1
|
Chen Y, Jiang H, Zhu H, He J, Chen L. Theranostics of osteoarthritis: Applications and prospects of precision targeting nanotechnology. Int J Pharm 2025; 676:125548. [PMID: 40216040 DOI: 10.1016/j.ijpharm.2025.125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Osteoarthritis (OA), a complex degenerative joint disease driven by cartilage degeneration, synovial inflammation, and subchondral bone remodeling, lacks effective disease-modifying therapies. Precision-targeted nanotechnology has emerged as a breakthrough strategy, offering enhanced drug delivery, reduced toxicity, and synergistic diagnostic-therapeutic capabilities. This review summarizes OA pathogenesis, focusing on dysregulated immune networks and self-perpetuating synovial microenvironmental interactions. We discuss advanced nanomedicine approaches, which leverage OA-specific pathological cues for localized treatment. Innovations in cytokine modulation, photothermal therapy, and integrated theranostics (photoacoustic/fluorescence imaging) are highlighted as transformative tools for real-time diagnosis and personalized intervention. Despite progress, challenges such as biocompatibility optimization, clinical translation barriers, OA heterogeneity necessitate further development of multifunctional nanocarriers and rationaldesigns. This work underscores the potential of nanotechnology to advance OA therapeutics, bridging preclinical innovation with clinical applicability in pharmaceutical sciences.
Collapse
Affiliation(s)
- Yujing Chen
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoran Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyan He
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Mitsou E, Klein J. Liposome-Based Interventions in Knee Osteoarthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410060. [PMID: 40143645 PMCID: PMC12036560 DOI: 10.1002/smll.202410060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/21/2025] [Indexed: 03/28/2025]
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joints, causing significant disability and socio-economic burden in the aging population. Simultaneously, however, it is a common occurrence in younger individuals, initiated by joint injuries or obesity alongside other factors. Intravenous and oral pharmaceutical OA management have both been associated with systemic adverse effects, thereby resulting in a growing interest in intra-articular (IA) treatment. IA-administered drugs circumvent the requirement for high dosage, offering immediate access to the site of interest while minimizing any unfavorable effects. Nonetheless, IA-injected drugs, administered in their free form, present low retention time in the knee joint raising the need for multiple injection dosage regimens, while their capability to target the cartilage or specific cell populations is limited. Liposomes, due to their unique characteristics and tunable nature, have proven to be excellent candidates for the management of knee OA. This review explores the last decade's research on the efficacy of various IA liposomal formulations, investigating their multifaceted properties as pharmaceutical carriers, lubricating agents, and a basis for combinatorial approaches paving the way to novel treatment solutions for OA.
Collapse
Affiliation(s)
- Evgenia Mitsou
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceHertzl Street 234Rehovot7610001Israel
- Present address:
Institute of Chemical BiologyNational Hellenic Research Foundation48, Vassileos Constantinou Ave.Athens11635Greece
| | - Jacob Klein
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceHertzl Street 234Rehovot7610001Israel
| |
Collapse
|
3
|
Hashemi SS, Alizadeh R, Rafati A, Mohammadi A, Mortazavi M, Hashempur MH. Investigation of silicon oxide nanoparticle-enhanced self-healing hydrogel for cartilage repair and regeneration in rabbit earlobe models. J Drug Target 2025:1-13. [PMID: 40019486 DOI: 10.1080/1061186x.2025.2473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study developed an alginate, gelatine and chondroitin sulphate hydrogel incorporating silicon oxide nanoparticles to assess hydrogel morphology, cell proliferation and viability. The effectiveness of these hydrogels for cartilage repair was evaluated in vivo using male albino rabbits, divided into three groups: a control group without hydrogels, an observer group with hydrogels lacking nanoparticles and a treatment group with nanoparticle-enhanced hydrogels for post-injury repair. At 15, 30 and 60 days post-surgery, the rabbits were humanely euthanized and excised tissue samples were fixed in 10% formalin for histopathological analysis, then processed and embedded in paraffin for microscopic evaluation. Statistical analysis was performed using SPSS software with ANOVA and Tukey's post hoc test. Results indicated that the hydrogels supported cell viability and encouraged differentiation into chondrocyte-like phenotypes. Scanning electron microscopy confirmed the hydrogels' porosity and showed significant differences in cell survival rates compared to the control group, underscoring the potential of hydrogels in cartilage tissue engineering and regenerative repair strategies.