1
|
Wu H, Diao J, Li X, Yue D, He G, Jiang X, Li P. Hydrogel-based 3D printing technology: From interfacial engineering to precision medicine. Adv Colloid Interface Sci 2025; 341:103481. [PMID: 40132296 DOI: 10.1016/j.cis.2025.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Advances in 3D printing technology and the development of hydrogel-based inks have significantly enhanced the potential of precision medicine, promoting progress in medical diagnosis and treatment. The development of 3D printing enables the fabrication of complex gradient structures that emulate natural tissue environments, while advancements in interface engineering facilitate the precise control of interface properties, thereby enhancing the performance of hydrogels in biomedical applications. This review focuses on the latest advancements in three critical 3D printing application areas: efficient real-time detection, drug delivery systems, and regenerative medicine. The application of 3D printing technology enhances nucleic acid-based molecular diagnostic platforms and wearable biosensors for real-time monitoring of physiological parameters, thereby providing robust support for early disease diagnosis. Additionally, it facilitates the development of targeted and controlled drug delivery systems, which offer promising methods for efficient drug utilization, and enables the construction of complex tissue and organ structures with bioactivity and functionality, providing new solutions for regenerative medicine. Collectively, these advancements propel the ongoing progress and development of precision medicine. Furthermore, the challenges associated with 3D printing technology in these three major applications are discussed along with an outlook on prospects.
Collapse
Affiliation(s)
- Haojie Wu
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jibo Diao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinrong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
2
|
Xie X, Chen X, Zhou J, Wang T, Yang G, Han F, Wei Z. Dynamic Hydrogels with Tunable Mechanics for 3D Organoid Derivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501862. [PMID: 40434214 DOI: 10.1002/smll.202501862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/04/2025] [Indexed: 05/29/2025]
Abstract
The mechanical properties of the hydrogel play a pivotal role in governing the formation and development of 3D organoids in vitro. However, commonly employed natural hydrogels, such as Matrigel and other extracellular matrix (ECM)-derived products, are characterized by ill-defined and complex compositions, resulting in non-tunable mechanical properties. This limitation poses challenges in controlling organoids' developmental trajectory and 3D morphology. Although numerous synthetic hydrogels with well-defined chemical structures have recently been adopted to study organoids by modulating stiffness, advanced research emphasizes the importance of dynamic mechanical cues, such as dynamic stiffness softening and dynamic viscoelasticity, for optimal organoid derivation. These cues are essential for mimicking the dynamic physiological states of organoids during their growth. Despite their potential, the concept of dynamic hydrogels is often used interchangeably, and a systematic review is lacking to clarify this ambiguity. Furthermore, the mechanisms through which dynamic mechanical cues regulate organoid formation have not been thoroughly reported. This review endeavors to summarize and categorize dynamic hydrogels and reveal the effects of dynamic mechanics on organoid derivation. Additionally, the prospects of dynamic hydrogels in organoid derivation are deliberated to promote a more rational design of synthetic hydrogels, guiding organoid derivation and propelling organoid technology in biomedicine.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jian Zhou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Tiansong Wang
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Zhai X, Hu M, Song L, Pan X, Lou Y, Zhang X, Dong W, Wei W. Silk fibroin based bioinks for high-precision digital light processing 3D printing. Int J Biol Macromol 2025; 310:143248. [PMID: 40250685 DOI: 10.1016/j.ijbiomac.2025.143248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Light-based 3D bioprinting is a widely applied technology to meet the requirement of complex geometry in the biomedical field. However, it is still a challenge that the existence of excessive free radical reactions impairs the fidelity of pre-designed hydrogel patterns when using biomacromolecule based soft bioinks. Herein, we find silk fibroin (SF), a typical natural biological macromolecule, can be introduced into the classic bioinks (GelMA and PEGDA) for high-precision 3D printing. The convenient approach significantly improves the printing resolution and fidelity, and holds satisfactory biocompatibility of the printed hydrogels. Moreover, SF is able to strengthen the mechanical property of printed hydrogel through β-sheets formation after alcohol treatment. We also exhibit the mechanism that SF for improving 3D printing precision could be free radical absorption by tyrosine in SF chains and a little photo absorption at the range of 365-405 nm. We demonstrate that molecules containing phenolic hydroxyl groups are able to enhance the precision of 3D printing based on free radical photo-polymerization. This study supports a facile strategy to promote the printability and operability for 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Xinrang Zhai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Center for Regeneration and Aging Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, International School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Miner Hu
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310000, China
| | - Linran Song
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Center for Regeneration and Aging Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, International School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xihao Pan
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Yanbo Lou
- Center for Regeneration and Aging Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, International School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Xianzhu Zhang
- Department of Sports Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Wei Wei
- Center for Regeneration and Aging Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, International School of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
4
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Ribezzi D, Català P, Pignatelli C, Citro A, Levato R. Bioprinting and synthetic biology approaches to engineer functional endocrine pancreatic constructs. Trends Biotechnol 2025:S0167-7799(25)00090-3. [PMID: 40185667 DOI: 10.1016/j.tibtech.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is a complex disease affecting over 500 million people worldwide. Traditional approaches, such as insulin delivery, are mainstay treatments, but do not cure the disease. Recent advances in biofabrication and synthetic biology offer new hope for the development of tissue constructs recapitulating salient organ functions. Here, we discuss recent progress in bioprinting a functional endocrine pancreas, ranging from cell sources to main advances in biomaterials. We review innovative areas for the development of this field, with a particular focus on the convergence of synthetic biology and cell engineering with bioprinting, which opens new avenues for developing advanced in vitro models and regenerative, transplantable grafts, with the potential to provide independence from exogenous insulin administration.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pere Català
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Zhu D, Chen Z, Guo K, Xie Q, Zou Y, Mou Q, Zhou Z, Jin G. Enhanced viability and functional maturity of iPSC-derived islet organoids by collagen-VI-enriched ECM scaffolds. Cell Stem Cell 2025; 32:547-563.e7. [PMID: 39999846 DOI: 10.1016/j.stem.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/10/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Islet organoids derived from pluripotent stem cells offer a promising solution for the shortage of cadaveric donors in diabetes treatment. However, challenges remain in improving their differentiation, viability, functional maturity, and engraftment. Here, we generated improved islet organoids with high viability and functionality by employing extracellular matrix (ECM) hydrogel of decellularized amniotic membrane (dAM). The dAM sheet facilitates islet organoid engraftment and rapidly restores normoglycemia in diabetic mice, accompanied by increased body weight and augmented insulin release in response to glucose. Interestingly, collagen VI (Col VI) was identified as a key component of islet niche, enhancing islet cell viability and biological function. Col-VI-based biomimetic ECM recapitulates the native environment and exhibits superior physiological properties. Importantly, the cellular composition and endocrine function of optimized induced pluripotent stem cell (iPSC)-derived islet organoids are comparable with those of human islets. Our findings offer a valuable platform for future endeavors in organoid-transplantation-based therapy of diabetes.
