1
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
2
|
Zhang YJ, Chen LY, Lin F, Zhang X, Xiang HF, Rao Q. ROS responsive nanozyme loaded with STING silencing for the treatment of sepsis-induced acute lung injury. Toxicol Appl Pharmacol 2024; 493:117155. [PMID: 39537108 DOI: 10.1016/j.taap.2024.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is a common complication of sepsis and a leading cause of mortality in septic patients. Studies indicate that STING may play a crucial role in the pathogenesis of sepsis-induced ALI by interacting with the PARP-1/NLRP3 pathway. Therefore, targeting STING inhibition has potential as a novel therapeutic strategy for ALI. However, effective inhibition remains challenging due to the widespread expression of STING across various tissues. In this study, we developed a nanozyme-based drug delivery system, DSPE-TK-mPEG-MnO2@siSTING (abbreviated as DTmM@siSTING), using DSPE-TK-mPEG-MnO2 as the carrier, and characterized it via scanning electron microscopy, dynamic light scattering, nanoparticle size analysis, and gel electrophoresis. To evaluate the therapeutic effects of DTmM@siSTING, an in vitro ALI cell model and an in vivo ALI mouse model were established, assessing the nanozyme's impact on ROS levels, inflammatory responses, and the PARP-1/NLRP3 pathway in sepsis-induced ALI. Results demonstrated that DTmM@siSTING exhibited good physiological stability. In vitro, DTmM@siSTING significantly reduced ROS levels, myeloperoxidase activity, and expression of inflammatory cytokines, while also inhibiting PARP-1/NLRP3 pathway activation. In vivo experiments further revealed that DTmM@siSTING effectively delivered siSTING to the lungs, mitigating sepsis-induced ALI and associated inflammatory responses. Additionally, DTmM@siSTING displayed excellent biocompatibility. In summary, our findings suggest that DTmM@siSTING significantly enhances the therapeutic efficacy of siSTING, alleviating ALI by inhibiting ROS production, inflammatory responses, and activation of the PARP-1/NLRP3 pathway. This novel approach presents a promising therapeutic avenue for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yin-Jin Zhang
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Ling-Yang Chen
- Blood Purification Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Feng Lin
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Xia Zhang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China
| | - Hai-Fei Xiang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| | - Qing Rao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou 317000, China.
| |
Collapse
|
3
|
Qiu Q, Li J, Ren H, Zhang J, Liu G, Yang R, Sun B, Zhang C, Zhang Y. Zinc Coordination Lipid Nanoparticles Co-Delivering Calcium Peroxide and Chelating STING agonist for Enhanced Cancer Metalloimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402308. [PMID: 39114869 DOI: 10.1002/smll.202402308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Metalloimmunotherapy has achieved great preclinical success against malignant tumors. Nonetheless, the limited immune cell infiltration and impaired immunogenicity within the tumor microenvironment (TME) significantly hinder its translation to clinical applications. In this study, a zinc coordination lipid nanoparticle is developed loaded with calcium peroxide hydrate (CaO2) nanoparticles and the STING agonist diABZI-2, which is termed A-CaO2-Zn-LNP. The release of Zn2+ from the A-CaO2-Zn-LNP and the calcium overload synergistically induced immunogenic cell death (ICD). In addition, CaO2 nanoparticles can consume H+ and release oxygen (O2) under acidic conditions. This treatment increased the pH and alleviated the hypoxia of the TME. Along with cGAS-STING activation by diABZI-2, A-CaO2-Zn-LNP ultimately results in enhanced anti-tumor systemic immunity and long-term immune memory via alleviating the immunosuppressive microenvironment. Taken together, A-CaO2-Zn-LNP offers a new nanoplatform that expands its application for cancer treatment by metalloimmunotheray.
