1
|
Watanabe M, Salvadori A, Markovic M, Sudo R, Ovsianikov A. Advanced liver-on-chip model mimicking hepatic lobule with continuous microvascular network via high-definition laser patterning. Mater Today Bio 2025; 32:101643. [PMID: 40206147 PMCID: PMC11979415 DOI: 10.1016/j.mtbio.2025.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
There is a great demand for development of advanced in vitro liver models to predict the efficacy and safety of drug candidates accurately in the preclinical drug development. Despite the great efforts to develop biomimetic models, it remains challenging to precisely mimic a functional unit of the liver (i.e., hepatic lobule) with a continuous microvascular network. Recent progress in laser patterning has allowed us to create arbitrary biomimetic structures with high resolution. Here, we propose an advanced liver-on-chip model mimicking the hepatic lobule with a continuous microvascular network, ranging from the microvessels to the central vein of the liver, utilizing femtosecond laser patterning. Firstly, we optimize the laser power to pattern microchannels mimicking the microvessel and central vein of the hepatic lobule by using a femtosecond laser within a collagen-based hydrogel containing hepatic cells. Secondly, we construct continuous microvessels with luminal structures by comparing different microchannel sizes in diameter. Finally, we assemble a millimeter-scale hepatic lobule-like structure with multiple layers of microvascular networks in the liver-on-chip. Furthermore, our liver-on-chip model exhibits major liver functions and drug-induced hepatotoxicity, as evidenced by albumin and urea productions and by a toxic response to acetaminophen, respectively. Our approach provides valuable strategies for the development of advanced physiological and pathological liver-on-chip models for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Masafumi Watanabe
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
- Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow, Japan
| | - Alice Salvadori
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| | - Marica Markovic
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, 223-8522 Yokohama, Japan
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| |
Collapse
|
2
|
Yang C, Zhang Z, Fan X, Liu Y, Deng C, Zhang M, Wang X, Deng L, Gao H, Deng Y, Song Y, Liu H, Wang Z, Xiong W, Wang L. Sericin-Based 3D High-Precision Biomimetic Microscaffold Fabricated by Laser Direct Writing for Tissue Engineering. NANO LETTERS 2025; 25:8110-8119. [PMID: 40238450 DOI: 10.1021/acs.nanolett.5c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In tissue engineering, scaffolds are designed to mimic the extracellular matrix (ECM), creating three-dimensional (3D) microenvironments that support cell adhesion and growth. However, the precise fabrication of heterogenenous ECM-mimicking 3D microstructures remains an unsolved challenge. To address this, high-precise sericin-based scaffolds were developed via femtosecond laser direct writing (FsLDW) technology. Chemically modified sericin served as a monomer in the FsLDW process, achieving nanoscale precision and enabling the fabrication of arbitrary 3D sericin microstructures. Biomimetic 3D models, derived from natural tissue matrices, were employed to construct heterogenenous sericin bioscaffolds. These anisotropic scaffolds effectively supported cell directional growth and differentiation. This advancement greatly enhances the precision of sericin-based tissue-engineered scaffolds, enabling the creation of heterogenenous, multifunctional microenvironments that mimic natural ECM to support functional tissue development and address challenges in accurately simulating ECM microstructures in tissue regeneration.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zexu Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuhao Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuncheng Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingduo Zhang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinger Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Deng
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Liu
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei 430022, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei 430022, China
| |
Collapse
|
3
|
Chen Y, Yu K, Jiang Z, Yang G. CRISPR-based genetically modified scaffold-free biomaterials for tissue engineering and regenerative medicine. Biomater Sci 2025. [PMID: 40326747 DOI: 10.1039/d5bm00194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
CRISPR-based genetically modified scaffold-free biomaterials, including extracellular vehicles, cell sheets, cell aggregates, organoids and organs, have attracted significant attention in the fields of regenerative medicine and tissue engineering in recent years. With a wide range of applications in gene therapy, modeling disease, tissue regeneration, organ xenotransplantation, modeling organogenesis as well as gene and drug screening, they are at a critical juncture from clinical trials to therapeutic applications. Xenografts have already been tested on non-human primates and humans. However, we have to admit that a series of obstacles still need to be addressed, such as immune response, viral infection, off-target effects, difficulty in mass production, and ethical issues. Therefore, future research should pay more attention to improving their safety, accuracy of gene editing, flexibility of production, and ethical rationality. This review summarizes various types of CRISPR-based genetically modified scaffold-free biomaterials, including their preparation procedures, applications, and possible improvements.