Collapse
Affiliation(s)
- Deliang Zhu
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kaimin Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510627, China
| | - Qingqiang Xie
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuxiu Zou
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qizheng Mou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
7
|
Ribes Martinez E, Franko Y, Franko R, Ferronato GA, Viana AES, Windenbach E, Stoeckl JB, Fröhlich T, Ferraz MAMM. Developing and characterising bovine decellularized extracellular matrix hydrogels to biofabricate female reproductive tissues. Acta Biomater 2025; 196:152-170. [PMID: 40058619 DOI: 10.1016/j.actbio.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
This study investigated the development and characterization of decellularized extracellular matrix (dECM) hydrogels tailored for the biofabrication of female reproductive tissues, specifically targeting ovarian cortex, endometrium, ovarian medulla, and oviduct tissues. We aimed to evaluate the cytocompatibility, biomechanical properties, and overall efficacy of these dECMs in promoting cell viability, proliferation, and morphology using the bovine model. Bovine species provide a valuable model due to their accessibility from slaughterhouse tissues, offering a practical alternative to human samples, which are often limited in availability. Additionally, bovine tissue closely mirrors certain physiological and biological characteristics of humans, making it a relevant model for translational research. Our findings revealed that these dECMs exhibited high biocompatibility with embryo development and cell viability, supporting micro vascularization and cellular morphology without the need for external growth factors. It is important to note that the addition of alginate was crucial for maintaining the structural integrity of the hydrogel during long-term cultures. These hydrogels displayed biomechanical properties that closely mimicked native tissues, which was vital for maintaining their functional integrity and supporting cellular activities. The printability assessments showed that dECMs, particularly those from cortex tissues, achieved high precision in replicating the intended structures, though challenges such as low porosity remained. The bioprinted constructs demonstrated robust cell growth, with over 97% viability observed by day 7, indicating their suitability for cell culture. This work represented a significant advancement in reproductive tissue biofabrication, demonstrating the potential of dECM-based hydrogels in creating structurally and viable tissue constructs. By tailoring each dECM to match the unique biomechanical properties of different tissues, we paved the way for more effective and reliable applications in reproductive medicine and tissue engineering. STATEMENT OF SIGNIFICANCE: This research explores the use of decellularized extracellular matrix (dECM) hydrogels as bio-inks for creating reproductive tissues. Ovarian cortex and medulla, oviduct and endometrium dECMs demonstrated biomechanical properties that mimicked native tissues, which is essential for maintaining functional integrity and supporting cellular processes. Notably, these hydrogels exhibited high biocompatibility with embryo development and cell viability, promoting microvascularization and cell differentiation without the need for supplemental growth factors. The successful bioprinting of these bio-inks underscores their potential for creating more complex models. This work represents a significant advancement in tissue engineering, offering promising new avenues for reproductive medicine.
Collapse
Affiliation(s)
- E Ribes Martinez
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - Y Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - R Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - G A Ferronato
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - A E S Viana
- Department of Veterinary Medicine, Faculty of Zootechnic and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Jardim Elite, Pirassununga, São Paulo, 13635-900, Brazil
| | - E Windenbach
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - J B Stoeckl
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany
| | - M A M M Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Sonnenstr. 16, Oberschleißheim, 85764, Germany; Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen Str. 25, Munich, 81377, Germany.
| |
Collapse
|
8
|
Liu H, Ai R, Liu BZ, He L. Recent advances in hyaluronic acid-based hydrogels for diabetic wound healing. Int J Biol Macromol 2025; 304:140797. [PMID: 39924018 DOI: 10.1016/j.ijbiomac.2025.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Diabetic wound healing represents a complex biological challenge, often impeded by disrupted cellular processes and dysregulated inflammation, which can lead to chronic and non-healing wounds. Given the significant burden on patients and the healthcare system, there is an urgent need for advanced therapeutic strategies. Hyaluronic acid (HA)-based hydrogels have emerged as a promising solution due to their biocompatibility, biodegradability, and unique physiological functions. This review aims to provide a comprehensive overview of recent advances in HA-based hydrogels, highlighting their potential in addressing diabetic wound complications. Specifically, it examines challenges such as hyperglycemia-induced oxidative stress and impaired cellular signaling within the intricate diabetic wound microenvironment. Moreover, the review explores the composition and properties of HA, including its adhesive capabilities and role in reducing surgical trauma. Various crosslinking strategies and functional modifications are also discussed to endow HA-based hydrogels with antioxidant, antimicrobial, and growth factor-releasing capabilities. By summarizing the latest research and identifying areas for further exploration, this review contributes to the development of more effective HA-based hydrogel formulations for diabetic wound healing.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Ronger Ai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Bi-Zhi Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Li He
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
9
|
Liu J, Wang Q, Le Y, Hu M, Li C, An N, Song Q, Yin W, Ma W, Pan M, Feng Y, Wang Y, Han L, Liu J. 3D-Bioprinting for Precision Microtissue Engineering: Advances, Applications, and Prospects. Adv Healthc Mater 2025; 14:e2403781. [PMID: 39648541 DOI: 10.1002/adhm.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Microtissues, engineered to emulate the complexity of human organs, are revolutionizing the fields of regenerative medicine, disease modelling, and drug screening. Despite the promise of traditional microtissue engineering, it has yet to achieve the precision required to fully replicate organ-like structures. Enter 3D bioprinting, a transformative approach that offers unparalleled control over the microtissue's spatial arrangement and mechanical properties. This cutting-edge technology enables the detailed layering of bioinks, crafting microtissues with tissue-like 3D structures. It allows for the direct construction of organoids and the fine-tuning of the mechanical forces vital for tissue maturation. Moreover, 3D-printed devices provide microtissues with the necessary guidance and microenvironments, facilitating sophisticated tissue interactions. The applications of 3D-printed microtissues are expanding rapidly, with successful demonstrations of their functionality in vitro and in vivo. This technology excels at replicating the intricate processes of tissue development, offering a more ethical and controlled alternative to traditional animal models. By simulating in vivo conditions, 3D-printed microtissues are emerging as powerful tools for personalized drug screening, offering new avenues for pharmaceutical development and precision medicine.
