1
|
Du Y, Mai Y, Liu Z, Lin G, Luo S, Guo C, Qiao G, Wang L, Zhu S, Zhou Y, Pan Y. Synergistic Provoking of Pyroptosis and STING Pathway by Multifunctional Manganese-Polydopamine Nano-Immunomodulator for Enhanced Renal Cell Carcinoma Immunotherapy. Adv Healthc Mater 2025:e2500141. [PMID: 40394938 DOI: 10.1002/adhm.202500141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/14/2025] [Indexed: 05/22/2025]
Abstract
Manganese ions are known to enhance anti-tumor immunity by activating the cGAS-STING signaling pathway. However, precise modulation of the tumor microenvironment using manganese ions remains a challenge. Dopamine, with its controlled release properties within the tumor microenvironment, offers significant potential for precision drug delivery systems. Metastatic renal cell carcinoma (RCC), being refractory to conventional treatments, necessitates innovative therapeutic approaches. In this study, a multifunctional manganese-polydopamine nano-immunomodulator coated with hyaluronic acid (PDA-Mn-HA NPs) is developed. These nanoparticles selectively bind to CD44 molecules, which are highly expressed in tumor-associated macrophages and RCC cells, and release manganese ions in a tumor microenvironment-responsive manner. Treatment with PDA-Mn-HA NPs effectively induces macrophage M1 polarization, triggers the production of pro-inflammatory cytokines and chemokines. Transcriptomic analysis reveals that PDA-Mn-HA NPs polarize and activate macrophages through the reactive oxygen species(ROS)-STING-p38/MAPK signaling pathway. Additionally, PDA-Mn-HA NPs induce ROS-caspase-3/GSDME-dependent pyroptosis in RCC cells via a Fenton-like reaction. In RCC mouse models, PDA-Mn-HA NPs remodel the macrophage-mediated immune microenvironment, enhance immune cell infiltration, and significantly suppress tumor growth. In conclusion, multifunctional PDA-Mn-HA NPs demonstrate translational potential by addressing the limitations of precision manganese delivery and achieving synergistic targeting of macrophages and tumor cells, offering a promising therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Yufei Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yiyin Mai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Zhiwen Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guanghui Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Siweier Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Ge Qiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Le Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Basic and Translational Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
2
|
Khan M, Ullah R, Shah SM, Farooq U, Li J. Manganese-Based Nanotherapeutics for Targeted Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2025; 8:3571-3600. [PMID: 40293195 DOI: 10.1021/acsabm.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Breast cancer (BC) is one of the most common cancers among women and is associated with high mortality. Traditional modalities, including surgery, radiotherapy, and chemotherapy, have achieved certain advancements but continue to combat challenges including harm to healthy tissues, resistance to treatment, and adverse drug reactions. The rapid advancements in nanotechnology recently facilitated the exploration of innovative strategies for breast cancer therapy. Manganese-based nanotherapeutics have attracted great attention because of their unique characteristics such as tunable structures/morphologies, versatility, magnetic/optical properties, strong catalytic activities, excellent biodegradability, and biocompatibility. In this review, we highlighted different types of Mn-based nanotherapeutics to modulate TME, including metal-immunotherapy, alleviating tumor hypoxia, and increasing reactive oxygen species production, and we emphasized its role in magnetic resonance imaging (MRI)-guided therapy, photoacoustic imaging, and theranostic-based therapy along with a therapeutic carrier, all of which were discussed in the context of breast cancer. Hopefully, the present review will provide insights into the current landscape and future directions of multifunctional applications of Mn-based nanotherapeutics in the field of breast cancer treatment.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Syed Mubassir Shah
- Department of Biotechnology, Abdul Wali Khan University, KPK, Mardan 23200, Pakistan
| | - Umar Farooq
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Jun Li
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| |
Collapse
|
3
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
4
|
Różaniecka-Zwolińska K, Cholewińska E, Fotschki B, Juśkiewicz J, Ognik K. Manganese deficiency or dietary manganese(III) oxide nanoparticle supplementation: consequences for hematology, and intestinal and brain immunity in rats. Front Immunol 2025; 16:1528770. [PMID: 40264758 PMCID: PMC12011558 DOI: 10.3389/fimmu.2025.1528770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction The study aimed to determine the effect of manganese (Mn) exclusion from the mineral mixture added to the rat diet and replacing the recommended level of MnCO3 (65 mg Mn/kg diet) with Mn2O3 nanoparticles (Mn2O3NPs) in the diet on blood hematology and selected immunological indices of the blood, jejunum, and brain. Methods The experiment was conducted on twenty-four, Wistar rats divided into 3 equal groups. The control (K) group received a diet containing 65 mg/kg of additional Mn originating from the mineral mixture), group B (negative control) was fed a diet deprived of Mn from the mineral mixture, and group N was fed a diet containing 65 mg/kg Mn from Mn2O3NPs preparation. All rats received the experimental diets for 12 weeks. At the end of the experiment, samples of blood, jejunum, and brain were collected from all rats from each group. Results Mn exclusion from the rat diet led to anemia, worsened the body's immune response, and caused systemic and local inflammation as indicated e.g. by decreased RBC, HCT, and the level of HGB, and CRP in blood, CRP and IgA in the jejunum, and IgG in the brain as well as an increased level of IL-2, IgG and TNF-α in blood, and IL-6 in jejunum. In turn, replacing the recommended level of MnCO3 with Mn2O3NPs in the rat diet worsened the immune response and caused local inflammation in the brain as indicated by an increase in TNF-α level and Cp activity, as well as decreased levels of IgG. Analogical changes were not observed in the jejunum or systemic level. Discussion The obtained results may suggest that the body has activated adaptive mechanisms that efficiently limit the spread of immune system disorders throughout the body.