Collapse
Affiliation(s)
- Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
4
|
Hambitzer L, Hornbostel JM, Roolfs L, Prediger R, Kluck S, Zheng K, Lee-Thedieck C, Kotz-Helmer F. Bioactive Glass Microscaffolds Fabricated by Two-Photon Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504475. [PMID: 40270298 DOI: 10.1002/adma.202504475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Indexed: 04/25/2025]
Abstract
Porous scaffolds made of bioactive glass (BG) are of great interest for tissue engineering as they can bond to bone rapidly and promote new bone formation. Pores and channels between 100 and 500 µm provide space for cell intrusion and nutrient supply, facilitating bone ingrowth and vascularization. Furthermore, smaller pores and structural features of a few microns in size influence cell behavior, such as adhesion and osteogenic differentiation. Additive manufacturing (AM) is well suited to fabricate such geometries. However, microstructuring BG is demanding and common AM techniques are unable to achieve features below 100 µm. In this work, two-photon lithography (TPL) is used for the first time to structure BG with single-micron features. A composite containing BG nanoparticles is structured using TPL and thermally processed to receive glass scaffolds. The glass used in this study demonstrates in vitro bioactivity in simulated body fluid (SBF) and cytocompatibility toward human mesenchymal stromal cells (MSCs), making it a suitable material for tissue engineering. This process will open a toolbox for a variety of existing BG particles to be shaped with features as small as 6 µm and will broaden the understanding of the influence of scaffold design on cell behavior.
Collapse
Affiliation(s)
- Leonhard Hambitzer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jan Mathis Hornbostel
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Louise Roolfs
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Richard Prediger
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Sebastian Kluck
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Kai Zheng
- Engineering Research Center of Stomatological Translational Medicine & Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Department of Cell Biology, University of Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
- Glassomer GmbH, In den Kirchenmatten 54, 79110, Freiburg, Germany
| |
Collapse
|
5
|
Kopinski-Grünwald O, Schandl S, Gusev J, Chamalaki OE, Ovsianikov A. Surface functionalization of microscaffolds produced by high-resolution 3D printing: A new layer of freedom. Mater Today Bio 2025; 31:101452. [PMID: 39896295 PMCID: PMC11783114 DOI: 10.1016/j.mtbio.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Scaffolded-spheroids represent novel building blocks for bottom-up tissue assembly, allowing to produce constructs with high initial cell density. Previously, we demonstrated the successful differentiation of such building blocks, produced from immortalized human adipose-derived stem cells, towards different phenotypes, and the possibility of creating macro-sized tissue-like constructs in vitro. The culture of cells in vitro depends on the supply of various nutrients and biomolecules, such as growth factors, usually supplemented in the culture medium. Another means for growth factor delivery (in vitro and in vivo) is the release from the scaffold to alter the biological response of surrounding cells (e.g. by release of VEGF).1 As a proof of concept for this approach, we sought to biofunctionalize the surface of the microscaffolds with heparin as a "universal linker" that would allow binding a variety of growth factors/biomolecules. An aminolysis step in an organic solvent made it possible to generate a hydrophilic and charged surface. The backbone of the amine, as well as reaction conditions, led to an adjustable surface modification. The amount of heparin on the surface was increased with an ethylene glycol-based diamine backbone and varied between 8 and 40 ng per microscaffold. Choosing a suitable linker allows easy adjustment of the loading of VEGF and other heparin-binding proteins. Initial results indicated that up to 5 ng VEGF could be loaded per microscaffold, generating a steady VEGF release for 16 days. We report an easy-to-perform, scalable surface modification approach of polyester-based resin that leads to adjustable surface concentrations of heparin. The successful surface aminolysis opens the route to various modifications and broadens the spectrum of biomolecules which can be delivered.