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Alizadeh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Wang T, Maldonado CC, Huang BL, Budbazar E, Martin A, Layne MD, Murphy-Ullrich JE, Grinstaff MW, Albro MB. A Bio-inspired Latent TGF-β Conjugated Scaffold Improves Neocartilage Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636279. [PMID: 39975171 PMCID: PMC11838498 DOI: 10.1101/2025.02.03.636279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In cartilage tissue engineering, active TGF-β is conventionally supplemented in culture medium at highly supraphysiologic doses to accelerate neocartilage development. While this approach enhances cartilage extracellular matrix (ECM) biosynthesis, it further promotes tissue features detrimental to hyaline cartilage function, including the induction of tissue swelling, hyperplasia, hypertrophy, and ECM heterogeneities. In contrast, during native cartilage development, chondrocytes are surrounded by TGF-β configured in a latent complex (LTGF-β), which undergoes cell-mediated activation, giving rise to moderated, physiologic dosing regimens that enhance ECM biosynthesis while avoiding detrimental features associated with TGF-β excesses. Here, we explore a bio-inspired strategy, consisting of LTGF-β-conjugated scaffolds, providing TGF-β exposure regimens that are moderated and uniformly administered throughout the construct. Specifically, we evaluate the performance of LTGF-β scaffolds to improve neocartilage development with bovine chondrocyte-seeded agarose constructs compared to outcomes from active TGF-β media supplementation (MS) at a physiologic 0.3 ng/mL dose (MS-0.3), supraphysiologic 10 ng/mL dose (MS-10), or TGF-β free. For small-size constructs (∅3×2 mm), LTGF-β scaffolds yield neocartilage that achieves native-matched mechanical properties (800-925 kPa) and sGAG content (6.6%-7.1%), while providing a cell morphology and collagen distribution more reminiscent of hyaline cartilage. LTGF-β scaffolds further afford an optimal chondrogenic phenotype, marked by a 12-to 28-fold reduction of COL-I expression relative to TGF-β-free and a 7-to 17-fold reduction of COL-X expression relative to MS-10. Further, for large-size constructs, which approach the dimensions needed for clinical cartilage repair, LTGF-β scaffolds significantly reduce mechanical and biochemical heterogeneities relative to MS-0.3 and MS-10. Overall, the use of LTGF-β scaffolds improves the composition, structure, material properties, and cell phenotype of neocartilage.
Collapse
|
5
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
6
|
Yang R, Yan L, Xu T, Zhang K, Lu X, Xie C, Fu W. Injectable bioadhesive hydrogel as a local nanomedicine depot for targeted regulation of inflammation and ferroptosis in rheumatoid arthritis. Biomaterials 2024; 311:122706. [PMID: 39032219 DOI: 10.1016/j.biomaterials.2024.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/23/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Medicine intervention is the major clinical treatment used to relieve the symptoms and delay the progression of rheumatoid arthritis (RA), but is limited by its poor targeted delivery and short therapeutic duration. Herein, we developed an injectable and bioadhesive gelatin-based (Gel) hydrogel as a local depot of leonurine (Leon)-loaded and folate-functionalized polydopamine (FA-PDA@Leon) nanoparticles for anti-inflammation and chondroprotection in RA. The nanoparticles could protect Leon and facilitate its entry into the M1 phenotype macrophage for intracellular delivery of Leon, while the hydrogel tightly adhered to the tissues in the joint cavity and prolonged the retention of FA-PDA@Leon nanoparticles, thus achieving higher availability and therapeutic efficiency of Leon. In vitro and in vivo experiments demonstrated that the Gel/FA-PDA@Leon hydrogel could strongly suppress the inflammatory response by down-regulating the JAK2/STAT3 signaling pathway in macrophages and protect the chondrocytes from ferritinophagy/ferroptosis. This contributed to maintaining the structural integrity of articular cartilage and accelerating the joint functional recovery. This work provides an effective and convenient strategy to achieve higher bioavailability and long-lasting therapeutic duration of medicine intervention in arthritis diseases.