Collapse
Affiliation(s)
- Karolina Różaniecka-Zwolińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Bartosz Fotschki
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
5
|
Li X, Xu S, Su Z, Shao Z, Huang X. Unleashing the Potential of Metal Ions in cGAS-STING Activation: Advancing Nanomaterial-Based Tumor Immunotherapy. ACS OMEGA 2025; 10:11723-11742. [PMID: 40191377 PMCID: PMC11966298 DOI: 10.1021/acsomega.4c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
Immunotherapy is a critical modality in cancer treatment with diverse activation pathways. In recent years, the stimulator of interferon genes (STING) signaling pathway has exhibited significant potential in tumor immunotherapy. This pathway exerts notable antitumor effects by activating innate and adaptive immunity and regulating the tumor immune microenvironment. Various metal ions have been identified as effective activators of the STING pathway and, through the design and synthesis of nanodelivery platforms, have been applied in immunotherapy as well as in combination therapies, such as chemotherapy, chemodynamic therapy, photodynamic therapy, and cancer vaccines. Metal nanomaterials showcase unique advantages in immunotherapy; however, there are still aspects that require optimization. This review systematically examines existing metal-based nanomaterials, elaborates on the mechanisms by which different metal ions activate the STING pathway, and discusses their application models in tumor combination therapies. We also provide a comparative analysis of the advantages of metal nanomaterials over other treatment methods. Our exploration highlights the broad application prospects of metal nanomaterials in cancer treatment, offering new insights and directions for the advancement of tumor immunotherapy.
Collapse
Affiliation(s)
- Xingyin Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaojie Xu
- Department
of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziliang Su
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Fan Y, Yu S, Yang Z, Cai D. Mesoporous SiO 2 based nanocomplex enzymes for enhanced chemodynamic therapy of pancreatic tumors. NANOSCALE 2025; 17:6646-6659. [PMID: 39950252 DOI: 10.1039/d4nr02406k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Chemodynamic therapy (CDT) is a therapeutic method that uses a Fenton/Fenton-like reaction to convert intracellular H2O2 into highly cytotoxic ˙OH to effectively kill cancer cells. This method is adapted to the specific characteristics of the tumor microenvironment, boasting high selectivity and strong specificity among other advantages. However, CDT still faces challenges. Glutathione (GSH), which is present in high levels in the tumor microenvironment, can consume a large amount of ˙OH, significantly limiting the effectiveness of CDT. In this study, we synthesized a core-shell nanozyme (mSiO2@MnO2) with a composite structure comprising a mesoporous silica core and a manganese dioxide (MnO2) shell. The mesoporous structure was loaded with the chemotherapeutic drug genistein (Gen) and surface-modified with polyethylene glycol (PEG) to enhance its effectiveness in treating pancreatic cancer. This formulation, denoted as the Gen@mSiO2@MnO2-PEG nanocomplex enzyme, exhibits a dual action mechanism. Firstly, upon reaching tumor cells, it releases genistein for kinetic therapy and degrades the MnO2 shell. Secondly, GSH consumption triggers Fenton-like reactions to generate ˙OH, thereby enhancing CDT. At the cellular level, the Gen@mSiO2@MnO2-PEG nanocomplex enzyme demonstrates excellent biocompatibility. It induces the production of reactive oxygen species in the pancreatic cancer cell line PANC-1, disrupting the redox balance within tumor cells, and ultimately killing them. In vivo, the Gen@mSiO2@MnO2-PEG nanocomplex enzyme selectively accumulates at the tumor sites in PANC-1 tumor-bearing mice, resulting in the inhibition of tumor growth and metastasis. This study demonstrates that core-shell nanozymes serve as an effective platform for cancer therapy, enhancing the efficacy of combined chemotherapy and CDT for pancreatic cancer.
Collapse
Affiliation(s)
- Yue Fan
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Shulin Yu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhaoshuo Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Luo Y, He X, Du Q, Xu L, Xu J, Wang J, Zhang W, Zhong Y, Guo D, Liu Y, Chen X. Metal-based smart nanosystems in cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230134. [PMID: 39713201 PMCID: PMC11655314 DOI: 10.1002/exp.20230134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/12/2024] [Indexed: 12/24/2024]
Abstract
Metals are an emerging topic in cancer immunotherapy that have shown great potential in modulating cancer immunity cycle and promoting antitumor immunity by activating the intrinsic immunostimulatory mechanisms which have been identified in recent years. The main challenge of metal-assisted immunotherapy lies in the fact that the free metals as ion forms are easily cleared during circulation, and even cause systemic metal toxicity due to the off-target effects. With the rapid development of nanomedicine, metal-based smart nanosystems (MSNs) with unique controllable structure become one of the most promising delivery carriers to solve the issue, owing to their various endogenous/external stimuli-responsiveness to release free metal ions for metalloimmunotherapy. In this review, the state-of-the-art research progress in metal-related immunotherapy is comprehensively summarized. First, the mainstream mechanisms of MSNs-assisted immunotherapy will be delineated. The immunological effects of certain metals and categorization of MSNs with different characters and compositions are then provided, followed by the representative exemplar applications of MSNs in cancer treatment, and synergistic combination immunotherapy. Finally, we conclude this review with a summary of the remaining challenges associated with MSNs and provide the authors' perspective on their further advances.
