1
|
Gao F, Guo L, Lin W, Zhang X, Zhan Q, Cao P, Ju H, Zhang Y. Simply Designed and Universal DNA Nanohydrogel for Stimuli-Responsive NIR-II Fluorescence Imaging of Early-Stage Tumor. Anal Chem 2025; 97:10699-10708. [PMID: 40357997 DOI: 10.1021/acs.analchem.5c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The delayed detection and recurrence of cancer lead to disappointing cure rates, underscoring the imperative for exploring precise early tumor diagnosis techniques. Despite the superior biocompatibility and flexible programmability of DNA nanoprobes for tumor imaging, intricate designs with multiple oligonucleotide sequences are always indispensable, which significantly hinder their clinical application and commercial development. To construct a simply designed DNA nanoprobe, here, we constructed a universal stimuli-responsive nanohydrogel through the hybridization of the staple strand and skeleton strand. Through a simple substitution of the staple strand, this hydrogel can be adapted for the response to different targets without necessitating a series of subsequent revisions and synthesis optimization. To achieve near-infrared II region (NIR-II) fluorescence imaging, alkynyl-modified NIR-II fluorescent dyes are labeled at two ends of bent staple strands and display weak fluorescence because of the aggregation-caused quenching effect. The highly expressed ATP or cytokine in tumor cells activates the liberation of staples and collapse of the bent configuration, which generates fluorescence recovery for tumor imaging. Moreover, this nanohydrogel also allows for the targeted release of anticancer drugs intercalated in the DNA helix. By integration of NIR-II fluorescent dyes, this versatile nanohydrogel enables precise diagnosis and treatment of early tumors. The straightforward design demonstrates low cost and easy adaptability for multitarget detection, highlighting its significant implications for the advancement of DNA nanotechnology in clinical application and commercialization production.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lichao Guo
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wanjuan Lin
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qichen Zhan
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
- Clinical Medical Research Center, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212004, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhang
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Thangudu S, Su CH. Review of light activated antibacterial nanomaterials in the second biological window. J Nanobiotechnology 2025; 23:293. [PMID: 40229882 PMCID: PMC11998224 DOI: 10.1186/s12951-025-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial infections continue to pose a major threat to public health, contributing to high mortality rates worldwide. The growing ineffectiveness of conventional antibiotics has created an urgent need for alternative solutions. Nanomaterials (NMs) have emerged as a promising approach to combating bacterial infections due to their unique physicochemical properties, and extensive research has been conducted to address this crisis, yielding notable results. However, challenges such as limited light absorption and inherent cytotoxicity remain significant concerns. Furthermore, the clinical adoption of single-mode phototherapy is often restricted by the shallow tissue penetration of traditional light sources. The second biological window (NIR-II, 950-1450 nm) offers a groundbreaking opportunity for therapeutic and diagnostic applications by enabling deeper tissue penetration. As a result, growing research efforts are dedicated to developing NIR-II activated photosensitizers and nanomaterials to overcome challenges such as poor light absorption, limited tissue penetration, and suboptimal activation. Despite significant advancements, a comprehensive review of antibacterial nanomaterials specifically designed for the NIR-II window is still lacking in literature. This review aims to fill that gap by discussing the latest advancements, challenges, and potential of light-activated antibacterial nanomaterials within the BW-II region. The goal is to enhance understanding and guide the development of more efficient nanomaterials for future biomedical and clinical applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Canary Center for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, USA.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
- Institute for Radiological Research, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
3
|