Collapse
Affiliation(s)
| | | | - Jegor Gusev
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria
| | - Ourania Evangelia Chamalaki
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria
| | | |
Collapse
|
6
|
Mainik P, Aponte‐Santamaría C, Fladung M, Curticean RE, Wacker I, Hofhaus G, Bastmeyer M, Schröder RR, Gräter F, Blasco E. Responsive 3D Printed Microstructures Based on Collagen Folding and Unfolding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408597. [PMID: 39604251 PMCID: PMC11753499 DOI: 10.1002/smll.202408597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Mimicking extracellular matrices holds great potential for tissue engineering in biological and biomedical applications. A key compound for the mechanical stability of these matrices is collagen, which also plays an important role in many intra- and intercellular processes. Two-photon 3D laser printing offers structuring of these matrices with subcellular resolution. So far, efforts on 3D microprinting of collagen have been limited to simple geometries and customized set-ups. Herein, an easily accessible approach is presented using a collagen type I methacrylamide (ColMA) ink system which can be stored at room temperature and be precisely printed using a commercial two-photon 3D laser printer. The formulation and printing parameters are carefully optimized enabling the manufacturing of defined 3D microstructures. Furthermore, these printed microstructures show a fully reversible response upon heating and cooling in multiple cycles, indicating successful collagen folding and unfolding. This experimental observation has been supported by molecular dynamics simulations. Thus, the study opens new perspectives for designing new responsive biomaterials for 4D (micro)printing.
Collapse
Affiliation(s)
- Philipp Mainik
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| | | | - Magdalena Fladung
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | | | - Irene Wacker
- BioQuantHeidelberg University69120HeidelbergGermany
| | - Götz Hofhaus
- BioQuantHeidelberg University69120HeidelbergGermany
| | - Martin Bastmeyer
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute for Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP)Karlsruhe Institute of Technology (KIT)76344KarlsruheGermany
| | | | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS)69118HeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR)Heidelberg University69120HeidelbergGermany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
- Organic Chemistry Institute (OCI)Heidelberg University69120HeidelbergGermany
| |
Collapse
|
7
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
8
|
Ghasemzadeh-Hasankolaei M, Pinheiro D, Nadine S, Mano JF. Strategies to decouple cell micro-scale and macro-scale environments for designing multifunctional biomimetic tissues. SOFT MATTER 2024; 20:6313-6326. [PMID: 39049813 DOI: 10.1039/d4sm00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The regulation of cellular behavior within a three-dimensional (3D) environment to execute a specific function remains a challenge in the field of tissue engineering. In native tissues, cells and matrices are arranged into 3D modular units, comprising biochemical and biophysical signals that orchestrate specific cellular activities. Modular tissue engineering aims to emulate this natural complexity through the utilization of functional building blocks with unique stimulation features. By adopting a modular approach and using well-designed biomaterials, cellular microenvironments can be effectively decoupled from their macro-scale surroundings, enabling the development of engineered tissues with enhanced multifunctionality and heterogeneity. We overview recent advancements in decoupling the cellular micro-scale niches from their macroenvironment and evaluate the implications of this strategy on cellular and tissue functionality.
Collapse
Affiliation(s)
| | - Diogo Pinheiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Nadine
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Li S, Qiu J, Guo Z, Gao Q, Huang CY, Hao Y, Hu Y, Liang T, Zhai M, Zhang Y, Nie B, Chang WJ, Wang W, Xi R, Wei R. Formation and culture of cell spheroids by using magnetic nanostructures resembling a crown of thorns. Biofabrication 2024; 16:045018. [PMID: 39053493 DOI: 10.1088/1758-5090/ad6794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
In contrast to traditional two-dimensional cell-culture conditions, three-dimensional (3D) cell-culture models closely mimic complexin vivoconditions. However, constructing 3D cell culture models still faces challenges. In this paper, by using micro/nano fabrication method, including lithography, deposition, etching, and lift-off, we designed magnetic nanostructures resembling a crown of thorns. This magnetic crown of thorns (MCT) nanostructure enables the isolation of cells that have endocytosed magnetic particles. To assess the utility of this nanostructure, we used high-flux acquisition of Jurkat cells, an acute-leukemia cell line exhibiting the native phenotype, as an example. The novel structure enabled Jurkat cells to form spheroids within just 30 min by leveraging mild magnetic forces to bring together endocytosed magnetic particles. The size, volume, and arrangement of these spheroids were precisely regulated by the dimensions of the MCT nanostructure and the array configuration. The resulting magnetic cell clusters were uniform in size and reached saturation after 1400 s. Notably, these cell clusters could be easily separated from the MCT nanostructure through enzymatic digestion while maintaining their integrity. These clusters displayed a strong proliferation rate and survival capabilities, lasting for an impressive 96 h. Compared with existing 3D cell-culture models, the approach presented in this study offers the advantage of rapid formation of uniform spheroids that can mimicin vivomicroenvironments. These findings underscore the high potential of the MCT in cell-culture models and magnetic tissue enginerring.