Collapse
Affiliation(s)
- Ying Luo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaojing He
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Lian Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Jie Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Junrui Wang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenli Zhang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yixin Zhong
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Dajing Guo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yun Liu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
8
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
9
|
Zhu C, Mu J, Liang L. Nanocarriers for intracellular delivery of proteins in biomedical applications: strategies and recent advances. J Nanobiotechnology 2024; 22:688. [PMID: 39523313 PMCID: PMC11552240 DOI: 10.1186/s12951-024-02969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Protein drugs are of great importance in maintaining the normal functioning of living organisms. Indeed, they have been instrumental in combating tumors and genetic diseases for decades. Among these pharmaceutical agents, those that target intracellular components necessitate the use of therapeutic proteins to exert their effects within the targeted cells. However, the use of protein drugs is limited by their short half-life and potential adverse effects in the physiological environment. The advent of nanoparticles offers a promising avenue for prolonging the half-life of protein drugs. This is achieved by encapsulating proteins, thereby safeguarding their biological activity and ensuring precise delivery into cells. This nanomaterial-based intracellular protein drug delivery system mitigates the rapid hydrolysis and unwarranted diffusion of proteins, thereby minimizing potential side effects and circumventing the limitations inherent in traditional techniques like electroporation. This review examines established protein drug delivery systems, including those based on polymers, liposomes, and protein nanoparticles. We delve into the operational principles and transport mechanisms of nanocarriers, discussing the various considerations essential for designing cutting-edge delivery platforms. Additionally, we investigate innovative designs and applications of traditional cytosolic protein delivery systems in medical research and clinical practice, particularly in areas like tumor treatment, gene editing and fluorescence imaging. This review sheds light on the current restrictions of protein delivery systems and anticipates future research avenues, aiming to foster the continued advancement in this field.
Collapse
Affiliation(s)
- Chuanda Zhu
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P.R. China.
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P.R. China.
| |
Collapse
|
10
|
Ye M, Ye R, Wang Y, Guo M, Zhu M, Yin F, Wang Y, Lai X, Wang Y, Qi Z, Wang J, Chen D. Targeted pH-responsive biomimetic nanoparticle-mediated starvation-enhanced chemodynamic therapy combined with chemotherapy for ovarian cancer treatment. Int J Pharm 2024; 661:124426. [PMID: 38972519 DOI: 10.1016/j.ijpharm.2024.124426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
In recent years, the use of arsenic trioxide (ATO) in the context of ovarian cancer chemotherapy has attracted significant attention. However, ATO's limited biocompatibility and the occurrence of severe toxic side effects hinder its clinical application. A nanoparticle (NP) drug delivery system using ATO as a therapeutic agent is reported in this study. Achieving a synergistic effect by combining starvation therapy, chemodynamic therapy, and chemotherapy for the treatment of ovarian cancer was the ultimate goal of this system. This nanotechnology-based drug delivery system (NDDS) introduced arsenic-manganese complexes into cancer cells, leading to the subsequent release of lethal arsenic ions (As3+) and manganese ions (Mn2+). The acidic microenvironment of the tumor facilitated this process, and MR imaging offered real-time monitoring of the ATO dose distribution. Simultaneously, to produce reactive oxygen species that induced cell death through a Fenton-like reaction, Mn2+ exploited the surplus of hydrogen peroxide (H2O2) within tumor cells. Glucose oxidase-based starvation therapy further supported this mechanism, which restored H2O2 and lowered the cellular acidity. Consequently, this approach achieved self-enhanced chemodynamic therapy. Homologous targeting of the NPs was facilitated through the use of SKOV3 cell membranes that encapsulated the NPs. Hence, the use of a multimodal NDDS that integrated ATO delivery, therapy, and monitoring exhibited superior efficacy and biocompatibility compared with the nonspecific administration of ATO. This approach presents a novel concept for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Mingzhu Ye
- Department of Gynecology and Obstetrics, Zhongshan Hospital Xiamen University, Fujian 361004, China
| | - Roumei Ye
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, China
| | - Yun Wang
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, China
| | - Mengyu Guo
- Department of Emergency, Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Maoshu Zhu
- Medical College of Guangxi University, No.100, Daxue East Road, Nanning 530004, Guangxi, China
| | - Fengyue Yin
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, China
| | - Yubo Wang
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, China
| | - Xiaoqin Lai
- Department of Emergency, Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Yu Wang
- Department of Emergency, Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Zhongqun Qi
- Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou City, Fujian Province 350001, China'.
