1
|
Laurence DW, Sabin PM, Sulentic AM, Daemer M, Maas SA, Weiss JA, Jolley MA. FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement. Ann Biomed Eng 2025; 53:241-259. [PMID: 39499365 PMCID: PMC11831577 DOI: 10.1007/s10439-024-03637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures. METHODS We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients. RESULTS Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within ± 0.03 strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients. CONCLUSIONS FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.
Collapse
Affiliation(s)
- Devin W Laurence
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia M Sabin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Analise M Sulentic
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Daemer
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Scientific Computing Institute, University of Utah, Salt Lake City, UT, USA.
| | - Matthew A Jolley
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Consolini J, Oberman AG, Sayut J, Damen FW, Goergen CJ, Ravosa MJ, Holland MA. Investigation of direction- and age-dependent prestretch in mouse cranial dura mater. Biomech Model Mechanobiol 2024; 23:721-735. [PMID: 38206531 PMCID: PMC11261808 DOI: 10.1007/s10237-023-01802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Cranial dura mater is a dense interwoven vascularized connective tissue that helps regulate neurocranial remodeling by responding to strains from the growing brain. Previous ex vivo experimentation has failed to account for the role of prestretch in the mechanical behavior of the dura. Here we aim to estimate the prestretch in mouse cranial dura mater and determine its dependency on direction and age. We performed transverse and longitudinal incisions in parietal dura excised from newborn (day ∼ 4) and mature (12 weeks) mice and calculated the ex vivo normalized incision opening (measured width over length). Then, similar incisions were simulated under isotropic stretching within Abaqus/Standard. Finally, prestretch was estimated by comparing the ex vivo and in silico normalized openings. There were no significant differences between the neonatal and adult mice when comparing cuts in the same direction, but adult mice were found to have significantly greater stretch in the anterior-posterior direction than in the medial-lateral direction, while neonatal dura was essentially isotropic. Additionally, our simulations show that increasing curvature impacts the incision opening, indicating that flat in silico models may overestimate prestretch.
Collapse
Affiliation(s)
- Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alyssa G Oberman
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew J Ravosa
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Laurence DW, Wang S, Xiao R, Qian J, Mir A, Burkhart HM, Holzapfel GA, Lee CH. An investigation of how specimen dimensions affect biaxial mechanical characterizations with CellScale BioTester and constitutive modeling of porcine tricuspid valve leaflets. J Biomech 2023; 160:111829. [PMID: 37826955 PMCID: PMC10995110 DOI: 10.1016/j.jbiomech.2023.111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Biaxial mechanical characterizations are the accepted approach to determine the mechanical response of many biological soft tissues. Although several computational and experimental studies have examined how experimental factors (e.g., clamped vs. suture mounting) affect the acquired tissue mechanical behavior, little is known about the role of specimen dimensions in data acquisition and the subsequent modeling. In this study, we combined our established mechanical characterization framework with an iterative size-reduction protocol to test the hypothesis that specimen dimensions affect the observed mechanical behavior of biaxial characterizations. Our findings indicated that there were non-significant differences in the peak equibiaxial stretches of tricuspid valve leaflets across four specimen dimensions ranging from 4.5×4.5mm to 9 × 9mm. Further analyses revealed that there were significant differences in the low-tensile modulus of the circumferential tissue direction. These differences resulted in significantly different constitutive model parameters for the Tong-Fung model between different specimen dimensions of the posterior and septal leaflets. Overall, our findings demonstrate that specimen dimensions play an important role in experimental characterizations, but not necessarily in constitutive modeling of soft tissue mechanical behavior during biaxial testing with the commercial CellScale BioTester.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, USA
| | - Shuodao Wang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, USA
| | - Rui Xiao
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jin Qian
- Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Arshid Mir
- Department of Pediatrics, University of Oklahoma Health Sciences Center, USA
| | - Harold M Burkhart
- Department of Surgery, University of Oklahoma Health Sciences Center, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, The University of Oklahoma, USA; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, USA; Department of Bioengineering, The University of California, Riverside, USA.
| |
Collapse
|
4
|
Aggarwal A, Hudson LT, Laurence DW, Lee CH, Pant S. A Bayesian constitutive model selection framework for biaxial mechanical testing of planar soft tissues: Application to porcine aortic valves. J Mech Behav Biomed Mater 2023; 138:105657. [PMID: 36634438 PMCID: PMC10226148 DOI: 10.1016/j.jmbbm.2023.105657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
A variety of constitutive models have been developed for soft tissue mechanics. However, there is no established criterion to select a suitable model for a specific application. Although the model that best fits the experimental data can be deemed the most suitable model, this practice often can be insufficient given the inter-sample variability of experimental observations. Herein, we present a Bayesian approach to calculate the relative probabilities of constitutive models based on biaxial mechanical testing of tissue samples. Forty-six samples of porcine aortic valve tissue were tested using a biaxial stretching setup. For each sample, seven ratios of stresses along and perpendicular to the fiber direction were applied. The probabilities of eight invariant-based constitutive models were calculated based on the experimental data using the proposed model selection framework. The calculated probabilities showed that, out of the considered models and based on the information available through the utilized experimental dataset, the May-Newman model was the most probable model for the porcine aortic valve data. When the samples were further grouped into different cusp types, the May-Newman model remained the most probable for the left- and right-coronary cusps, whereas for non-coronary cusps two models were found to be equally probable: the Lee-Sacks model and the May-Newman model. This difference between cusp types was found to be associated with the first principal component analysis (PCA) mode, where this mode's amplitudes of the non-coronary and right-coronary cusps were found to be significantly different. Our results show that a PCA-based statistical model can capture significant variations in the mechanical properties of soft tissues. The presented framework is applicable to other tissue types, and has the potential to provide a structured and rational way of making simulations population-based.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom.
| | - Luke T Hudson
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, OK, United States of America
| | - Sanjay Pant
- Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, Wales, United Kingdom
| |
Collapse
|