Collapse
Affiliation(s)
- Shijiao Li
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jingjiang Qiu
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhongwei Guo
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiulei Gao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Chen-Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States of America
| | - Yilin Hao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yifan Hu
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Henan Spring Biotechnology Ltd Company, Zhengzhou 450001, People's Republic of China
- Division of Logistics, Weistron Co., Ltd, Zhengzhou 450001, People's Republic of China
| | - Tianshui Liang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ming Zhai
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yudong Zhang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bangbang Nie
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, NY, United States of America
| | - Wen Wang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Xi
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, People's Republic of China
| | - Ronghan Wei
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
10
|
Debruyne A, Okkelman IA, Heymans N, Pinheiro C, Hendrix A, Nobis M, Borisov SM, Dmitriev RI. Live Microscopy of Multicellular Spheroids with the Multimodal Near-Infrared Nanoparticles Reveals Differences in Oxygenation Gradients. ACS NANO 2024; 18:12168-12186. [PMID: 38687976 PMCID: PMC11100290 DOI: 10.1021/acsnano.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.
Collapse
Affiliation(s)
- Angela
C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Irina A. Okkelman
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Nina Heymans
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Cláudio Pinheiro
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Max Nobis
- Intravital
Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Pan R, Lin C, Yang X, Xie Y, Gao L, Yu L. The influence of spheroid maturity on fusion dynamics and micro-tissue assembly in 3D tumor models. Biofabrication 2024; 16:035016. [PMID: 38663395 DOI: 10.1088/1758-5090/ad4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.
Collapse
Affiliation(s)
- Rong Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Chenyu Lin
- Institute for Developmental and Biology and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
12
|
Zhao J, Lu F, Dong Z. Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration. Tissue Eng Regen Med 2024; 21:395-408. [PMID: 38032533 PMCID: PMC10987464 DOI: 10.1007/s13770-023-00607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Repairing soft tissue defects caused by inflammation, tumors, and trauma remains a major challenge for surgeons. Adipose tissue engineering (ATE) provides a promising way to solve this problem. METHODS This review summarizes the current ATE strategies for soft tissue reconstruction, and introduces potential construction methods for ATE. RESULTS Scaffold-based and scaffold-free strategies are the two main approaches in ATE. Although several of these methods have been effective clinically, both scaffold-based and scaffold-free strategies have limitations. The third strategy is a synergistic tissue engineering strategy and combines the advantages of scaffold-based and scaffold-free strategies. CONCLUSION Personalized construction, stable survival of reconstructed tissues and functional recovery of organs are future goals of building tissue-engineered fat for ATE.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Plastic Surgery Institute of Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Ziqing Dong
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
De S, Vasudevan A, Tripathi DM, Kaur S, Singh N. A decellularized matrix enriched collagen microscaffold for a 3D in vitro liver model. J Mater Chem B 2024; 12:772-783. [PMID: 38167699 DOI: 10.1039/d3tb01652h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The development of liver scaffolds retaining their three-dimensional (3D) structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of an alginate-based platform using a combination of decellularized matrices and collagen to preserve the functionality of liver cells. The scaffolds were characterized using SEM and fluorescence microscopy techniques. The proliferation and functional behaviours of hepatocellular carcinoma HuH7 cells were observed. It was found that the decellularized skin scaffold with collagen was better for maintaining the growth of cells in comparison to other decellularized matrices. In addition, we observed a significant increase in the functional profile once exogenous collagen was added to the liver matrix. Our study also suggests that a cirrhotic liver model should have a different matrix composition as compared to a healthy liver model. When primary rat hepatocytes were used for developing a healthy liver model, the proliferation studies with hepatocytes showed a decellularized skin matrix as the better option, but the functionality was only maintained in a decellularized liver matrix with addition of exogenous collagen. We further checked if these platforms can be used for studying drug induced toxicity observed in the liver by studying the activation of cytochrome P450 upon drug exposure of the cells growing in our model. We observed a significant induction of the CYP1A1 gene on administering the drugs for 6 days. Thus, this platform could be used for drug-toxicity screening studies using primary hepatocytes in a short span of time. Being a microscaffold based system, this platform offers some advantages, such as smaller volumes of samples, analysing multiple samples simultaneously and a minimal amount of decellularized matrix in the matrix composition, making it an economical option compared to a completely dECM based platform.
