1
|
Liu L, Wuyun T, Sun X, Zhang Y, Cha G, Zhao L. Therapeutic efficacy of TMTP1-modified EVs in overcoming bone metastasis and immune resistance in PIK3CA mutant NSCLC. Cell Death Dis 2025; 16:367. [PMID: 40328748 PMCID: PMC12055990 DOI: 10.1038/s41419-025-07685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Non-small cell lung cancer (NSCLC) with PIK3CA mutations demonstrates significant challenges in treatment due to enhanced bone metastasis and immune checkpoint resistance. This study investigates the efficacy of tumor-targeting peptide 1-modified cancer stem cell-derived extracellular vesicles (TMTP1-TSRP-EVs) in reshaping the tumor microenvironment and reversing immune checkpoint resistance in NSCLC. By integrating TMTP1-TSRP into EVs, we aim to specifically deliver therapeutic agents to NSCLC cells, focusing on inhibiting the PI3K/Akt/mTOR pathway, a crucial driver of oncogenic activity and immune evasion in PIK3CA-mutated cells. Our comprehensive in vitro and in vivo analyses show that TMTP1-TSRP-EVs significantly inhibit tumor growth, reduce PD-L1 expression, and enhance CD8+ T cell infiltration, effectively reversing the immune-suppressive microenvironment. Moreover, the in vivo models confirm that our approach not only suppresses bone metastases but also overcomes primary resistance to immune checkpoint inhibitors by modulating the expression of key immunological markers. These findings suggest that targeted delivery of TMTP1-TSRP-EVs could provide a novel therapeutic strategy for treating PIK3CA-mutant NSCLC, offering significant improvements over traditional therapies by directly targeting the molecular pathogenesis of tumor resistance and metastasis. Molecular Mechanisms Reshaping the TME to Halt PI3K-Mutant Bone Metastasis of NSCLC and Overcoming Primary ICI Resistance. (Created by BioRender).
Collapse
Affiliation(s)
- Liwen Liu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tanghesi Wuyun
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Sun
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Geqi Cha
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ling Zhao
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Luo T, Fan Z, Zeng A, Wang A, Pan Y, Xu Y, Chen H, Chen W, Nie D, Lin J, Huang A, Gong M, Huang Y, Ding Y, Zhu X, Rao L, Wang J. Biomimetic Targeted Co-Delivery System Engineered from Genomic Insights for Precision Treatment of Osteosarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410427. [PMID: 39555699 PMCID: PMC11727257 DOI: 10.1002/advs.202410427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
The high heterogeneity and severe side effects of chemotherapy are major factors contributing to the failure of osteosarcoma treatment. Herein, a comprehensive genomic analysis is conducted, and identified two prominent characteristics of osteosarcoma: significant cyclin-dependent kinases 4 (CDK4) amplification and homologous recombination repair deficiency. Based on these findings, a co-delivery system loaded with CDK4/6 inhibitors and poly ADP-ribose polymerase (PARP) inhibitors is designed. By employing metal-organic frameworks (MOFs) as carriers, issue of drug insolubility is effectively addressed, while also enabling controlled release in response to the tumor microenvironment. To enhance targeting capability and biocompatibility, the MOFs are further coated with a bio-membrane targeting B7H3. This targeted biomimetic co-delivery system possesses several key features: 1) it can precisely target osteosarcoma with high B7H3 expression; 2) the combination of CDK4/6 inhibitors and PARP inhibitors exhibits synergistic effects, significantly impairing tumor's DNA repair capacity; and 3) the system has the potential for combination with photodynamic therapy, amplifying DNA repair defects to maximize tumor cell eradication. Furthermore, it is observed that this co-delivery system can activate immune microenvironment, increasing CD8+ T cell infiltration and converting osteosarcoma from an immune-cold to an immune-hot tumor. In summary, the co-delivery system is an effective therapeutic strategy and holds promise as a novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Tianqi Luo
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhijin Fan
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Anyu Zeng
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Anqi Wang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yanyang Xu
- Department of Joint SurgeryGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510060China
| | - Hongmin Chen
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Weiqing Chen
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dingmeng Nie
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jiaming Lin
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Anfei Huang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ming Gong
- Department of Pediatric OrthopaedicsGuangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhou Medical UniversityGuangzhou510630China
| | - Yufeng Huang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yun Ding
- Department of Breast OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojun Zhu
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jin Wang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
3
|
Zhu Q, Zhou H, Xie F. Regulation of ovarian cancer by protein post-translational modifications. Front Oncol 2024; 14:1437953. [PMID: 39678497 PMCID: PMC11638062 DOI: 10.3389/fonc.2024.1437953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Ovarian cancer is one of the predominant gynecologic malignancies worldwide, ranking as the fifth leading cause of cancer-induced mortality among women globally. Post-translational modifications (PTMs) refer to the enzyme-catalyzed attachment of functional groups to proteins, thereby inducing structural and functional alterations. Recent evidence suggests that PTMs play multifaceted roles in the pathogenesis of ovarian cancer, influencing processes such as cell cycle, metabolism reprogramming, chemoresistance, and immune responses against cancer. Accordingly, a comprehensive understanding of the diverse PTMs in ovarian cancer is imperative for decoding the complex molecular mechanisms that drive cancer progression. This review discusses the latest developments in the study of protein PTMs in ovarian cancer and introduces pharmacological approaches that target these modifications as therapeutic strategies.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Lin Q, Li J, Abudousalamu Z, Sun Y, Xue M, Yao L, Chen M. Advancing Ovarian Cancer Therapeutics: The Role of Targeted Drug Delivery Systems. Int J Nanomedicine 2024; 19:9351-9370. [PMID: 39282574 PMCID: PMC11401532 DOI: 10.2147/ijn.s478313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal reproductive system cancer and a leading cause of cancer-related death. The high mortality rate and poor prognosis of OC are primarily due to its tendency for extensive abdominal metastasis, late diagnosis in advanced stages, an immunosuppressive tumor microenvironment, significant adverse reactions to first-line chemotherapy, and the development of chemoresistance. Current adjuvant chemotherapies face challenges such as poor targeting, low efficacy, and significant side effects. Targeted drug delivery systems (TDDSs) are designed to deliver drugs precisely to the tumor site to enhance efficacy and minimize side effects. This review highlights recent advancements in the use of TDDSs for OC therapies, including drug conjugate delivery systems, nanoparticle drug delivery systems, and hydrogel drug delivery systems. The focus is on employing TDDS to conduct direct, effective, and safer interventions in OC through methods such as targeted tumor recognition and controlled drug release, either independently or in combination. This review also discusses the prospects and challenges for further development of TDDSs. Undoubtedly, the use of TDDSs shows promise in the battle against OCs.