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, China.
| | - Dengyue Chen
- School of Pharmaceutical, Xiamen University, Fujian 361102, China.
| |
Collapse
|
11
|
Zhong Y, Cao H, Li W, Deng J, Li D, Deng J. Investigating the impact of STING pathway activation on breast cancer treatment outcomes: development and validation of a prognostic model. Front Immunol 2024; 15:1438364. [PMID: 39185402 PMCID: PMC11341366 DOI: 10.3389/fimmu.2024.1438364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Breast cancer (BRCA) is a significant cause of cancer-associated mortality across the globe. Current therapeutic approaches face challenges such as drug resistance and metastasis. Immune signaling is triggered by chromosomal instability (CIN) generates misplaced DNA structures that activate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, triggering. Studies have linked STING activation to BRCA treatment. Methods The bulk RNA-seq data for patients with BRCA were collected from the TCGA-BRCA cohort, GSE20685, and GSE96058 cohorts. STING pathway-related genes (SRGs) were obtained from the Reactome database. Differentially expressed genes were analyzed using the limma package. Immune cell infiltration was analyzed using the IOBR package. Gene Ontology biological processes, Kyoto Encyclopedia of Genes and Genomes pathways, and cancer hallmark pathways were analyzed using the MSigDB database. Prognostic models were prepared using the least absolute shrinkage and selection operator and multiple-factor Cox regression analysis. Single-cell analysis was performed using the Seurat and SCP pipeline. Results The expression patterns and clinical relevance of SRGs were analyzed in patients with BRCA. Transcriptional differences in the SRGs were observed between normal and tumorous tissues, with global down-regulated STING1 and up-regulated TBK1 in BRCA tissue. Tumor tissues were classified through consensus clustering analysis into two distinct groups, with differences in clinical characteristics and immune infiltration. A prognostic model related to the differences in STING pathway activity-high prognostic stratification potency-was developed and validated. Correlation analysis revealed suppressed overall immune activation in patients with BRCA having higher risk scores. Gemcitabine had a more favorable outcome in the low-risk group. The activity of the prognostic model at the single-cell level was confirmed through single-cell analysis, particularly in CD8 T cells and intratumor natural killer cells. Conclusion A STING pathway-related prognostic model developed and validated and the model could accurately predict BRCA patient outcomes. These findings have important implications for the personalized treatment and management of patients with BRCA.
Collapse
Affiliation(s)
- YangYan Zhong
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Cao
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Li
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jian Deng
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Dan Li
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - JunJie Deng
- The Second Affiliated Hospital, Department of Breast and Thyroid Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Clinical Research Center for Breast and Thyroid Disease Prevention and Control in Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Cao Y, Xu R, Liang Y, Tan J, Guo X, Fang J, Wang S, Xu L. Nature-inspired protein mineralization strategies for nanoparticle construction: advancing effective cancer therapy. NANOSCALE 2024; 16:13718-13754. [PMID: 38954406 DOI: 10.1039/d4nr01536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recently, nanotechnology has shown great potential in the field of cancer therapy due to its ability to improve the stability and solubility and reduce side effects of drugs. The biomimetic mineralization strategy based on natural proteins and metal ions provides an innovative approach for the synthesis of nanoparticles. This strategy utilizes the unique properties of natural proteins and the mineralization ability of metal ions to combine nanoparticles through biomimetic mineralization processes, achieving the effective treatment of tumors. The precise control of the mineralization process between proteins and metal ions makes it possible to obtain nanoparticles with the ideal size, shape, and surface characteristics, thereby enhancing their stability and targeting ability in vivo. Herein, initially, we analyze the role of protein molecules in biomineralization and comprehensively review the functions, properties, and applications of various common proteins and metal particles. Subsequently, we systematically review and summarize the application directions of nanoparticles synthesized based on protein biomineralization in tumor treatment. Specifically, we discuss their use as efficient drug delivery carriers and role in mediating monotherapy and synergistic therapy using multiple modes. Also, we specifically review the application of nanomedicine constructed through biomimetic mineralization strategies using natural proteins and metal ions in improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Xiaotang Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| | - Shibo Wang
- Institute of Smart Biomaterials, School of Materials Science and Engineering and Zhejiang Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China
| |
Collapse
|
13
|
He Q, Yuan H, Bu Y, Hu J, Olatunde OZ, Gong L, Wang P, Hu T, Li Y, Lu C. Mesoporous Oxidized Mn-Ca Nanoparticles as Potential Antimicrobial Agents for Wound Healing. Molecules 2024; 29:2960. [PMID: 38998912 PMCID: PMC11243354 DOI: 10.3390/molecules29132960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Managing chronic non-healing wounds presents a significant clinical challenge due to their frequent bacterial infections. Mesoporous silica-based materials possess robust wound-healing capabilities attributed to their renowned antimicrobial properties. The current study details the advancement of mesoporous silicon-loaded MnO and CaO molecules (HMn-Ca) against bacterial infections and chronic non-healing wounds. HMn-Ca was synthesized by reducing manganese chloride and calcium chloride by urotropine solution with mesoporous silicon as the template, thereby transforming the manganese and calcium ions on the framework of mesoporous silicon. The developed HMn-Ca was investigated using scanning electron microscopy (SEM), transmission electron microscope (TEM), ultraviolet-visible (UV-visible), and visible spectrophotometry, followed by the determination of Zeta potential. The production of reactive oxygen species (ROS) was determined by using the 3,3,5,5-tetramethylbenzidine (TMB) oxidation reaction. The wound healing effectiveness of the synthesized HMn-Ca is evaluated in a bacterial-infected mouse model. The loading of MnO and CaO inside mesoporous silicon enhanced the generation of ROS and the capacity of bacterial capture, subsequently decomposing the bacterial membrane, leading to the puncturing of the bacterial membrane, followed by cellular demise. As a result, treatment with HMn-Ca could improve the healing of the bacterial-infected wound, illustrating a straightforward yet potent method for engineering nanozymes tailored for antibacterial therapy.