Collapse
Affiliation(s)
- Runze Yang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liwei Yan
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
7
|
Jiang Q, He J, Zhang H, Chi H, Shi Y, Xu X. Recent advances in the development of tumor microenvironment-activatable nanomotors for deep tumor penetration. Mater Today Bio 2024; 27:101119. [PMID: 38966042 PMCID: PMC11222818 DOI: 10.1016/j.mtbio.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic "fuel" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.
Collapse
Affiliation(s)
- Qianyang Jiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haorui Chi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
8
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
9
|
Yuan L, Wei J, Xiao S, Jin S, Xia X, Liu H, Liu J, Hu J, Zuo Y, Li Y, Yang F, Li J. Nano-laponite encapsulated coaxial fiber scaffold promotes endochondral osteogenesis. Regen Biomater 2024; 11:rbae080. [PMID: 39055302 PMCID: PMC11269679 DOI: 10.1093/rb/rbae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Osteoinductive supplements without side effects stand out from the growth factors and drugs widely used in bone tissue engineering. Lithium magnesium sodium silicate hydrate (laponite) nanoflake is a promising bioactive component for bone regeneration, attributed to its inherent biosafety and effective osteoinductivity. Up to now, the in vivo osteogenic potential and mechanisms of laponite-encapsulated fibrous membranes remain largely unexplored. This study presents a unique method for homogeneously integrating high concentrations of laponite RDS into a polycaprolactone (PCL) matrix by dispersing laponite RDS sol into the polymer solution. Subsequently, a core-shell fibrous membrane (10RP-PG), embedding laponite-loaded PCL in its core, was crafted using coaxial electrospinning. The PCL core's slow degradation and the shell's gradient degradation enabled the sustained release of bioactive ions (Si and Mg) from laponite. In vivo studies on a critical-sized calvarial bone defect model demonstrated that the 10RP-PG membrane markedly enhanced bone formation and remodeling by accelerating the process of endochondral ossification. Further transcriptome analysis suggested that osteogenesis in the 10RP-PG membrane is driven by Mg and Si from endocytosed laponite, activating pathways related to ossification and endochondral ossification, including Hippo, Wnt and Notch. The fabricated nanocomposite fibrous membranes hold great promise in the fields of critical-sized bone defect repair.
Collapse
Affiliation(s)
- Li Yuan
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiawei Wei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Shiqi Xiao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xue Xia
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Huan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiangshan Liu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiaxin Hu
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Fang Yang
- Department of Dentistry—Regenerative Biomaterials, Research Institute for Medical Innovation, Nijmegen, 6525EX, The Netherlands
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Feng H, Yue Y, Zhang Y, Liang J, Liu L, Wang Q, Feng Q, Zhao H. Plant-Derived Exosome-Like Nanoparticles: Emerging Nanosystems for Enhanced Tissue Engineering. Int J Nanomedicine 2024; 19:1189-1204. [PMID: 38344437 PMCID: PMC10859124 DOI: 10.2147/ijn.s448905] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Tissue engineering holds great potential for tissue repair and rejuvenation. Plant-derived exosome-like nanoparticles (ELNs) have recently emerged as a promising avenue in tissue engineering. However, there is an urgent need to understand how plant ELNs can be therapeutically applied in clinical disease management, especially for tissue regeneration. In this review, we comprehensively examine the properties, characteristics, and isolation techniques of plant ELNs. We also discuss their impact on the immune system, compatibility with the human body, and their role in tissue regeneration. To ensure the suitability of plant ELNs for tissue engineering, we explore various engineering and modification strategies. Additionally, we provide insights into the progress of commercialization and industrial perspectives on plant ELNs. This review aims to highlight the potential of plant ELNs in regenerative medicine by exploring the current research landscape and key findings.
