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Reshef Tenne
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Kundrát V, Rosentsveig R, Bukvišová K, Citterberg D, Kolíbal M, Keren S, Pinkas I, Yaffe O, Zak A, Tenne R. Submillimeter-Long WS 2 Nanotubes: The Pathway to Inorganic Buckypaper. NANO LETTERS 2023; 23:10259-10266. [PMID: 37805929 PMCID: PMC10683059 DOI: 10.1021/acs.nanolett.3c02783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/30/2023] [Indexed: 10/10/2023]
Abstract
WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000-5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 μm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.
Collapse
Affiliation(s)
- Vojtěch Kundrát
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, CZ-62700 Brno, Czech Republic
| | - Rita Rosentsveig
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kristýna Bukvišová
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, CZ-62700 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Daniel Citterberg
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Miroslav Kolíbal
- Central
European Institute of Technology, Brno University
of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Shachar Keren
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7600001, Israel
| | - Iddo Pinkas
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7600001, Israel
| | - Alla Zak
- Faculty
of Science, Holon Institute of Technology, Golomb Street 52, Holon 5810201, Israel
| | - Reshef Tenne
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
7
|
Li X, Ding J. Establishment of coverage-mass equation to quantify the corrosion inhomogeneity and examination of medium effects on iron corrosion. Regen Biomater 2023; 10:rbad007. [PMID: 36817974 PMCID: PMC9933843 DOI: 10.1093/rb/rbad007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Metal corrosion is important in the fields of biomedicine as well as construction and transportation etc. While most corrosion occurs inhomogeneously, there is so far no satisfactory parameter to characterize corrosion inhomogeneity. Herein, we employ the Poisson raindrop question to model the corrosion process and derive an equation to relate corrosion coverage and corrosion mass. The resultant equation is named coverage-mass equation, abbreviated as C-M equation. We also suggest corrosion mass at 50% coverage, termed as half-coverage mass M corro50%, as an inhomogeneity parameter to quantify corrosion inhomogeneity. The equation is confirmed and the half-coverage mass M corro50% is justified in our experiments of iron corrosion in five aqueous media, normal saline, phosphate-buffered saline, Hank's solution, deionized water and artificial seawater, where the former three ones are biomimetic and very important in studies of biomedical materials. The half-coverage mass M corro50% is proved to be more comprehensive and mathematically convergent than the traditional pitting factor. Iron corrosion is detected using visual observation, scanning electron microscopy with a build-in energy dispersive spectrometer, inductive coupled plasma emission spectrometry and electrochemical measurements. Both rates and inhomogeneity extents of iron corrosion are compared among the five aqueous media. The factors underlying the medium effects on corrosion rate and inhomogeneity are discussed and interpreted. Corrosion rates of iron in the five media differ about 7-fold, and half-coverage mass values differ about 300 000-fold. The fastest corrosion and the most significant inhomogeneity occur both in biomimetic media, but not the same one. The new equation (C-M equation) and the new quantity (half-coverage mass) are stimulating for dealing with a dynamic and stochastic process with global inhomogeneity including but not limited to metal corrosion. The findings are particularly meaningful for research and development of next-generation biodegradable materials.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | | |
Collapse
|
8
|
Bubble-Patterned Films by Inkjet Printing and Gas Foaming. COATINGS 2022. [DOI: 10.3390/coatings12060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The micropatterning of thin films represents a challenging task, even for additive manufacturing techniques. In this work, we introduce the use of inkjet-printing technology coupled with a gas-foaming process, to produce patterned porosities on polymeric thin films, to develop a bubble-writing method. Inkjet printing of an aqueous solution of poly (vinyl alcohol) (PVA), a well-known gas-barrier polymer, allows the selective coating of a thin poly (lactic acid) (PLA) film, which is, successively, exposed to a gas-foaming process. The foaming of the thin PLA film is effective, only when PVA is printed on top, since the PVA barrier hinders the premature loss of the gas, thus allowing the formation of cavities (bubbles) in the covered areas; then, removing the PVA coating by water washing forms a bubble pattern. As a proof of concept, the surface-morphology features of the patterned porous PLA films have been proven effective at driving endothelial cell growth. A new technological platform is, hence, introduced in the field of tissue engineering and, in general, in fields involving thin films, where a patterned porous structure may add value.
Collapse
|
9
|
Sreedhara MB, Sinha SS, Zak A, Yadgarov L, Tenne R. Nanotubes and fullerene‐like nanoparticles from layered transition metal dichalcogenides: Why do they form and what is their significance? Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. B. Sreedhara
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - S. S. Sinha
- Department of Chemistry and Biochemistry Jackson State University Jackson, Mississippi 39217 United States
| | - A. Zak
- Faculty of Sciences Holon Institute of Technology Holon 5810201 Israel
| | - L. Yadgarov
- The Department of Chemical Engineering Ariel University Ramat HaGolan St 65 Ariel 4077625 Israel
| | - R. Tenne
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|