Collapse
Affiliation(s)
- Qianfeng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hui Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Youshen Bu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiangshan Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Olagoke Zacchaeus Olatunde
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lijie Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Peiyuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ting Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuhang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Canzhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (Q.H.); (H.Y.); (Y.B.); (J.H.); (O.Z.O.); (L.G.); (P.W.); (T.H.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
15
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
16
|
Shi G, Liu X, Du Y, Tian J. RGD targeted magnetic ferrite nanoparticles enhance antitumor immunotherapeutic efficacy by activating STING signaling pathway. iScience 2024; 27:109062. [PMID: 38660408 PMCID: PMC11039334 DOI: 10.1016/j.isci.2024.109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
Manganese has been used in tumor imaging for their ability to provide T1-weighted MRI signal. Recent research find Mn2+ can induce activation of the stimulator of interferon gene (STING) pathway to create an active and favorable tumor immune microenvironment. However, the direct injection of Mn2+ often results in toxicity. In this study, we developed an RGD targeted magnetic ferrite nanoparticle (RGD-MnFe2O4) to facilitate tumor targeted imaging and improve tumor immunotherapy. Magnetic resonance imaging and fluorescence molecular imaging were performed to monitor its in vivo biodistribution. We found that RGD-MnFe2O4 showed active tumor targeting and longer accumulation at tumor sites. Moreover, RGD-MnFe2O4 can activate STING pathway with low toxicity to enhance the PD-L1 expression. Furthermore, combining RGD-MnFe2O4 and anti-PD-L1 antibody (aPD-L1) can treat several types of immunogenic tumors through promoting the accumulation of tumor-infiltrating cytotoxic T cells. In general, our study provides a promising new strategy for the targeted and multifunctional theranostic nanoparticle for the improvement of tumor immunotherapy.
Collapse
Affiliation(s)
- Guangyuan Shi
- University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoli Liu
- Northwest University, Xi’an 710127, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Jie Tian
- Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Forma A, Grunwald A, Zembala P, Januszewski J, Brachet A, Zembala R, Świątek K, Baj J. Micronutrient Status and Breast Cancer: A Narrative Review. Int J Mol Sci 2024; 25:4968. [PMID: 38732186 PMCID: PMC11084730 DOI: 10.3390/ijms25094968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women's death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Collapse
Affiliation(s)
- Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Arkadiusz Grunwald
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Kamila Świątek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| |
Collapse
|
18
|
Rónavári A, Ochirkhuyag A, Igaz N, Szerencsés B, Ballai G, Huliák I, Bocz C, Kovács Á, Pfeiffer I, Kiricsi M, Kónya Z. Preparation, characterization and in vitro evaluation of the antimicrobial and antitumor activity of MnOx nanoparticles. Colloids Surf A Physicochem Eng Asp 2024; 688:133528. [DOI: 10.1016/j.colsurfa.2024.133528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
19
|
Huang Z, Wang Y, Su C, Li W, Wu M, Li W, Wu J, Xia Q, He H. Mn-Anti-CTLA4-CREKA-Sericin Nanotheragnostics for Enhanced Magnetic Resonance Imaging and Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306912. [PMID: 38009480 DOI: 10.1002/smll.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
The integration of magnetic resonance imaging (MRI), cGAS-STING, and anti-CTLA-4 (aCTLA-4) based immunotherapy offers new opportunities for tumor precision therapy. However, the precise delivery of aCTLA-4 and manganese (Mn), an activator of cGAS, to tumors remains a major challenge for enhanced MRI and active immunotherapy. Herein, a theragnostic nanosphere Mn-CREKA-aCTLA-4-SS (MCCS) is prepared by covalently assembling Mn2+, silk sericin (SS), pentapeptide CREKA, and aCTLA-4. MCCS are stable with an average size of 160 nm and is almost negatively charged or neutral at pH 5.5/7.4. T1-weighted images showed MCCS actively targeted tumors to improve the relaxation rate r1 and contrast time of MRI. This studies demonstrated MCCS raises reactive oxygen species levels, activates the cGAS-STING pathway, stimulates effectors CD8+ and CD80+ T cells, reduces regulatory T cell numbers, and increases IFN-γ and granzyme secretion, thereby inducing tumor cells autophagy and apoptosis in vitro and in vivo. Also, MCCS are biocompatible and biosafe. These studies show the great potential of Mn-/SS-based integrative material MCCS for precision and personalized tumor nanotheragnostics.
Collapse
Affiliation(s)
- Zixuan Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yejing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Can Su
- School of medical imaging, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Wanting Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wuling Li
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jun Wu
- School of medical imaging, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| | - Huawei He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
20
|
Fan R, Cai L, Liu H, Chen H, Chen C, Guo G, Xu J. Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy. J Pharm Anal 2024; 14:321-334. [PMID: 38618243 PMCID: PMC11010454 DOI: 10.1016/j.jpha.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 04/16/2024] Open
Abstract
Despite decades of laboratory and clinical trials, breast cancer remains the main cause of cancer-related disease burden in women. Considering the metabolism destruction effect of metformin (Met) and cancer cell starvation induced by glucose oxidase (GOx), after their efficient delivery to tumor sites, GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ. Herein, a pH-responsive epigallocatechin gallate (EGCG)-conjugated low-molecular-weight chitosan (LC-EGCG, LE) nanoparticle (Met-GOx/Fe@LE NPs) was constructed. The coordination between iron ions (Fe3+) and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction. Met-GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability. Moreover, this pH-responsive nanoplatform presents controllable drug release behavior. An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug. The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation. This triple-combination therapy approach is promising for efficient and targeted cancer treatment.