Collapse
Affiliation(s)
- Hui Feng
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Yang Yue
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Jingqi Liang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Liang Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Qiong Wang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, People’s Republic of China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710054, People’s Republic of China
| |
Collapse
|
11
|
Su Z, Tan P, Zhang J, Wang P, Zhu S, Jiang N. Understanding the Mechanics of the Temporomandibular Joint Osteochondral Interface from Micro- and Nanoscopic Perspectives. NANO LETTERS 2023; 23:11702-11709. [PMID: 38060440 DOI: 10.1021/acs.nanolett.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The condylar cartilage of the temporomandibular joint (TMJ) is connected to the subchondral bone by an osteochondral interface that transmits loads without causing fatigue damage. However, the microstructure, composition, and mechanical properties of this interface remain elusive. In this study, we found that structurally, a spatial gradient assembly of hydroxyapatite (HAP) particles exists in the osteochondral interface, with increasing volume of apatite crystals with depth and a tendency to form denser and stacked structures. Combined with nanoindentation, this complex assembly of nanoscale structures and components enhanced energy dissipation at the osteochondral interface, achieving a smooth stress transition between soft and hard tissues. This study comprehensively demonstrates the elemental composition and complex nanogradient spatial assembly of the osteochondral interface at the ultramicroscopic scale, providing a basis for exploring the construction of complex mechanical models of the interfacial region.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Chen H, Li Z, Li X, Lu J, Chen B, Wang Q, Wu G. Biomaterial-Based Gene Delivery: Advanced Tools for Enhanced Cartilage Regeneration. Drug Des Devel Ther 2023; 17:3605-3624. [PMID: 38076630 PMCID: PMC10706074 DOI: 10.2147/dddt.s432056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Gene therapy has emerged as a promising and innovative approach in cartilage regeneration. Integrating biomaterials into gene therapy offers a unique opportunity to enhance gene delivery efficiency, optimize gene expression dynamics, modulate immune responses, and promote tissue regeneration. Despite the rapid progress in biomaterial-based gene delivery, there remains a deficiency of comprehensive discussions on recent advances and their specific application in cartilage regeneration. Therefore, this review aims to provide a thorough overview of various categories of biomaterials employed in gene delivery, including both viral and non-viral vectors, with discussing their distinct advantages and limitations. Furthermore, the diverse strategies employed in gene therapy are discussed and summarized, such as the utilization of growth factors, anti-inflammatory cytokines, and chondrogenic genes. Additionally, we highlights the significant challenges that hinder biomaterial-based gene delivery in cartilage regeneration, including immune response modulation, gene delivery efficiency, and the sustainability of long-term gene expression. By elucidating the functional properties of biomaterials-based gene therapy and their pivotal roles in cartilage regeneration, this review aims to enhance further advances in the design of sophisticated gene delivery systems for improved cartilage regeneration outcomes.