Collapse
Affiliation(s)
- Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jingyu Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Ruiqi Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Boyang Sun
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, Chen R, Zhang Q, Sun Z, Weng H. Functional Ginger-Derived Extracellular Vesicles-Coated ZIF-8 Containing TNF-α siRNA for Ulcerative Colitis Therapy by Modulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53460-53473. [PMID: 39303016 DOI: 10.1021/acsami.4c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tumor necrosis factor-α (TNF-α) plays a causal role in the pathogenesis of ulcerative colitis (UC), and anti-TNF-α siRNA shows great promise in UC therapy. However, delivering siRNA with site-targeted stability and therapeutic efficacy is still challenging due to the complex and dynamic intestinal microenvironment. Here, based on the functional plant-derived ginger extracellular vesicles (EVs) and porous ZIF-8 nanoparticles, we propose a novel TNF-α siRNA delivery strategy (EVs@ZIF-8@siRNA) for UC targeted therapy. Ginger EVs show strong colon and macrophage targeting, as well as robust resistance to acidic degradation in the stomach. Moreover, 6-shogaol in ginger-derived EVs displays anti-inflammatory effects, which enhance the treatment efficiency by cooperation with TNF-α siRNA. In vitro experiments reveal that ZIF-8 nanoparticles have high TNF-α siRNA loading capacity and promote siRNA escape from cellular lysosomes. In vivo experiments show that the TNF-α level is reduced more significantly in colonic tissue than other nontargeted inflammation related factors, showing a good targeting of this composite nanoparticle. Furthermore, gut microbiota sequencing results demonstrate that the nanoparticles can promote intestinal barrier repair by regulating the intestinal microbial balance and restoring the intestinal health of UC mice. Therefore, the developed EVs@ZIF-8@siRNA nanoparticles may represent a novel colon-targeted oral drug, providing a promising therapeutic strategy for UC therapy.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Miao Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yihang Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jiaze Tang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Mengge Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Geng Min
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Rongchen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Qiang Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| |
Collapse
|
5
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
6
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
7
|
Chen JJ, Guo Y, Wang R, Yang HZ, Yu XQ, Zhang J. Cationic lipids from multi-component Passerini reaction for non-viral gene delivery: A structure-activity relationship study. Bioorg Med Chem 2024; 100:117635. [PMID: 38340641 DOI: 10.1016/j.bmc.2024.117635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Although many types of cationic lipids have been developed as efficient gene vectors, the construction of lipid molecules with simple procedures remains challenging. Passerini reaction, as a classic multicomponent reaction, could directly give the α-acyloxycarboxamide products with biodegradable ester and amide bonds. Herein, two series of novel cationic lipids with heterocyclic pyrrolidine and piperidine as headgroups were synthesized through Passerini reaction (P-series) and amide condensation (A-series), and relevant structure-activity relationships on their gene delivery capability was studied. It was found that although both of the two series of lipids could form lipid nanoparticles (LNPs) which could effectively condense DNA, the LNP derived from P-series lipids showed higher transfection efficiency, serum tolerance, cellular uptake, and lower cytotoxicity. Unlike the A-series LNPs, the P-series LNPs showed quite different structure-activity relationship, in which the relative site of the secondary amine had significant effect on the transfection performance. The othro-isomers of the P-series lipids had lower cytotoxicity, but poor transfection efficiency, which was probably due to their unstable nature. Taken together, this study not only validated the feasibility of Passerini reaction for the construction of cationic lipids for gene delivery, but also afforded some clues for the rational design of effective non-viral lipidic gene vectors.
Collapse
Affiliation(s)
- Jia-Jia Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yu Guo
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Rong Wang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Hui-Zhen Yang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Qi Yu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
8
|
Shang W, Sun Q, Zhang C, Liu H, Yang Y, Liu Y, Gao W, Shen W, Yin D. Drug in Therapeutic Polymer: Sinomenine-Loaded Oxidation-Responsive Polymeric Nanoparticles for Rheumatoid Arthritis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47552-47565. [PMID: 37768213 DOI: 10.1021/acsami.3c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that frequently involves cartilage damage and the destruction of the bone structure, ultimately resulting in disability and long-term pain. It is clear that overexpression of reactive oxygen species (ROS) and the complex inflammatory microenvironment are the main causes of RA pathogenesis; thereby, the efficacy of any single-drug treatment is limited. Herein, we formulated a therapeutic hyaluronic acid derivative (PAM-HA) with adsorption capacity to the subchondral bone, a long retention time within inflamed joints, and ROS-scavenging capacity, which was used as a drug carrier for realizing the controlled release of sinomenine (Sin) within arthritic joints. This "drug in therapeutic polymer" design strategy was aimed at realizing antioxidant and anti-inflammatory combination therapy for RA. In vivo experiments suggest that PAM-HA@Sin NPs can be retained in the inflamed joints of rats for a long time compared with commercially available free Sin injections. As expected, therapeutic PAM-HA polymeric carriers can increase joint lubrication and reduce oxidative stress, while the released Sin induces downregulation of proinflammatory factors (TNF-α and IL-1β) and upregulation of anti-inflammatory factors (Arg-1 and IL-10) via the NF-κB pathway. In summary, a ROS-scavenging hyaluronic acid (HA) derivative was developed as the nanocarrier for Sin delivery to simultaneously remodel the oxidative/inflammatory microenvironment in RA, which opens up new horizons for the development of therapeutic polymers and the combined therapeutic strategies.