Collapse
Affiliation(s)
- Qianhan Lin
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zulimire Abudousalamu
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yating Sun
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengyang Xue
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liangqing Yao
- Department of Gynecologic Oncology, Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mo Chen
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
6
|
Suryavanshi P, Mahajan S, Banerjee SK, Seth K, Banerjee S. Synthesis and characterization of a pH/temperature-dual responsive hydrogel with promising biocompatibility features for stimuli-responsive 5-FU delivery. J Mater Chem B 2024; 12:5098-5110. [PMID: 38700289 DOI: 10.1039/d4tb00168k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The tunable properties of stimuli-responsive copolymers or hydrogels enable their application in different fields such as biomedical engineering, tissue engineering, or even drug release. Here we introduce a new PNIPAM-based triblock copolymer material comprising a controlled amount of a novel hydrophobic crosslinker 2,4'-diacryloyloxy benzophenone (DABP) and acrylic acid (AAc) to achieve lower critical solution temperature (LCST) between ambient and body temperatures. The dual stimuli-responsive p(NIPAM-co-DABP-co-AAc) triblock copolymer material and hydrogel were synthesized, and their temperature and pH-responsive behaviors were systematically investigated. The hydrogel exhibited excellent temperature and pH-responsive properties with an LCST of around 30 °C. Moreover, the synthesized copolymer has been demonstrated to be nontoxic both in vitro and in vivo. When the hydrogel was preloaded with the model drug 5-fluorouracil (5-FU), the designed hydrogel released the drug in a temperature and pH-controlled fashion. It was observed that the prepared hydrogel has the ability to entrap 5-FU, and the loading is more than 85%. In the case of temperature-controlled release, we observed almost complete release of 5-FU at lower temperatures and sustained release behavior at higher temperatures. In addition, the hydrogel matrix was able to retard the release of 5-FU in an acidic environment and selectively release 5-FU in a basic environment. By realizing how the hydrogel properties influence the release of drugs from preloaded hydrogels, it is possible to design new materials with myriad applications in the drug delivery field.
Collapse
Affiliation(s)
- Purushottam Suryavanshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| | - Shriram Mahajan
- Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, NIPER-Guwahati, Changsari 781101, Assam, India
| | - Kapileswar Seth
- Department of Medicinal Chemistry, NIPER-Guwahati, Changsari 781101, Assam, India.
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
7
|
Lliberos C, Richardson G, Papa A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules 2024; 14:585. [PMID: 38785992 PMCID: PMC11118117 DOI: 10.3390/biom14050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments.
Collapse
Affiliation(s)
- Carolina Lliberos
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Gary Richardson
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
8
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
9
|
Quiñonero F, Parra-Torrejón B, Ramírez-Rodríguez GB, Garcés V, Delgado-López JM, Jiménez-Luna C, Perazzoli G, Melguizo C, Prados J, Ortíz R. Combining Olaparib and Ascorbic Acid on Nanoparticles to Enhance the Drug Toxic Effects in Pancreatic Cancer. Int J Nanomedicine 2023; 18:5075-5093. [PMID: 37701822 PMCID: PMC10493099 DOI: 10.2147/ijn.s415631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects. Methods Amorphous Calcium Phosphate (ACP) NPs were synthesized through a biomimetic approach and then functionalized with OLA and AA (NP-ACP-OLA-AA). After evaluation of the loading capacity and release kinetic, cytotoxicity, cell migration, immunofluorescence, and gene expression assays were performed using pancreatic tumor cell lines. In vivo studies were carried out on tumors derived from the PANC-1 line in NOD SCID gamma (NSG) mice. Results NP-ACP-OLA-AA was loaded with 13%wt of OLA (75% loading efficiency) and 1% of AA, respectively. The resulting dual nanosystem exhibited a gradual release of OLA and AA, being the latter protected from degradation in solution. This ensured the simultaneous availability of OLA and AA for a longer period, at least, during the entire time of in vitro cell experiments (72 hours). In vitro studies indicated that NP-ACP-OLA-AA showed the best cytotoxic effect outperforming that of the free OLA and a higher genotoxicity and apoptosis-mediated cytotoxic effect in human pancreatic ductal adenocarcinoma cell line. Interestingly, the in vivo assays using immunosuppressed mice with PANC-1-induced tumors revealed that NP-ACP-OLA-AA produced a higher tumor volume reduction (59.1%) compared to free OLA (28.3%) and increased the mice survival. Conclusion Calcium phosphate NPs, a highly biocompatible and biodegradable system, were an ideal vector for the OLA and AA co-treatment in PC, inducing significant therapeutic benefits relative to free OLA, including cytotoxicity, induction of apoptosis, inhibition of cell migration, tumor growth, and survival.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | | | - Victor Garcés
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Raul Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| |
Collapse
|