Collapse
Affiliation(s)
- Hongfeng Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Zhen Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Xiaoqi Li
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Jiongjiong Lu
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Beibei Chen
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Qiongchao Wang
- Department of Foot and Ankle Surgery, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| | - Guangliang Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462300, People’s Republic of China
| |
Collapse
|
13
|
Bordon G, Ramakrishna SN, Edalat SG, Eugster R, Arcifa A, Vermathen M, Aleandri S, Bertoncelj MF, Furrer J, Vermathen P, Isa L, Crockett R, Distler O, Luciani P. Liposomal aggregates sustain the release of rapamycin and protect cartilage from friction. J Colloid Interface Sci 2023; 650:1659-1670. [PMID: 37494862 DOI: 10.1016/j.jcis.2023.07.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Sam G Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Andrea Arcifa
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University & Inselspital Bern, sitem-insel AG, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir- Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Rowena Crockett
- Laboratory for Surface Science and Coating Technologies, EMPA, Uberlandstrasse 129, 8600 Dubendorf, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
14
|
Chen J, Xu W, Dai T, Jiao S, Xue X, Jiang J, Li S, Meng Q. Pioglitazone-Loaded Cartilage-Targeted Nanomicelles (Pio@C-HA-DOs) for Osteoarthritis Treatment. Int J Nanomedicine 2023; 18:5871-5890. [PMID: 37873552 PMCID: PMC10590558 DOI: 10.2147/ijn.s428938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Hyaluronic acid (HA) is a popular biological material for osteoarthritis (OA) treatment. Pioglitazone, a PPAR-γ agonist, has been found to inhibit OA, but its use is limited because achieving the desired local drug concentration after administration is challenging. PURPOSE Herein, we constructed HA-based cartilage-targeted nanomicelles (C-HA-DOs) to deliver pioglitazone in a sustained manner and evaluated their efficacy in vitro and in vivo. METHODS C-HA-DOs were chemically synthesized with HA and the WYRGRL peptide and dodecylamine. The products were characterized by FT-IR, 1H NMR, zeta potential and TEM. The drug loading rate and cumulative, sustained drug release from Pio@C-HA-DOs were determined, and their biocompatibility and effect on oxidative stress in chondrocytes were evaluated. The uptake of C-HA-DOs by chondrocytes and their effect on OA-related genes were examined in vitro. The nanomicelle distribution in the joint cavity was observed by in vivo small animal fluorescence imaging (IVIS). The therapeutic effects of C-HA-DOs and Pio@C-HA-DOs in OA rats were analysed histologically. RESULTS The C-HA-DOs had a particle size of 198.4±2.431 nm, a surface charge of -8.290±0.308 mV, and a critical micelle concentration of 25.66 mg/Land were stable in solution. The cumulative drug release from the Pio@C-HA-DOs was approximately 40% at pH 7.4 over 24 hours and approximately 50% at pH 6.4 over 4 hours. Chondrocytes rapidly take up C-HA-DOs, and the uptake efficiency is higher under oxidative stress. In chondrocytes, C-HA-DOs, and Pio@C-HA-DOs inhibited H2O2-induced death, reduced intracellular ROS levels, and restored the mitochondrial membrane potential. The IVIS images confirmed that the micelles target cartilage. Pio@C-HA-DOs reduced the degradation of collagen II and proteoglycans by inhibiting the expression of MMP and ADAMTS, ultimately delaying OA progression in vitro and in vivo. CONCLUSION Herein, C-HA-DOs provided targeted drug delivery to articular cartilage and improved the role of pioglitazone in the treatment of OA.
Collapse
Affiliation(s)
- Junyan Chen
- Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Wuyan Xu
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Songsong Jiao
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Xiang Xue
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Jiayang Jiang
- Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Department of Orthopaedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Siming Li
- Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510220, People’s Republic of China
| |
Collapse
|
15
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
16
|
Zhang M, Peng X, Ding Y, Ke X, Ren K, Xin Q, Qin M, Xie J, Li J. A cyclic brush zwitterionic polymer based pH-responsive nanocarrier-mediated dual drug delivery system with lubrication maintenance for osteoarthritis treatment. MATERIALS HORIZONS 2023. [PMID: 37078123 DOI: 10.1039/d3mh00218g] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Enhanced joint synergistic lubrication combined with anti-inflammatory therapy is an effective strategy to delay the progression of early osteoarthritis (OA) but has been rarely reported. The hydration lubrication of zwitterions and inherent super-lubrication properties of the cyclic brush, as well as the enhancement of the steric stability of the cyclic topology, can effectively improve the drug loading and utilization; herein we report a pH-responsive cyclic brush zwitterionic polymer (CB) with SBMA and DMAEMA as brushes and a cyclic polymer (c-P(HEMA)) as the core template, possessing a low coefficient of friction (0.017). After loading with hydrophobic curcumin and hydrophilic loxoprofen sodium it demonstrates high drug-loading efficiency. In vitro and in vivo experiments confirmed the triple function of the CB on superlubrication, sequence controlled release and anti-inflammatory effects demonstrated by Micro CT, histological analysis and qRT-PCR. Overall, the CB is a promising long-acting lubricating therapeutic agent, with potential for OA treatment or other diseases.
Collapse
Affiliation(s)
- Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|