Collapse
Affiliation(s)
- Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chenxu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Provincial Key Laboratory of Pharmaceutical Technolgoy and Application, Hefei 230012, China
- Anhui Provincial Key Laboratory of Research & Chinese Medicine, Hefei 230012, China
| |
Collapse
|
9
|
Liu M, Xu L, Jiang J, Dong H, Zhu P, Cao L, Chen J, Zhang X. Light controlled self-escape capability of non-cationic carbon nitride-based nanosheets in lysosomes for hepatocellular carcinoma targeting stimulus-responsive gene delivery. Bioeng Transl Med 2023; 8:e10558. [PMID: 37693059 PMCID: PMC10486340 DOI: 10.1002/btm2.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
High positive charge-induced toxicity, easy lysosomal degradation of nucleic acid drugs, and poor lesion sites targeting are major problems faced in the development of gene carriers. Herein, we proposed the concept of self-escape non-cationic gene carriers for targeted delivery and treatment of photocontrolled hepatocellular carcinoma (HCC) with sufficient lysosome escape and multiple response capacities. Functional DNA was bound to the surface of biotin-PEG2000-modified graphitic carbon nitride (Bio-PEG-CN) nanosheets to form non-cationic nanocomplexes Bio-PEG-CN/DNA. These nanocomposites could actively target HCC tissue. Once these nanocomplexes were taken up by tumor cells, the accumulated reactive oxygen species (ROS) generated by Bio-PEG-CN under LED irradiation would disrupt the lysosome structure, thereby facilitating nanocomposites escape. Due to the acidic microenvironment and lipase in the HCC tissue, the reversible release of DNA could be promoted to complete the transfection process. Meanwhile, the fluorescence signal of Bio-PEG-CN could be monitored in real time by fluorescence imaging technology to investigate the transfection process and mechanism. In vitro and in vivo results further demonstrated that these nanocomplexes could remarkably upregulate the expression of tumor suppressor protein P53, increased tumor sensitivity to ROS generated by nanocarriers, and realized effective gene therapy for HCC via loading P53 gene.
Collapse
Affiliation(s)
| | - Li Xu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouJiangsuP. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouJiangsuP. R. China
| | - Jia‐Yi Jiang
- School of PharmacyNantong UniversityNantongChina
| | | | - Peng‐Fei Zhu
- School of PharmacyNantong UniversityNantongChina
| | - Lei Cao
- School of PharmacyNantong UniversityNantongChina
| | - Jing Chen
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouJiangsuP. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouJiangsuP. R. China
| | | |
Collapse
|
10
|
Yan C, Zhang J, Huang M, Xiao J, Li N, Wang T, Ling R. Design, strategies, and therapeutics in nanoparticle-based siRNA delivery systems for breast cancer. J Mater Chem B 2023; 11:8096-8116. [PMID: 37551630 DOI: 10.1039/d3tb00278k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Utilizing small interfering RNA (siRNA) as a treatment for cancer, a disease largely driven by genetic aberrations, shows great promise. However, implementing siRNA therapy in clinical practice is challenging due to its limited bioavailability following systemic administration. An attractive approach to address this issue is the use of a nanoparticle (NP) delivery platform, which protects siRNA and delivers it to the cytoplasm of target cells. We provide an overview of design considerations for using lipid-based NPs, polymer-based NPs, and inorganic NPs to improve the efficacy and safety of siRNA delivery. We focus on the chemical structure modification of carriers and NP formulation optimization, NP surface modifications to target breast cancer cells, and the linking strategy and intracellular release of siRNA. As a practical example, recent advances in the development of siRNA therapeutics for treating breast cancer are discussed, with a focus on inhibiting cancer growth, overcoming drug resistance, inhibiting metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Changjiao Yan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Juliang Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ting Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
11
|
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. NANO-MICRO LETTERS 2023; 15:44. [PMID: 36752939 PMCID: PMC9908819 DOI: 10.1007/s40820-023-01018-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Gaizhen Kuang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Wenzhao Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