Collapse
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linrui Cai
- NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Drug Clinical-Trial Institution, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxu Chen
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Caili Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Gang Guo
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
21
|
Li S, Zhao Y, Ma W, Wang D, Liu H, Wang W, Peng D, Yu CY, Wei H. A multivalent polyphenol-metal-nanoplatform for cascade amplified chemo-chemodynamic therapy. Acta Biomater 2024; 173:389-402. [PMID: 37967695 DOI: 10.1016/j.actbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Chemodynamic therapy (CDT), as an emerging therapeutic strategy, kills cancer cells by converting intracellular hydrogen peroxide (H2O2) into cytotoxic oxidizing hydroxyl radicals (⋅OH). However, the therapeutic efficiency of CDT is compromised due to the insufficient endogenous H2O2 and metal catalysts in tumor cells. The use of multivalent polyphenols with multiple hydroxyl functions provides a facile yet robust means for efficient CDT augmentation. For this purpose, we reported herein the construction of polyphenol-metal nanoparticles (NPs) via a phenol-metal coordination strategy. The uniqueness of this study is the preparation of only one polymer construct with multivalency that can afford various supramolecular interactions for simultaneous "one-pot" loading of different therapeutic species, i.e., doxorubicin (DOX), glucose oxidases (GOD), and Fe3+ and further co-self-assembly into a stabilized nanomedicine for cascade amplified chemo-chemodynamic therapy. Specifically, the tumor intracellular acidic pH-triggered DOX release could serve for chemotherapy as well as enhance the intracellular H2O2 level. Together with the extra H2O2 and gluconic acid produced by the GOD-triggered glucose consumption, DOX@POAD-Fe@GOD NPs promoted Fe3+participation in the Fe-mediated Fenton reaction for cascade amplified chemo-chemodynamic therapy. Notably, this formulation displayed a greater anti-tumor effect with a tumor inhibition ratio 1.6-fold higher than that of free DOX in a BALB/c mice model bearing 4T1 tumors. Overall, the multivalent polyphenol-metal nanoplatform developed herein integrates chemotherapy, starvation therapy, and CDT for synergistic enhanced anticancer efficiency, which shows great potential for clinical translations. STATEMENT OF SIGNIFICANCE: Chemodynamic therapy (CDT) generally suffers from compromised therapeutic efficiency due to insufficient endogenous H2O2 and metal catalysts in tumor cells. To develop a facile yet robust strategy for efficient CDT augmentation, we reported herein construction of a multivalent polyphenol-metal nanoplatform, DOX@POAD-Fe@GOD nanoparticles (NPs) via a phenol-metal coordination strategy. This nanoplatform integrates multiple supramolecular dynamic interactions not only for simultaneously safe encapsulation of doxorubicin (DOX), Fe3+, and glucose oxidases (GOD), but also for cascade amplified chemo-chemodynamic therapy. Specifically, the intracellular acidic pH-triggered dissociation of DOX@POAD-Fe@GOD NPs promoted the release of Fe3+, DOX, and GOD for significantly increased ROS levels that can accelerate Fenton reactions for cascaded chemotherapy, starvation therapy, and CDT with amplified antitumor efficiency in vivo.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Wei Ma
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hongbing Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Wei Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Dongdong Peng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
22
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
23
|
Xie F, Zhu C, Gong L, Zhu N, Ma Q, Yang Y, Zhao X, Qin M, Lin Z, Wang Y. Engineering core-shell chromium nanozymes with inflammation-suppressing, ROS-scavenging and antibacterial properties for pulpitis treatment. NANOSCALE 2023; 15:13971-13986. [PMID: 37606502 DOI: 10.1039/d3nr02930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Oral diseases are usually caused by inflammation and bacterial infection. Reactive oxygen species (ROS), which come from both autologous inflammation tissue and bacterial infection, play an important role in this process. Thus, the elimination of excessive intracellular ROS can be a promising strategy for anti-inflammatory treatment. With the rapid development of nanomedicines, nanozymes, which can maintain the intracellular redox balance and protect cells against oxidative damage, have shown great application prospects in the treatment of inflammation-related diseases. However, their performance in pulpitis and their related mechanisms have yet to be explored. Herein, we prepared dozens of metallic nanoparticles with core-shell structures, and among them, chromium nanoparticles (NanoCr) were selected for their great therapeutic potential for pulpitis disease. NanoCr showed a broad antibacterial spectrum and strong anti-inflammatory function. Antibacterial assays showed that NanoCr could effectively inhibit a variety of common pathogens of oral infection. In vitro experiments offered evidence of the multienzyme activity of NanoCr and its function in suppressing ROS-induced inflammation reactions. The experimental results show that NanoCr has optimal antibacterial and anti-inflammatory properties in in vitro cell models, showing great potential for the treatment of pulpitis. Therefore, the use of NanoCr could become a new therapeutic strategy for clinical pulpitis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Chuanda Zhu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese academy of Agriculture, Beijing 100081, P.R. China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Xinrong Zhao
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| |
Collapse
|
24
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
25
|
Ying-Rui M, Bu-Fan B, Deng L, Rong S, Qian-Mei Z. Targeting the stimulator of interferon genes (STING) in breast cancer. Front Pharmacol 2023; 14:1199152. [PMID: 37448962 PMCID: PMC10338072 DOI: 10.3389/fphar.2023.1199152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Breast cancer has a high occurrence rate globally and its treatment has demonstrated clinical efficacy with the use of systemic chemotherapy and immune checkpoint blockade. Insufficient cytotoxic T lymphocyte infiltration and the accumulation of immunosuppressive cells within tumours are the primary factors responsible for the inadequate clinical effectiveness of breast cancer treatment. The stimulator of interferon genes (STING) represents a pivotal protein in the innate immune response. Upon activation, STING triggers the activation and enhancement of innate and adaptive immune functions, resulting in therapeutic benefits for malignant tumours. The STING signalling pathway in breast cancer is influenced by various factors such as deoxyribonucleic acid damage response, tumour immune microenvironment, and mitochondrial function. The use of STING agonists is gaining momentum in breast cancer research. This review provides a comprehensive overview of the cyclic guanosine monophosphate-adenosine monophosphate synthase-STING pathway, its agonists, and the latest findings related to their application in breast cancer.