Collapse
Affiliation(s)
- Jinrun Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yinpeng Le
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Min Hu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenzhen Yin
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Wenrui Ma
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Mingyue Pan
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yutian Feng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Lu Han
- Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
10
|
Jeon Y, Kim M, Song KH. Development of Hydrogels Fabricated via Stereolithography for Bioengineering Applications. Polymers (Basel) 2025; 17:765. [PMID: 40292646 PMCID: PMC11945500 DOI: 10.3390/polym17060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The architectures of hydrogels fabricated with stereolithography (SLA) 3D printing systems have played various roles in bioengineering applications. Typically, the SLA systems successively illuminated light to a layer of photo-crosslinkable hydrogel precursors for the fabrication of hydrogels. These SLA systems can be classified into point-scanning types and digital micromirror device (DMD) types. The point-scanning types form layers of hydrogels by scanning the precursors with a focused light, while DMD types illuminate 2D light patterns to the precursors to form each hydrogel layer at once. Overall, SLA systems were cost-effective and allowed the fabrication of hydrogels with good shape fidelity and uniform mechanical properties. As a result, hydrogel constructs fabricated with the SLA 3D printing systems were used to regenerate tissues and develop lab-on-a-chip devices and native tissue-like models.
Collapse
Affiliation(s)
- Youngjin Jeon
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
11
|
Dai Z, Chen S, Shi J, Rui M, Xu Q. N-cadherin-triggered myosin II inactivation provides tumor cells with a mechanical cell competition advantage and chemotherapy resistance. Dev Cell 2025:S1534-5807(25)00061-9. [PMID: 39986277 DOI: 10.1016/j.devcel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/12/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The concept that mechanical cell competition may contribute to tumor cell expansion has been widely discussed. However, whether this process could occur during natural tumor progression, as well as its underlying mechanisms and clinical implications, remains largely unknown. In this study, we observed that self-seeded tumor cell lines of human oral cancer, SCC9- and SCC25-seeded cells, exhibited a mechanical competitive advantage, outcompeted neighboring cells, and became "winner" cells. Mechanical compression-induced calcium influx activates myosin II in "loser" cells, leading to apoptotic nuclear breakdown and subsequent clearance. N-cadherin/Rac1/PAK1/myosin light-chain kinase (MLCK)-controlled myosin II inactivation endows cells with resistance to mechanical stress and superior cellular flexibility, thus providing a cell competition advantage to self-seeded cells. The activation of the N-cadherin/Rac1/PAK1/MLCK/myosin II signaling axis is associated with drug resistance. Together, these results suggest that N-cadherin/Rac1/PAK1/MLCK signaling-induced myosin II inactivation enables tumor cells to acquire resistance to mechanical stress and a competitive advantage. Our study also provides insights into drug resistance from a stress-sensitivity perspective.
Collapse
Affiliation(s)
- Zhenlin Dai
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Shengkai Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Jianbo Shi
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Mengyu Rui
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China.
| |
Collapse
|
12
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
13
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 PMCID: PMC11938328 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
14
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Souto EB, Gálvez-Martín P, Clares-Naveros B. Human mesenchymal stromal cells-laden crosslinked hyaluronic acid-alginate bioink for 3D bioprinting applications in tissue engineering. Drug Deliv Transl Res 2025; 15:291-311. [PMID: 38662335 PMCID: PMC11614963 DOI: 10.1007/s13346-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.