12
|
Yang HZ, Guo Y, Pu L, Yu XQ, Zhang J. Fluorescent Self-Reporting Lipid Nanoparticles for Nitric Oxide/Gene Co-Delivery and Combination Therapy. Mol Pharm 2023; 20:1404-1414. [PMID: 36594589 DOI: 10.1021/acs.molpharmaceut.2c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The combination cancer therapy of nitric oxide (NO) with gene therapy is a promising method for tumor treatment. However, efficient co-delivery of gas and therapeutic genes to tumor cells remains a challenge. Herein, we designed a nano-sized ultraviolet (UV) light-responsive cationic lipid vector DPNO(Zn). Fluorescence spectroscopy and confocal imaging experiments revealed that DPNO(Zn) lipid nanoparticles (LNPs) could rapidly release NO under low-power UV light irradiation. Moreover, the fluorescence turn-on might take place along with the release of NO, indicating the self-reporting ability. Gene delivery experiments showed that DPNO(Zn) LNPs had good gene transfection ability, making such materials a good candidate for gas/gene combination therapy. In vitro antitumor assay demonstrated that the co-delivery system was more effective in inhibiting tumor cell proliferation than individual NO or pTrail treatment. Studies on the mechanism of tumor cell apoptosis induced by NO/pTrail co-delivery showed that NO could not only effectively increase the accumulation of p53 protein in tumor cells, thereby promoting the activation of caspase-3, but also induce mitochondrial damage. On the other hand, the Trail protein expressed by pTrail gene could enhance the degree of NO-induced caspase-3 activation, indicating the synergistic effect. These results proved that DPNO(Zn) LNP may serve as a multifunctional nanocarrier for potential tumor therapy.
Collapse
Affiliation(s)
- Hui-Zhen Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lin Pu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Department of Chemistry, University of Virginia, McCormick Rd, Charlottesville, Virginia 22904, United States
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
13
|
Song H, Sun H, He N, Xu C, Wang Y, Du L, Liu Y, Wang Q, Ji K, Wang J, Zhang M, Gu Y, Zhang Y, Feng L, Tillement O, Wang W, Liu Q. Gadolinium-based ultra-small nanoparticles augment radiotherapy-induced T-cell response to synergize with checkpoint blockade immunotherapy. NANOSCALE 2022; 14:11429-11442. [PMID: 35904053 DOI: 10.1039/d2nr02620a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Radiotherapy suffers from its high-dose radiation-induced systemic toxicity and radioresistance caused by the immunosuppressive tumor microenvironment. Immunotherapy using checkpoint blocking in solid tumors shows limited anticancer efficacy due to insufficient T-cell infiltration and inadequate systemic immune responses. Activation and guiding of irradiation by X-ray (AGuIX) nanoparticles with sizes below 5 nm have entered a phase III clinical trial as efficient radiosensitizers. This study aimed to develop a unique synergistic strategy based on AGuIX-mediated radiotherapy and immune checkpoint blockade to further improve the efficiency for B16 tumor therapy. AGuIX exacerbated radiation-induced DNA damage, cell cycle arrest, and apoptosis on B16 cells. More importantly, it could efficiently induce the immunogenic cell death of irradiated B16 tumor cells, and consequently trigger the maturation of dendritic cells and activation of systemic T-cell responses. Combining AGuIX-mediated radiotherapy with programmed cell death protein 1 blockade demonstrated excellent synergistic therapeutic effects in both bilateral and metastatic B16 tumor models, as indicated by a significant increase in the infiltration of effector CD8+ T cells and effective alleviation of the immunosuppressive tumor microenvironment. Our findings indicate that the synergy between radiosensitization and immunomodulation provides a new and powerful therapy regimen to achieve durable antitumor T-cell responses, which is promising for cancer treatment.
Collapse
Affiliation(s)
- Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qin Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yumin Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Li Feng
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | | | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|