Collapse
Affiliation(s)
- Ma Ying-Rui
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bai Bu-Fan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Deng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Rong
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou Qian-Mei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
26
|
Shi D, Wu F, Huang L, Li Y, Ke S, Li J, Hou Z, Fan Z. Bioengineered nanogenerator with sustainable reactive oxygen species storm for self-reinforcing sono-chemodynamic oncotherapy. J Colloid Interface Sci 2023; 646:649-662. [PMID: 37220698 DOI: 10.1016/j.jcis.2023.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Oxidative stress-based antitumor modalities derived from reactive oxygen species (ROS) storms have attracted increasing attention. Nevertheless, low delivery efficiency, poor selectivity, hypoxia and overexpressed glutathione (GSH) have severely restricted the sustainable generation of the ROS storm in tumor cells. Herein, we design a bioengineered nanogenerator by coordination-driven co-assembly of sonosensitizer indocyanine green (ICG), Fenton-like agent copper ion (CuⅡ) and mitochondrial respiratory inhibitor metformin (MET), which is then camouflaged by a cancer cytomembrane to induce a sustainable intracellular ROS storm for on-demand self-reinforcing sono-chemodynamic oncotherapy. Such a nanogenerator with a core-shell structure, suitable diameter and outstanding stability can efficiently accumulate in tumor regions and then internalize into tumor cells through the camouflaging and homologous targeting strategy of the cancer cytomembrane. The nanogenerator shows an exceptional instability under the triple stimulations of acidic lysosomes, overexpressed GSH and ultrasound (US) radiation, thereby resulting in the rapid disassembly and burst drug release. Interestingly, the released MET significantly enhances the sonodynamic therapy (SDT) efficacy of the released ICG by inhibiting mitochondrial respiration and meanwhile the released CuⅡ obviously reduces ROS elimination by downregulating overexpressed GSH for self-amplifying and self-protecting the intracellular ROS storm. Moreover, such a nanogenerator almost completely achieves the tumor ablation in vivo in a single therapy cycle. Taken together, our bioengineered nanogenerator with a sustainable ROS storm can provide a promising strategy for ROS storm-based oncotherapy.
Collapse
Affiliation(s)
- Dao Shi
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; College of Materials, Xiamen University, Xiamen 361005, China
| | - Feng Wu
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Lingling Huang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen 361021, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, China.
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
27
|
Chen B, Meng X, Wu W, Zhang Y, Ma L, Chen K, Fang X. A novel CEST-contrast nanoagent for differentiating the malignant degree in breast cancer. RSC Adv 2023; 13:14131-14138. [PMID: 37180024 PMCID: PMC10167945 DOI: 10.1039/d3ra01006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Different subtypes of breast cancer (BCC) have variable degrees of malignancy, which is closely related to their extracellular pH (pHe). Therefore, it is increasingly significant to monitor the extracellular pH sensitively to further determine the malignancy of different subtypes of BCC. Here, a l-arginine and Eu3+ assembled nanoparticle Eu3+@l-Arg was prepared to detect the pHe of two breast cancer models (TUBO is non-invasive and 4T1 is malignant) using a clinical chemical exchange saturation shift imaging technique. The experiments in vivo showed that Eu3+@l-Arg nanomaterials could respond sensitively to changes of pHe. In 4T1 models, the CEST signal enhanced about 5.42 times after Eu3+@l-Arg nanomaterials were used to detect the pHe. In contrast, few enhancements of the CEST signal were seen in the TUBO models. This significant difference had led to new ideas for identifying subtypes of BCC with different degrees of malignancy.