Collapse
Grants
- Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp Ministry of Economy and Competitiveness (FEDER funds), grant number RTC-2016-5451-1; Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (FEDER funds), grant numbers DTS19/00143 and DTS17/00087); Consejería de Economía, Conocimiento, Emp
- FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal FCT-Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- FCT—Fundação para a Ciência e a Tecnologia, I.P., Lisbon, Portugal
- Universidade do Porto
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18012, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016, Granada, Spain
- BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100, Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain
- R&D Human and Animal Health, Bioibérica S.A.U., 08029, Barcelona, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, University Campus of Cartuja, 18071, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), University Hospital of Granada-University of Granada, 18100, Granada, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 PMCID: PMC11694096 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - M. Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Alaina F. Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Tiffany V. Pulido
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Johnny Yi
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - Jeffrey L. Cornella
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - David G. Lott
- Division of Laryngology, Department of OtolaryngologyMayo Clinic ArizonaPhoenixAZUSA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGA30602USA
| | | | - Lindsay B. Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Taylor G. Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of MatterTransport and Energy (SEMTE) at Arizona State UniversityTempeAZ85287USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
16
|
Tripathi S, Dash M, Chakraborty R, Lukman HJ, Kumar P, Hassan S, Mehboob H, Singh H, Nanda HS. Engineering considerations in the design of tissue specific bioink for 3D bioprinting applications. Biomater Sci 2024; 13:93-129. [PMID: 39535021 DOI: 10.1039/d4bm01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over eight million surgical procedures are conducted annually in the United Stats to address organ failure or tissue losses. In response to this pressing need, recent medical advancements have significantly improved patient outcomes, primarily through innovative reconstructive surgeries utilizing tissue grafting techniques. Despite tremendous efforts, repairing damaged tissues remains a major clinical challenge for bioengineers and clinicians. 3D bioprinting is an additive manufacturing technique that holds significant promise for creating intricately detailed constructs of tissues, thereby bridging the gap between engineered and actual tissue constructs. In contrast to non-biological printing, 3D bioprinting introduces added intricacies, including considerations for material selection, cell types, growth, and differentiation factors. However, technical challenges arise, particularly concerning the delicate nature of living cells in bioink for tissue construction and limited knowledge about the cell fate processes in such a complex biomechanical environment. A bioink must have appropriate viscoelastic and rheological properties to mimic the native tissue microenvironment and attain desired biomechanical properties. Hence, the properties of bioink play a vital role in the success of 3D bioprinted substitutes. This review comprehensively delves into the scientific aspects of tissue-centric or tissue-specific bioinks and sheds light on the current challenges of the translation of bioinks and bioprinting.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Ruchira Chakraborty
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Harri Junaedi Lukman
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Prasoon Kumar
- Biodesign and Medical Device Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Centre (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hassan Mehboob
- Department of Engineering and Management, College of Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
- Terasaki Institute for Biomedical Innovation, 21100 Erwin, St Los Angeles, CA 91367, USA
| |
Collapse
|
17
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024; 15:704-715. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Li S, Lei N, Chen M, Guo R, Han L, Qiu L, Wu F, Jiang S, Tong N, Wang K, Li Y, Chang L. Exploration of organoids in ovarian cancer: From basic research to clinical translation. Transl Oncol 2024; 50:102130. [PMID: 39303357 PMCID: PMC11437877 DOI: 10.1016/j.tranon.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Ovarian cancer is a highly heterogeneous tumor with a poor prognosis. The lack of reliable and efficient research models that can accurately mimic heterogeneity has impeded in-depth investigations and hindered the clinical translation of research findings in ovarian cancer. Organoid models have emerged as a promising in vitro approach, demonstrating remarkable fidelity to the histological, molecular, genomic, and transcriptomic features of their tissues of origin. In recent years, organoids have contributed to advancing our understanding of ovarian cancer initiation, metastasis, and drug resistance mechanisms, as well as facilitating clinical screening of effective therapeutic agents. The establishment of high-throughput organoid culture systems, coupled with cutting-edge technologies such as organ-on-a-chip, genetic engineering, and 3D printing, has tremendous potential for accelerating ovarian cancer research translation. In this review, we present a comprehensive overview of the latest exploration of organoids in basic ovarian cancer research and clinical translation. Furthermore, we discuss the prospects and challenges associated with the use of organoids and related novel technologies in the context of ovarian cancer. This review provides insights into the application of organoids in ovarian cancer.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyu Chen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Liping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Luojie Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Fengling Wu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Ningyao Tong
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Kunmei Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia.
| | - Lei Chang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China.
| |
Collapse
|
19
|
Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, Chen F, Ozbolat IT, Yu Y. Progress in Organ Bioprinting for Regenerative Medicine. ENGINEERING 2024; 42:121-142. [DOI: 10.1016/j.eng.2024.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Zhang X, Liang Y, Luo D, Li P, Chen Y, Fu X, Yue Y, Hou R, Liu J, Wang X. Advantages and disadvantages of various hydrogel scaffold types: A research to improve the clinical conversion rate of loaded MSCs-Exos hydrogel scaffolds. Biomed Pharmacother 2024; 179:117386. [PMID: 39241570 DOI: 10.1016/j.biopha.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes(MSCs-Exos) offer promising therapeutic potential for a wide range of tissues and organs such as bone/cartilage, nerves, skin, fat, and endocrine organs. In comparison to the application of mesenchymal stem cells (MSCs), MSCs-Exos address critical challenges related to rejection reactions and ethical concerns, positioning themselves as a promising cell-free therapy. As exosomes are extracellular vesicles, their effective delivery necessitates the use of carriers. Consequently, the selection of hydrogel materials as scaffolds for exosome delivery has become a focal point of contemporary research. The diversity of hydrogel scaffolds, which can take various forms such as injectable types, dressings, microneedles, and capsules, leads to differing choices among researchers for treating diseases within the same domain. This variability in hydrogel materials poses challenges for the translation of findings into clinical practice. The review highlights the potential of hydrogel-loaded exosomes in different fields and introduces the advantages and disadvantages of different forms of hydrogel applications. It aims to provide a multifunctional and highly recognized hydrogel scaffold option for tissue regeneration at specific sites, improve clinical translation efficiency, and benefit the majority of patients.