Ran XY, Wei YF, Wu YL, Dai LR, Xia WL, Zhou PZ, Li K. Xanthene-based NIR organic phototheranostics agents: design strategies and biomedical applications. J Mater Chem B 2025; 13:2952-2977. [PMID: 39898613 DOI: 10.1039/d4tb02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Fluorescence imaging and phototherapy in the near-infrared window (NIR, 650-1700 nm) have attracted great attention for biomedical applications due to their minimal invasiveness, ultra-low photon scattering and high spatial-temporal precision. Among NIR emitting/absorbing organic dyes, xanthene derivatives with controllable molecular structures and optical properties, excellent fluorescence quantum yields, high molar absorption coefficients and remarkable chemical stability have been extensively studied and explored in the field of biological theranostics. The present study was aimed at providing a comprehensive summary of the progress in the development and design strategies of xanthene derivative fluorophores for advanced biological phototheranostics. This study elucidated several representative controllable strategies, including electronic programming strategies, extension of conjugated backbones, and strategic establishment of activatable fluorophores, which enhance the NIR fluorescence of xanthene backbones. Subsequently, the development of xanthene nanoplatforms based on NIR fluorescence for biological applications was detailed. Overall, this work outlines future efforts and directions for improving NIR xanthene derivatives to meet evolving clinical needs. It is anticipated that this contribution could provide a viable reference for the strategic design of organic NIR fluorophores, thereby enhancing their potential clinical practice in future.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yuan-Feng Wei
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Ling Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Li-Rui Dai
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wen-Li Xia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Pei-Zhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2025; 14:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
5
|
Liu H, Tang L, Yin Y, Cao Y, Fu C, Feng J, Shen Y, Wang W. Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403101. [PMID: 39007186 PMCID: PMC11425291 DOI: 10.1002/advs.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Indexed: 07/16/2024]
Abstract
Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Hening Liu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Lu Tang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yue Yin
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Cong Fu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yan Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Wei Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| |
Collapse
|
6
|
Liu Y, Zhang L, Ouyang F, Xue C, Zhao X, Wang T, Pei Z, Shuai Q. Thermal-Accelerated Urease-Driven Bowl-Like Polydopamine Nanorobot for Targeted Photothermal/Photodynamic Antibiotic-Free Antibacterial Therapy. Adv Healthc Mater 2024; 13:e2304086. [PMID: 38520218 DOI: 10.1002/adhm.202304086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The problem of antibiotic resistance seriously affects the treatment of bacterial infections, so there is an urgent need to develop novel antibiotic-independent antimicrobial strategies. Herein, a urease-driven bowl-like mesoporous polydopamine nanorobot (MPDA@ICG@Ur@Man) based on single-wavelength near-infrared (NIR) remote photothermal acceleration to achieve antibiotic-free phototherapy(photothermal therapy, PTT, plus photodynamic therapy, PDT) is first reported. The smart nanorobots can perform active movement by decomposing urea to produce carbon dioxide and ammonia. Particularly, the elevated local temperature during PTT can increase urease activity to enhance the autonomous movement and thus increase the contact between the antimicrobial substance and bacteria. Compared with a nanomotor propelled by urea only, the diffusion coefficient (De) of photothermal-accelerated nanorobots is increased from 1.10 to 1.26 µm2 s-1. More importantly, urease-driven bowl-like nanorobots with photothermal enhancement can specifically identify Escherichia coli (E. coli) and achieve simultaneous PTT/PDT at a single wavelength with 99% antibactericidal activity in vitro. In a word, the urease-driven bowl-like nanorobots guided by photothermal-accelerated strategy could provide a novel perspective for increasing PTT/PDT antibacterial therapeutic efficacy and be promising for various antibiotic-free sterilization applications.