Collapse
Affiliation(s)
- Shreemoyee De
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj Marg, New Delhi, Delhi 110070, India.
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj Marg, New Delhi, Delhi 110070, India.
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1, Vasant Kunj Marg, New Delhi, Delhi 110070, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| |
Collapse
|
14
|
Vassallo V, Di Meo C, Schiraldi C. Adult Mesenchymal Stem Cells in Presence of Glycosaminoglycans. Methods Mol Biol 2024; 2835:29-37. [PMID: 39105903 DOI: 10.1007/978-1-0716-3995-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The application of adult mesenchymal stem cells (MSCs) in the field of tissue regeneration is of increasing interest to the scientific community. In particular, scaffolds and/or hydrogel based on glycosaminoglycans (GAGs) play a pivotal role due to their ability to support the in vitro growth and differentiation of MSCs toward a specific phenotype. Here, we describe different possible approaches to develop GAGs-based biomaterials, hydrogel, and polymeric viscous solutions in order to assess/develop a suitable biomimetic environment. To sustain MSCs viability and promote their differentiation for potential therapeutic applications.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine (DMS), Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Celeste Di Meo
- Department of Experimental Medicine (DMS), Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine (DMS), Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
15
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
16
|
Pan R, Yang X, Ning K, Xie Y, Chen F, Yu L. Recapitulating the Drifting and Fusion of Two-Generation Spheroids on Concave Agarose Microwells. Int J Mol Sci 2023; 24:11967. [PMID: 37569343 PMCID: PMC10419262 DOI: 10.3390/ijms241511967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023] Open
Abstract
Cells with various structures and proteins naturally come together to cooperate in vivo. This study used cell spheroids cultured in agarose micro-wells as a 3D model to study the movement of cells or spheroids toward other spheroids. The formation dynamics of tumor spheroids and the interactions of two batches of cells in the agarose micro-wells were studied. The results showed that a concave bottom micro-well (diameter: 2 mm, depth: 2 mm) prepared from 3% agarose could be used to study the interaction of two batches of cells. The initial tumor cell numbers from 5 × 103 cells/well to 6 × 104 cells/well all could form 3D spheroids after 3 days of incubation. Adding the second batch of DU 145 cells to the existing DU 145 spheroid resulted in the formation of satellite cell spheroids around the existing parental tumor spheroid. Complete fusion of two generation cell spheroids was observed when the parental spheroids were formed from 1 × 104 and 2 × 104 cells, and the second batch of cells was 5 × 103 per well. A higher amount of the second batch of cells (1 × 104 cell/well) led to the formation of independent satellite spheroids after 48 h of co-culture, suggesting the behavior of the second batch of cells towards existing parental spheroids depended on various factors, such as the volume of the parental spheroids and the number of the second batch cells. The interactions between the tumor spheroids and Human Umbilical Vein Endothelial Cells (HUVECs) were modeled on concave agarose micro-wells. The HUVECs (3 × 103 cell/well) were observed to gather around the parental tumor spheroids formed from 1 × 104, 2 × 104, and 3 × 104 cells per well rather than aggregate on their own to form HUVEC spheroids. This study highlights the importance of analyzing the biological properties of cells before designing experimental procedures for the sequential fusion of cell spheroids. The study further emphasizes the significant roles that cell density and the volume of the spheroids play in determining the location and movement of cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China; (R.P.); (X.Y.); (K.N.); (Y.X.); (F.C.)