Collapse
Affiliation(s)
- Xinyao Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yi Liang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Dongmei Luo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Peiwen Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yurou Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xinyu Fu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yingge Yue
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ruxia Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Junyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiangyu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
21
|
Zhang W, Wang H, Pang J, Huang Y, Li H, Tang S. Self-crosslinking hyaluronic acid-based hydrogel with promoting vascularization and ROS scavenging for wound healing. Int J Biol Macromol 2024; 278:134570. [PMID: 39122080 DOI: 10.1016/j.ijbiomac.2024.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Skin wound dressings are commonly utilized for the treatment of skin injuries, as they effectively facilitate wound healing and possess anti-inflammatory and antibacterial properties. However, conventional dressings fail to inhibit ROS production and promote vascularization, leading to delayed wound healing. Here, we developed injectable self-crosslinking hydrogels through thiolated hyaluronic acid (HASH/rhCOLIII) with enhancing the ROS inhibitory capacity while preserving the cell adhesion ability of hyaluronic acid. Additionally, recombinant humanized collagen type III (rhCOLIII) is incorporated via electrostatic adsorption to further enhance mechanical strength and angiogenesis properties of the hydrogel. The HASH/rhCOLIII demonstrated excellent biocompatibility, remarkable ROS scavenging ability, as well as hemostatic and angiogenic properties. Cell experiment results show that HASH/rhCOLIII has excellent biocompatibility and can significantly promote angiogenesis. Animal experiments results showed that HASH/rhCOLIII exhibits anti-inflammatory effects, significantly accelerating wound healing in a full-thickness skin defect model. These findings highlight that HASH/rhCOLIII hydrogel holds great promise as an advanced dressing for effective wound healing.
Collapse
Affiliation(s)
- Wenning Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Han Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Jie Pang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Shunqing Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Dogan E, Galifi CA, Cecen B, Shukla R, Wood TL, Miri AK. Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip. Acta Biomater 2024; 186:156-166. [PMID: 39097123 PMCID: PMC11390304 DOI: 10.1016/j.actbio.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher A Galifi
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Roshni Shukla
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
24
|
Abbasi-Malati Z, Khanicheragh P, Narmi MT, Mardi N, Khosrowshahi ND, Hiradfar A, Rezabakhsh A, Sadeghsoltani F, Rashidi S, Chegeni SA, Roozbahani G, Rahbarghazi R. Tumoroids, a valid preclinical screening platform for monitoring cancer angiogenesis. Stem Cell Res Ther 2024; 15:267. [PMID: 39183337 PMCID: PMC11346257 DOI: 10.1186/s13287-024-03880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
In recent years, biologists and clinicians have witnessed prominent advances in in vitro 3D culture techniques related to biomimetic human/animal tissue analogs. Numerous data have confirmed that unicellular and multicellular (tumoroids) tumor spheroids with dense native cells in certain matrices are sensitive and valid analytical tools for drug screening, cancer cell dynamic growth, behavior, etc. in laboratory settings. Angiogenesis/vascularization is a very critical biological phenomenon to support oxygen and nutrients to tumor cells within the deep layer of solid masses. It has been shown that endothelial cell (EC)-incorporated or -free spheroid/tumoroid systems provide a relatively reliable biological platform for monitoring the formation of nascent blood vessels in micron/micrometer scales. Besides, the paracrine angiogenic activity of cells within the spheroid/tumoroid systems can be monitored after being treated with different therapeutic approaches. Here, we aimed to collect recent advances and findings related to the monitoring of cancer angiogenesis using unicellular and multicellular tumor spheroids. Vascularized spheroids/tumoroids can help us in the elucidation of mechanisms related to cancer formation, development, and metastasis by monitoring the main influencing factors.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Amirataollah Hiradfar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Wei K, Tang C, Ma H, Fang X, Yang R. 3D-printed microrobots for biomedical applications. Biomater Sci 2024; 12:4301-4334. [PMID: 39041236 DOI: 10.1039/d4bm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (e.g., drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
26
|
Xue H, Chen S, Hu Y, Huang J, Shen Y. Advances in 3D printing for the repair of tympanic membrane perforation: a comprehensive review. Front Bioeng Biotechnol 2024; 12:1439499. [PMID: 39188376 PMCID: PMC11345550 DOI: 10.3389/fbioe.2024.1439499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Tympanic membrane perforation (TMP) is one of the most common conditions in otolaryngology worldwide, and hearing damage caused by inadequate or prolonged healing can be distressing for patients. This article examines the rationale for utilizing three-dimensional (3D) printing to produce scaffolds for repairing TMP, compares the advantages and disadvantages of 3D printed and bioprinted grafts with traditional autologous materials and other tissue engineering materials in TMP repair, and highlights the practical and clinical significance of 3D printing in TMP repair while discussing the current progress and promising future of 3D printing and bioprinting. There is a limited number of reviews specifically dedicated to 3D printing for TMP repair. The majority of reviews offer a general overview of the applications of 3D printing in the broader realm of tissue regeneration, with some mention of TMP repair. Alternatively, they explore the biopolymers, cells, and drug molecules utilized for TMP repair. However, more in-depth analysis is needed on the strategies for selecting bio-inks that integrate biopolymers, cells, and drug molecules for tympanic membrane repair.
Collapse
Affiliation(s)
- Hao Xue
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shengjia Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Hu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juntao Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
Fang W, Yu Z, Gao G, Yang M, Du X, Wang Y, Fu Q. Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications. Mater Today Bio 2024; 27:101135. [PMID: 39040222 PMCID: PMC11262185 DOI: 10.1016/j.mtbio.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
3D bioprinting technology, a subset of 3D printing technology, is currently witnessing widespread utilization in tissue repair and regeneration endeavors. In particular, light-based 3D bioprinting technology has garnered significant interest and favor. Central to its successful implementation lies the judicious selection of photosensitive polymers. Moreover, by fine-tuning parameters such as light irradiation time, choice of photoinitiators and crosslinkers, and their concentrations, the properties of the scaffolds can be tailored to suit the specific requirements of the targeted tissue repair sites. In this comprehensive review, we provide an overview of commonly utilized bio-inks suitable for light-based 3D bioprinting, delving into the distinctive characteristics of each material. Furthermore, we delineate strategies for bio-ink selection tailored to diverse repair locations, alongside methods for optimizing printing parameters. Ultimately, we present a coherent synthesis aimed at enhancing the practical application of light-based 3D bioprinting technology in tissue engineering, while also addressing current challenges and future prospects.