Collapse
Affiliation(s)
- Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Feng Ouyang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Chenglong Xue
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiaoyu Zhao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Tao Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
7
|
Shen K, Li L, Tan F, Ang CCL, Jin T, Xue Z, Wu S, Chee MY, Yan Y, Lew WS. NIR and magnetism dual-response multi-core magnetic vortex nanoflowers for boosting magneto-photothermal cancer therapy. NANOSCALE 2024; 16:10428-10440. [PMID: 38742446 DOI: 10.1039/d4nr00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Due to the relatively low efficiency of magnetic hyperthermia and photothermal conversion, it is rather challenging for magneto-photothermal nanoagents to be used as an effective treatment during tumor hyperthermal therapy. The advancement of magnetic nanoparticles exhibiting a vortex-domain structure holds great promise as a viable strategy to enhance the application performance of conventional magnetic nanoparticles while retaining their inherent biocompatibility. Here, we report the development of Mn0.5Zn0.5Fe2O4 nanoflowers with ellipsoidal magnetic cores, and show them as effective nanoagents for magneto-photothermal synergistic therapy. Comparative studies were conducted on the heating performance of anisometric Mn0.5Zn0.5Fe2O4 (MZF) nanoparticles, including nanocubes (MZF-C), hollow spheres (MZF-HS), nanoflowers consisting of ellipsoidal magnetic cores (MZF-NFE), and nanoflowers consisting of needle-like magnetic cores (MZF-NFN). MZF-NFE exhibits an intrinsic loss parameter (ILP) of up to 15.3 N h m2 kg-1, which is better than that of commercial equivalents. Micromagnetic simulations reveal the magnetization configurations and reversal characteristics of the various MZF shapes. Additionally, all nanostructures displayed a considerable photothermal conversion efficiency rate of more than 18%. Our results demonstrated that by combining the dual exposure of MHT and PTT for hyperthermia treatments induced by MZF-NFE, BT549, MCF-7, and 4T1 cell viability can be significantly decreased by ∼95.7% in vitro.
Collapse
Affiliation(s)
- Kaiming Shen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Funan Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Calvin Ching Lan Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Tianli Jin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Zongguo Xue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Shuo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Yunfei Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| |
Collapse
|
8
|
Yang M, Ji C, Yin M. Aggregation-enhanced photothermal therapy of organic dyes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1960. [PMID: 38695260 DOI: 10.1002/wnan.1960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024]
Abstract
Photothermal therapy (PTT) represents a groundbreaking approach to targeted disease treatment by harnessing the conversion of light into heat. The efficacy of PTT heavily relies on the capabilities of photothermal agents (PTAs). Among PTAs, those based on organic dyes exhibit notable characteristics such as adjustable light absorption wavelengths, high extinction coefficients, and high compatibility in biological systems. However, a challenge associated with organic dye-based PTAs lies in their efficiency in converting light into heat while maintaining stability. Manipulating dye aggregation is a key aspect in modulating non-radiative decay pathways, aiming to augment heat generation. This review delves into various strategies aimed at improving photothermal performance through constructing aggregation. These strategies including protecting dyes from photodegradation, inhibiting non-photothermal pathways, maintaining space within molecular aggregates, and introducing intermolecular photophysical processes. Overall, this review highlights the precision-driven assembly of organic dyes as a promising frontier in enhancing PTT-related applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Mengyun Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Wei W, He X, Yan K, Hu J, Wang Z, Liu M, Chen J, Cai Z, Sun B, Yu G. Novel small molecule-based organic nanoparticles for second near-infrared photothermal tumor ablation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123668. [PMID: 38029599 DOI: 10.1016/j.saa.2023.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Second near-infrared (NIR-II,1000 ∼ 1700 nm) therapeutic window presents an increased tissue penetration and elevated maximal permissible exposure in the application of photothermal therapy (PTT). However, the lack of NIR-II photothermal conversion agents (PCAs) limit their further development. In this work, we rationally designed and successfully developed three novel indolium-like heptamethine cyanine dyes (NFs) by installing N,N-diethylamino on the terminal ends of a conjugated polyene backbone and replacing the middle chlorine atom with o-mercapto benzoic acid and p-mercapto benzoic acid. Notably, NF2 with stronger rotating group encapsulated in organic nanoparticles (NF2 NPs) exhibited high photothermal conversion efficiency (PCE), which could come up to (61.3 %). Then we conducted serial experiments to further investigate PTT capability of NF2 NPs 4 T1 cell line and nude mice bearing 4 T1 tumor. As expected, the resulting NF2 NPs presented the excellent photothermal conversion ability and superb PTT effect both in vivo and in vitro. This study will inspire more work for future design and clinical applications of NIR-II therapeutic agents.