Collapse
Affiliation(s)
- Bixue Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University Wuxi China
| | - Xianfu Meng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai China
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai China
| | - Wanlu Wu
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University Wuxi China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University Shanghai China
| | - Lin Ma
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University Wuxi China
| | - Kaidong Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University Wuxi China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University Wuxi China
| |
Collapse
|
28
|
Zhang K, Qi C, Cai K. Manganese-Based Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205409. [PMID: 36121368 DOI: 10.1002/adma.202205409] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/26/2022] [Indexed: 05/12/2023]
Abstract
As an essential micronutrient, manganese (Mn) participates in various physiological processes and plays important roles in host immune system, hematopoiesis, endocrine function, and oxidative stress regulation. Mn-based nanoparticles are considered to be biocompatible and show versatile applications in nanomedicine, in particular utilized in tumor immunotherapy in the following ways: 1) acting as a biocompatible nanocarrier to deliver immunotherapeutic agents for tumor immunotherapy; 2) serving as an adjuvant to regulate tumor immune microenvironment and enhance immunotherapy; 3) activating host's immune system through the cGAS-STING pathway to trigger tumor immunotherapy; 4) real-time monitoring tumor immunotherapy effect by magnetic resonance imaging (MRI) since Mn2+ ions are ideal MRI contrast agent which can significantly enhance the T1 -weighted MRI signal after binding to proteins. This comprehensive review focuses on the most recent progress of Mn-based nanoplatforms in tumor immunotherapy. The characteristics of Mn are first discussed to guide the design of Mn-based multifunctional nanoplatforms. Then the biomedical applications of Mn-based nanoplatforms, including immunotherapy alone, immunotherapy-involved multimodal synergistic therapy, and imaging-guided immunotherapy are discussed in detail. Finally, the challenges and future developments of Mn-based tumor immunotherapy are highlighted.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chao Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
29
|
Li Y, Li X, Yi J, Cao Y, Qin Z, Zhong Z, Yang W. Nanoparticle-Mediated STING Activation for Cancer Immunotherapy. Adv Healthc Mater 2023:e2300260. [PMID: 36905358 DOI: 10.1002/adhm.202300260] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Indexed: 03/12/2023]
Abstract
As the first line of host defense against pathogenic infections, innate immunity plays a key role in antitumor immunotherapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) pathway has attracted much attention because of the secretion of various proinflammatory cytokines and chemokines. Many STING agonists have been identified and applied into preclinical or clinical trials for cancer immunotherapy. However, the fast excretion, low bioavailability, nonspecificity, and adverse effects of the small molecule STING agonists limit their therapeutic efficacy and in vivo application. Nanodelivery systems with appropriate size, charge, and surface modification are capable of addressing these dilemmas. In this review, the mechanism of the cGAS-STING pathway is discussed and the STING agonists, focusing on nanoparticle-mediated STING therapy and combined therapy for cancers, are summarized. Finally, the future direction and challenges of nano-STING therapy are expounded, emphasizing the pivotal scientific problems and technical bottlenecks and hoping to provide general guidance for its clinical application.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.,The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
30
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
31
|
Zhang T, Hu C, Zhang W, Ruan Y, Ma Y, Chen D, Huang Y, Fan S, Lin W, Huang Y, Liao K, Lu H, Xu JF, Pi J, Guo X. Advances of MnO 2 nanomaterials as novel agonists for the development of cGAS-STING-mediated therapeutics. Front Immunol 2023; 14:1156239. [PMID: 37153576 PMCID: PMC10154562 DOI: 10.3389/fimmu.2023.1156239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.
Collapse
Affiliation(s)
- Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunmiao Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongemi Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| |
Collapse
|
32
|
Zhang X, Liu J, Wang H. The cGAS-STING-autophagy pathway: Novel perspectives in neurotoxicity induced by manganese exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120412. [PMID: 36240967 DOI: 10.1016/j.envpol.2022.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chronic high-level heavy metal exposure increases the risk of developing different neurodegenerative diseases. Chronic excessive manganese (Mn) exposure is known to lead to neurodegenerative diseases. In addition, some evidence suggests that autophagy dysfunction plays an important role in the pathogenesis of various neurodegenerative diseases. Over the past decade, the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signal-efficient interferon gene stimulator (STING), as well as the molecular composition and regulatory mechanisms of this pathway have been well understood. The cGAS-STING pathway has emerged as a crucial mechanism to induce effective innate immune responses by inducing type I interferons in mammalian cells. Moreover, recent studies have found that Mn2+ is the second activator of the cGAS-STING pathway besides dsDNA, and inducing autophagy is a primitive function for the activation of the cGAS-STING pathway. However, overactivation of the immune response can lead to tissue damage. This review discusses the mechanism of neurotoxicity induced by Mn exposure from the cGAS-STING-autophagy pathway. Future work exploiting the cGAS-STING-autophagy pathway may provide a novel perspective for manganese neurotoxicity.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
33
|
Yu N, Zhang X, Zhong H, Mu J, Li X, Liu T, Shi X, Liang XJ, Guo S. Stromal Homeostasis-Restoring Nanomedicine Enhances Pancreatic Cancer Chemotherapy. NANO LETTERS 2022; 22:8744-8754. [PMID: 36279310 DOI: 10.1021/acs.nanolett.2c03663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The desmoplastic stroma imposes a fatal physical delivery barrier in pancreatic ductal adenocarcinoma (PDAC) therapy. Deconstructing the stroma components hence predominates in stroma-targeting approaches, but conflicting outcomes have sometimes occurred due to the multifaceted nature of the stroma. Here, we constructed two sub-20-nm nanomedicines based on a so-called "next-wave" antifibrotic halofuginone (HF) and the tumoricidal paclitaxel (PTX) for enhanced PDAC chemotherapy. This was achieved by coassembling methoxy poly(ethylene glycol)-b-poly(caprolactone) with ketal-linked HF- and PTX-derived prodrugs. HF nanomedicine and PTX nanomedicine had excellent prodrug-nanocarrier compatibility and exhibited greatly improved pharmacokinetic profiles and high tumor accumulation. HF nanomedicine pretreatment restored stromal homeostasis and considerably facilitated the distribution of PTX nanomedicine and its penetration into carcinoma cells, leading to positive modulation of the infiltration of cytotoxic T cells and significant regression of tumor growth in two PDAC models. Our nanomedicine-based stromal remodeling strategy appears promising for treating desmoplastic malignancies.
Collapse
Affiliation(s)
- Na Yu
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoguang Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing-Jie Liang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|