Collapse
Affiliation(s)
- Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zhenwei Yu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xuan Du
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
28
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
29
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
30
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
31
|
Wan H, Xiang J, Mao G, Pan S, Li B, Lu Y. Recent Advances in the Application of 3D-Printing Bioinks Based on Decellularized Extracellular Matrix in Tissue Engineering. ACS OMEGA 2024; 9:24219-24235. [PMID: 38882108 PMCID: PMC11170705 DOI: 10.1021/acsomega.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
In recent years, 3D bioprinting with various types of bioinks has been widely used in tissue engineering to fabricate human tissues and organs with appropriate biological functions. Decellularized extracellular matrix (dECM) is an excellent bioink candidate because it is enriched with a variety of bioactive proteins and bioactive factors and can provide a suitable environment for tissue repair or tissue regeneration while reducing the likelihood of severe immune rejection. In this Review, we systematically review recent advances in 3D bioprinting and decellularization technologies and comprehensively detail the latest research and applications of dECM as a bioink for tissue engineering in various systems, with the aim of providing a reference for researchers in tissue engineering to better understand the properties of dECM bioinks.
Collapse
Affiliation(s)
- Haoxin Wan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Jian Xiang
- Affiliated
Hospital of Yangzhou University, Yangzhou 225000, China
| | - Guocai Mao
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Shu Pan
- Department
of Thoracic Surgery, The First Affiliated
Hospital of Soochow University, Suzhou 215000, China
| | - Bing Li
- The
Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yi Lu
- Clinical
Medical College, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
32
|
Fang H, Ju J, Chen L, Zhou M, Zhang G, Hou J, Jiang W, Wang Z, Sun J. Clay Sculpture-Inspired 3D Printed Microcage Module Using Bioadhesion Assembly for Specific-Shaped Tissue Vascularization and Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308381. [PMID: 38447173 DOI: 10.1002/advs.202308381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Indexed: 03/08/2024]
Abstract
3D bioprinting techniques have enabled the fabrication of irregular large-sized tissue engineering scaffolds. However, complicated customized designs increase the medical burden. Meanwhile, the integrated printing process hinders the cellular uniform distribution and local angiogenesis. A novel approach is introduced to the construction of sizable tissue engineering grafts by employing hydrogel 3D printing for modular bioadhesion assembly, and a poly (ethylene glycol) diacrylate (PEGDA)-gelatin-dopamine (PGD) hydrogel, photosensitive and adhesive, enabling fine microcage module fabrication via DLP 3D printing is developed. The PGD hydrogel printed micocages are flexible, allowing various shapes and cell/tissue fillings for repairing diverse irregular tissue defects. In vivo experiments demonstrate robust vascularization and superior graft survival in nude mice. This assembly strategy based on scalable 3D printed hydrogel microcage module could simplify the construction of tissue with large volume and complex components, offering promise for diverse large tissue defect repairs.
Collapse
Affiliation(s)
- Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingyi Ju
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
33
|
Wang F, Song P, Wang J, Wang S, Liu Y, Bai L, Su J. Organoid bioinks: construction and application. Biofabrication 2024; 16:032006. [PMID: 38697093 DOI: 10.1088/1758-5090/ad467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.
Collapse
Affiliation(s)
- Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Jian Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Sicheng Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200444, People's Republic of China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, People's Republic of China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
34
|
Abraham N, Kolipaka T, Pandey G, Negi M, Srinivasarao DA, Srivastava S. Revolutionizing pancreatic islet organoid transplants: Improving engraftment and exploring future frontiers. Life Sci 2024; 343:122545. [PMID: 38458556 DOI: 10.1016/j.lfs.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Type-1 Diabetes Mellitus (T1DM) manifests due to pancreatic beta cell destruction, causing insulin deficiency and hyperglycaemia. Current therapies are inadequate for brittle diabetics, necessitating pancreatic islet transplants, which however, introduces its own set of challenges such as paucity of donors, rigorous immunosuppression and autoimmune rejection. Organoid technology represents a significant stride in the field of regenerative medicine and bypasses donor-based approaches. Hence this article focuses on strategies enhancing the in vivo engraftment of islet organoids (IOs), namely vascularization, encapsulation, immune evasion, alternative extra-hepatic transplant sites and 3D bioprinting. Hypoxia-induced necrosis and delayed revascularization attenuate organoid viability and functional capacity, alleviated by the integration of diverse cell types e.g., human amniotic epithelial cells (hAECs) and human umbilical vein endothelial cells (HUVECs) to boost vascularization. Encapsulation with biocompatible materials and genetic modifications counters immune damage, while extra-hepatic sites avoid surgical complications and immediate blood-mediated inflammatory reactions (IBMIR). Customizable 3D bioprinting may help augment the viability and functionality of IOs. While the clinical translation of IOs faces hurdles, preliminary results show promise. This article underscores the importance of addressing challenges in IO transplantation to advance their use in treating type 1 diabetes effectively.