Collapse
Affiliation(s)
- Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Kun Yan
- Department of Cardio-Thoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Zining Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China.
| | - Guiping Yu
- Department of Cardio-Thoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China.
| |
Collapse
|
10
|
Wu J, Xiang S, Zhang M, Zhou N, Wang M, Li L, Shen J. Self-Assembled Nanoflowers Realizes Synergistic Sterilization with Photothermal and Chemical Kinetics Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2591-2600. [PMID: 38265289 DOI: 10.1021/acs.langmuir.3c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Wounds caused by bacterial infections have become a major challenge in the medical field; however, the overuse of antibiotics has led to increased resistance and bioaccumulation. Therefore, it is urgent to develop an antibacterial agent with excellent antibacterial properties and biosafety. Here, we designed an antibacterial platform that combines photothermal and chemical kinetics therapies. Platinum-cobalt (PtCo) bimetallic nanoparticles (NPs) were first prepared, and then PtCo@MnO2 nanoflowers were obtained by adding MES buffer solution and KMnO4 to the PtCo bimetallic nanoparticle suspension using ultrasound. When light strikes metal NPs, they can strongly absorb the photon energy, resulting in photothermal properties. In addition, Pt and Co were used as the oxidase mimics, and MnO2 was used as the catalase mimic. In summary, the photothermal capacity of PtCo@MnO2 nanoflowers with rough surfaces can effectively disrupt the permeability of the bacterial cell membranes. Further, by catalyzing H2O2, PtCo@MnO2 nanoflowers can generate large amounts of hydroxyl free radicals, which can damage bacterial cell membranes, proteins, and DNA. In addition, MnO2 can effectively alleviate the hypoxic environment of the bacterially infected areas and activate deep bacteria, thus achieving the goal of complete sterilization. The in vitro and in vivo results showed that PtCo@MnO2 displayed excellent antibacterial properties and good biocompatibility.
Collapse
Affiliation(s)
- Jing Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuqing Xiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
11
|
Mohareb RM, Ibrahim RA, Al Farouk FO, Alwan ES. Ionic Liquids Immobilized Synthesis of New Xanthenes Derivatives and their Antiproliferative, Molecular Docking, and Morphological Studies. Anticancer Agents Med Chem 2024; 24:990-1008. [PMID: 38685778 DOI: 10.2174/0118715206299407240324110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Xanthenes and benzoxanthenesare are highly valuable compounds in organic chemistry and medicinal chemistry. Xanthene derivatives were found to have many applications in medicinal chemistry. OBJECTIVE This work aims to explore the synthesis of xanthene derivatives with various substituents and find the possibility of their uses as anticancer agents. METHODS The basic starting compound through this work was the 2,3-dihydro-1H-xanthen-1-one (3), which was synthesized from the reaction of cyclohexan-1,3-dione and 2-hydroxybenzaldehyde. Compound 3 was used to synthesize new thiophene, pyrimidine, isoxazole, and thiazole derivatives based on the xanthenes nucleus. Fused xanthene derivatives were obtained through further heterocyclization reactions. Multicomponent reactions expressed in this work were carried out in the presence of solvent catalyzed by Et3N and in solvent-free ionic liquid immobilized catalyst. RESULTS Cytotoxicity for the newly synthesized compounds toward cancer cell lines was measured, and the results revealed that many compounds exhibited high inhibitions. CONCLUSION The antiproliferative activity of the synthesized compounds was studied on six selected cancer cell lines. The nature of the heterocyclic ring and the variations of substituted groups showed a high effect through the inhibitions of the tested compound.