| |
Collapse
|
17
|
Skylar-Scott M, Declercq H, Nakayama K. Special Issue: Biofabrication with Spheroid and Organoid Materials. Acta Biomater 2023; 165:1-3. [PMID: 37230440 DOI: 10.1016/j.actbio.2023.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Mark Skylar-Scott
- Department of Bioengineering and Basic Science and Engineering Initiative, Stanford University, Stanford, CA 94305, USA; Children's Heart Center, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven Campus Kulak, Kortrijk 8500, Belgium
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, SAGA University, Saga Honjomachi, 1, Japan
| |
Collapse
|
18
|
Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules. J Funct Biomater 2023; 14:jfb14020101. [PMID: 36826900 PMCID: PMC9964438 DOI: 10.3390/jfb14020101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed.
Collapse
|
19
|
Chen Z, Song X, Mu X, Zhang J, Cheang UK. 2D Magnetic Microswimmers for Targeted Cell Transport and 3D Cell Culture Structure Construction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8840-8853. [PMID: 36752406 DOI: 10.1021/acsami.2c18955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell delivery using magnetic microswimmers is a promising tool for targeted therapy. However, it remains challenging to rapidly and uniformly manufacture cell-loaded microswimmers that can be assembled into cell-supporting structures at diseased sites. Here, rapid and uniform manufacturable 2D magnetic achiral microswimmers with pores were fabricated to deliver bone marrow mesenchymal stem cells (BMSCs) to regenerate articular-damaged cartilage. Under actuation with magnetic fields, the BMSC-loaded microswimmers take advantage of the achiral structure to exhibit rolling or swimming motions to travel on smooth and rough surfaces, up inclined planes, or in the bulk fluid. Cell viability, proliferation, and differentiation tests performed days after cell seeding verified the microswimmers' biocompatibility. Long-distance targeting and in situ assemblies into 3D cell-supporting structures with BMSC-loaded microswimmers were demonstrated using a knee model and U-shaped wells. Overall, combining the advantages of preparing an achiral 2D structured microswimmer with magnetically driven motility results in a platform for cell transport and constructing 3D cell cultures that can improve cell delivery at lesion sites for biomedical applications.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junkai Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|
21
|
Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids. Acta Biomater 2022:S1742-7061(22)00693-6. [DOI: 10.1016/j.actbio.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
22
|
Lee SY, Lee JW. 3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070939. [PMID: 35888029 PMCID: PMC9317836 DOI: 10.3390/life12070939] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Cartilage is a connective tissue that constitutes the structure of the body and consists of chondrocytes that produce considerable collagenous extracellular matrix and plentiful ground substances, such as proteoglycan and elastin fibers. Self-repair is difficult when the cartilage is damaged because of insufficient blood supply, low cellularity, and limited progenitor cell numbers. Therefore, three-dimensional (3D) culture systems, including pellet culture, hanging droplets, liquid overlays, self-injury, and spinner culture, have attracted attention. In particular, 3D spheroid culture strategies can enhance the yield of exosome production of mesenchymal stem cells (MSCs) when compared to two-dimensional culture, and can improve cellular restorative function by enhancing the paracrine effects of MSCs. Exosomes are membrane-bound extracellular vesicles, which are intercellular communication systems that carry RNAs and proteins. Information transfer affects the phenotype of recipient cells. MSC-derived exosomes can facilitate cartilage repair by promoting chondrogenic differentiation and proliferation. In this article, we reviewed recent major advances in the application of 3D culture techniques, cartilage regeneration with stem cells using 3D spheroid culture system, the effect of exosomes on chondrogenic differentiation, and chondrogenic-specific markers related to stem cell derived exosomes. Furthermore, the utilization of MSC-derived exosomes to enhance chondrogenic differentiation for osteoarthritis is discussed. If more mechanistic studies at the molecular level are conducted, MSC-spheroid-derived exosomes will supply a better therapeutic option to improve osteoarthritis.
Collapse
Affiliation(s)
- Seung Yeon Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea;
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6516; Fax: +82-32-899-6039
| |
Collapse
|