Collapse
Affiliation(s)
- Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
35
|
Zhang Z, Xu C, Xu L, Wan J, Cao G, Liu Z, Ji P, Jin Q, Fu Y, Le Y, Ju J, Hou R, Zhang G. Bioprinted dermis with human adipose tissue-derived microvascular fragments promotes wound healing. Biotechnol Bioeng 2024; 121:1407-1421. [PMID: 37876343 DOI: 10.1002/bit.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Tissue-engineered skin is an effective material for treating large skin defects in a clinical setting. However, its use is limited owing to vascular complications. Human adipose tissue-derived microvascular fragments (HaMVFs) are vascularized units that form vascular networks by rapid reassembly. In this study, we designed a vascularized bionic skin tissue using a three-dimensional (3D) bioprinter of HaMVFs and human fibroblasts encapsulated in a hybrid hydrogel composed of GelMA, HAMA, and fibrinogen. Tissues incorporating HaMVFs showed good in vitro vascularization and mechanical properties after UV crosslinking and thrombin exposure. Thus, the tissue could be sutured appropriately to the wound. In vivo, the vascularized 3D bioprinted skin promoted epidermal regeneration, collagen maturation in the dermal tissue, and vascularization of the skin tissue to accelerate wound healing. Overall, vascularized 3D bioprinted skin with HaMVFs is an effective material for treating skin defects and may be clinically applicable to reduce the necrosis rate of skin grafts.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Jiaming Wan
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
- Department of Orthopaedics, Yangzhou University Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Pengxiang Ji
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Department of Orthopaedics, Suzhou Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
37
|
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater 2024; 11:rbae033. [PMID: 38845855 PMCID: PMC11153344 DOI: 10.1093/rb/rbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nikos Koutsomarkos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
38
|
Comperat L, Chagot L, Massot S, Stachowicz M, Dusserre N, Médina C, Desigaux T, Dupuy J, Fricain J, Oliveira H. Harnessing Human Placental Membrane-Derived Bioinks: Characterization and Applications in Bioprinting and Vasculogenesis. Adv Healthc Mater 2024; 13:e2303370. [PMID: 37942849 PMCID: PMC11469061 DOI: 10.1002/adhm.202303370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Bioprinting applications in the clinical field generate great interest, but developing suitable biomaterial inks for medical settings is a challenge. Placental tissues offer a promising solution due to their abundance, stability, and status as medical waste. They contain basement membrane components, have a clinical history, and support angiogenesis. This study formulates bioinks from two placental tissues, amnion (AM) and chorion (CHO), and compares their unique extracellular matrix (ECM) and growth factor compositions. Rheological properties of the bioinks are evaluated for bioprinting and maturation of human endothelial cells. Both AM and Cho-derived bioinks sustained human endothelial cell viability, proliferation, and maturation, promoting optimal vasculogenesis. These bioinks derived from human sources have significant potential for tissue engineering applications, particularly in supporting vasculogenesis. This research contributes to the advancement of tissue engineering and regenerative medicine, bringing everyone closer to clinically viable bioprinting solutions using placental tissues as valuable biomaterials.
Collapse
Affiliation(s)
- Léo Comperat
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Lise Chagot
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Sarah Massot
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Marie‐Laure Stachowicz
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Nathalie Dusserre
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Chantal Médina
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Théo Desigaux
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| | - Jean‐William Dupuy
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- University of BordeauxPlateforme ProtéomeBordeaux33000France
| | - Jean‐Christophe Fricain
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- University of BordeauxPlateforme ProtéomeBordeaux33000France
| | - Hugo Oliveira
- University of BordeauxTissue BioengineeringU1026BordeauxF‐33076France
- Inserm U1026Tissue BioengineeringART BioPrintBordeauxF‐33076France
- CHU BordeauxServices d'Odontologie et de Santé BuccaleBordeauxF‐33076France
| |
Collapse
|
39
|
Yao X, Chen X, Sun Y, Yang P, Gu X, Dai X. Application of metal-organic frameworks-based functional composite scaffolds in tissue engineering. Regen Biomater 2024; 11:rbae009. [PMID: 38420353 PMCID: PMC10900102 DOI: 10.1093/rb/rbae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/02/2024] Open
Abstract
With the rapid development of materials science and tissue engineering, a variety of biomaterials have been used to construct tissue engineering scaffolds. Due to the performance limitations of single materials, functional composite biomaterials have attracted great attention as tools to improve the effectiveness of biological scaffolds for tissue repair. In recent years, metal-organic frameworks (MOFs) have shown great promise for application in tissue engineering because of their high specific surface area, high porosity, high biocompatibility, appropriate environmental sensitivities and other advantages. This review introduces methods for the construction of MOFs-based functional composite scaffolds and describes the specific functions and mechanisms of MOFs in repairing damaged tissue. The latest MOFs-based functional composites and their applications in different tissues are discussed. Finally, the challenges and future prospects of using MOFs-based composites in tissue engineering are summarized. The aim of this review is to show the great potential of MOFs-based functional composite materials in the field of tissue engineering and to stimulate further innovation in this promising area.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xinran Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yu Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
40
|
Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res 2023; 27:137. [PMID: 38142273 DOI: 10.1186/s40824-023-00460-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023] Open
Abstract
Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.