Collapse
Affiliation(s)
- Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt
| | - Rehab A Ibrahim
- Department of Chemistry, Higher Institute of Engineering and Technology, El-Tagammoe El-Khames, New Cairo, Egypt
| | - Fatma O Al Farouk
- School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, Cairo, Egypt
| | - Ensaf S Alwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
12
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Chen YT, Liu CH, Pan WY, Jheng PR, Hsieh YSY, Burnouf T, Fan YJ, Chiang CC, Chen TY, Chuang EY. Biomimetic Platelet Nanomotors for Site-Specific Thrombolysis and Ischemic Injury Alleviation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384742 DOI: 10.1021/acsami.3c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Due to the mortality associated with thrombosis and its high recurrence rate, there is a need to investigate antithrombotic approaches. Noninvasive site-specific thrombolysis is a current approach being used; however, its usage is characterized by the following limitations: low targeting efficiency, poor ability to penetrate clots, rapid half-life, lack of vascular restoration mechanisms, and risk of thrombus recurrence that is comparable to that of traditional pharmacological thrombolysis agents. Therefore, it is vital to develop an alternative technique that can overcome the aforementioned limitations. To this end, a cotton-ball-shaped platelet (PLT)-mimetic self-assembly framework engineered with a phototherapeutic poly(3,4-ethylenedioxythiophene) (PEDOT) platform has been developed. This platform is capable of delivering a synthetic peptide derived from hirudin P6 (P6) to thrombus lesions, forming P6@PEDOT@PLT nanomotors for noninvasive site-specific thrombolysis, effective anticoagulation, and vascular restoration. Regulated by P-selectin mediation, the P6@PEDOT@PLT nanomotors target the thrombus site and subsequently rupture under near-infrared (NIR) irradiation, achieving desirable sequential drug delivery. Furthermore, the movement ability of the P6@PEDOT@PLT nanomotors under NIR irradiation enables effective penetration deep into thrombus lesions, enhancing bioavailability. Biodistribution analyses have shown that the administered P6@PEDOT@PLT nanomotors exhibit extended circulation time and metabolic capabilities. In addition, the photothermal therapy/photoelectric therapy combination can significantly augment the effectiveness (ca. 72%) of thrombolysis. Consequently, the precisely delivered drug and the resultant phototherapeutic-driven heat-shock protein, immunomodulatory, anti-inflammatory, and inhibitory plasminogen activator inhibitor-1 (PAI-1) activities can restore vessels and effectively prevent rethrombosis. The described biomimetic P6@PEDOT@PLT nanomotors represent a promising option for improving the efficacy of antithrombotic therapy in thrombus-related illnesses.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, No.250, Wu-Hsing Street, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23559, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE106 91, Sweden
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| |
Collapse
|
14
|
Lee H, Shin DY, Na Y, Han G, Kim J, Kim N, Bang SJ, Kang HS, Oh S, Yoon CB, Park J, Kim HE, Jung HD, Kang MH. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants. BIOMATERIALS ADVANCES 2023; 152:213523. [PMID: 37336010 DOI: 10.1016/j.bioadv.2023.213523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Da-Young Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuhyun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ginam Han
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nahyun Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo-Jun Bang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hyeong Seok Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - SeKwon Oh
- Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Chang-Bun Yoon
- Department of Advanced Materials Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea; Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si 16229, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
15
|
Roy S, Roy J, Guo B. Nanomaterials as multimodal photothermal agents (PTAs) against 'Superbugs'. J Mater Chem B 2023; 11:2287-2306. [PMID: 36857688 DOI: 10.1039/d2tb02396b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Superbugs, also known as multidrug-resistant bacteria, have become a lethal and persistent threat due to their unresponsiveness toward conventional antibiotics. The main reason for this is that superbugs can rapidly mutate and restrict any foreign drug/molecule in their vicinity. Herein, nanomaterial-mediated therapies have set their path and shown burgeoning efficiency toward the ablation of superbugs. Notably, treatment modalities like photothermal therapy (PTT) have shown prominence in killing multidrug-resistant bacteria with their ability to generate local heat shock-mediated hyperthermia in such species. However, photothermal treatment has some serious limitations, such as high cost, complexity, and even toxicity to some extent. Hence, it is important to resolve such shortcomings of PTTs as they provide substantial tissue penetration. This is why multimodal PTTs have emerged and taken over this domain of research for the past few years. In this work, we have summarized and critically reviewed such exceptional works of recent times and provided a perspective to enhance their efficiencies. Profoundly, we discuss the design rationales of some novel photothermal agents (PTAs) and shed light on their mechanisms. Finally, challenges for PTT-derived multimodal therapy are presented, and capable synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|