Collapse
Affiliation(s)
- Han Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
- Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
41
|
Barcena AJR, Dhal K, Patel P, Ravi P, Kundu S, Tappa K. Current Biomedical Applications of 3D-Printed Hydrogels. Gels 2023; 10:8. [PMID: 38275845 PMCID: PMC10815850 DOI: 10.3390/gels10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, has revolutionized the production of physical 3D objects by transforming computer-aided design models into layered structures, eliminating the need for traditional molding or machining techniques. In recent years, hydrogels have emerged as an ideal 3D printing feedstock material for the fabrication of hydrated constructs that replicate the extracellular matrix found in endogenous tissues. Hydrogels have seen significant advancements since their first use as contact lenses in the biomedical field. These advancements have led to the development of complex 3D-printed structures that include a wide variety of organic and inorganic materials, cells, and bioactive substances. The most commonly used 3D printing techniques to fabricate hydrogel scaffolds are material extrusion, material jetting, and vat photopolymerization, but novel methods that can enhance the resolution and structural complexity of printed constructs have also emerged. The biomedical applications of hydrogels can be broadly classified into four categories-tissue engineering and regenerative medicine, 3D cell culture and disease modeling, drug screening and toxicity testing, and novel devices and drug delivery systems. Despite the recent advancements in their biomedical applications, a number of challenges still need to be addressed to maximize the use of hydrogels for 3D printing. These challenges include improving resolution and structural complexity, optimizing cell viability and function, improving cost efficiency and accessibility, and addressing ethical and regulatory concerns for clinical translation.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Kashish Dhal
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Parimal Patel
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
43
|
Abadpour S, Niemi EM, Orrhult LS, Hermanns C, de Vries R, Nogueira LP, Haugen HJ, Josefsen D, Krauss S, Gatenholm P, van Apeldoorn A, Scholz H. Adipose-Derived Stromal Cells Preserve Pancreatic Islet Function in a Transplantable 3D Bioprinted Scaffold. Adv Healthc Mater 2023; 12:e2300640. [PMID: 37781993 PMCID: PMC11469278 DOI: 10.1002/adhm.202300640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Intra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold. Manufacturing the 3D bioprinted double-layered scaffolds with primary islets and ASCs using a mix of alginate/nanofibrillated cellulose (NFC) bioink is reported. The diffusion properties of the bioink and the supportive effect of human ASCs on islet viability, glucose sensing, insulin secretion, and reducing the secretion of pro-inflammatory cytokines are demonstrated. Diabetic mice transplanted with islet-ASC scaffolds reach normoglycemia seven days post-transplantation with no significant difference between this group and the group received islets under the kidney capsules. In addition, animals transplanted with islet-ASC scaffolds stay normoglycemic and show elevated levels of C-peptide compared to mice transplanted with islet-only scaffolds. The data present a functional 3D bioprinted scaffold for islets and ASCs transplanted to the extrahepatic site and suggest a possible role of ASCs on improving the islet micro-environment.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant MedicineOslo University HospitalOslo0372Norway
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
| | - Essi M. Niemi
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Department of Vascular SurgeryAker HospitalOslo University HospitalOslo0586Norway
| | - Linnea Strid Orrhult
- 3D Bioprinting CenterWWSCDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Carolin Hermanns
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | - Rick de Vries
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | | | | | - Dag Josefsen
- Section for Cellular TherapyRadiumhospitaletOslo University HospitalOslo0379Norway
| | - Stefan Krauss
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Department of Immunology and Transfusion MedicineOslo University HospitalOslo0372Norway
| | - Paul Gatenholm
- 3D Bioprinting CenterWWSCDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
- CELLHEAL ASSandvika1337Norway
| | - Aart van Apeldoorn
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | - Hanne Scholz
- Department of Transplant MedicineOslo University HospitalOslo0372Norway
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Section for Cellular TherapyRadiumhospitaletOslo University HospitalOslo0379Norway
| |
Collapse
|
44
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
45
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
46
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
47
|
Pushparaj K, Balasubramanian B, Pappuswamy M, Anand Arumugam V, Durairaj K, Liu WC, Meyyazhagan A, Park S. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel) 2023; 13:954. [PMID: 37109483 PMCID: PMC10145662 DOI: 10.3390/life13040954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | | | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kaliannan Durairaj
- Department of Infection Biology, School of Medicine, Wonkwang University, lksan 54538, Republic of Korea
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
48
|
Abstract
Oral and maxillofacial organoids, as three-dimensional study models of organs, have attracted increasing attention in tissue regeneration and disease modeling. However, traditional strategies for organoid construction still fail to precisely recapitulate the key characteristics of real organs, due to the difficulty in controlling the self-organization of cells in vitro. This review aims to summarize the recent progress of novel approaches to engineering oral and maxillofacial organoids. First, we introduced the necessary components and their roles in forming oral and maxillofacial organoids. Besides, we discussed cutting-edge technology in advancing the architecture and function of organoids, especially focusing on oral and maxillofacial tissue regeneration via novel strategy with designed cell-signal scaffold compounds. Finally, current limitations and future prospects of oral and maxillofacial organoids were represented to provide guidance for further disciplinary progression and clinical application to achieve organ regeneration.
Collapse
Affiliation(s)
- Yu Wang
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200040, China
| |
Collapse
|
49
|
Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, Song R, Wang X, Wang W. 3D printing of bone and cartilage with polymer materials. Front Pharmacol 2022; 13:1044726. [PMID: 36561347 PMCID: PMC9763290 DOI: 10.3389/fphar.2022.1044726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Damage and degeneration to bone and articular cartilage are the leading causes of musculoskeletal disability. Commonly used clinical and surgical methods include autologous/allogeneic bone and cartilage transplantation, vascularized bone transplantation, autologous chondrocyte implantation, mosaicplasty, and joint replacement. 3D bio printing technology to construct implants by layer-by-layer printing of biological materials, living cells, and other biologically active substances in vitro, which is expected to replace the repair mentioned above methods. Researchers use cells and biomedical materials as discrete materials. 3D bio printing has largely solved the problem of insufficient organ donors with the ability to prepare different organs and tissue structures. This paper mainly discusses the application of polymer materials, bio printing cell selection, and its application in bone and cartilage repair.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yifan Wang
- Department of Additive Manufacturing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hao Guo
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yiming Cai
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruipeng Song
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Weidong Wang, ; Xing Wang,
| | - Weidong Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China,*Correspondence: Weidong Wang, ; Xing Wang,
| |
Collapse
|
50
|
Xu Y, Song D, Wang X. 3D Bioprinting for Pancreas Engineering/Manufacturing. Polymers (Basel) 2022; 14:polym14235143. [PMID: 36501537 PMCID: PMC9741443 DOI: 10.3390/polym14235143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is the most common chronic disease in the world, and it brings a heavy burden to people's health. Against this background, diabetic research, including islet functionalization has become a hot topic in medical institutions all over the world. Especially with the rapid development of microencapsulation and three-dimensional (3D) bioprinting technologies, organ engineering and manufacturing have become the main trends for disease modeling and drug screening. Especially the advanced 3D models of pancreatic islets have shown better physiological functions than monolayer cultures, suggesting their potential in elucidating the behaviors of cells under different growth environments. This review mainly summarizes the latest progress of islet capsules and 3D printed pancreatic organs and introduces the activities of islet cells in the constructs with different encapsulation technologies and polymeric materials, as well as the vascularization and blood glucose control capabilities of these constructs after implantation. The challenges and perspectives of the pancreatic organ engineering/manufacturing technologies have also been demonstrated.
Collapse
|