1
|
Lv Y, Wang Z, Wei Y, Sun C, Chen M, Qin R, Qin H, Ma C, Ren Y, Wang S. Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis. Carbohydr Polym 2025; 352:123197. [PMID: 39843099 DOI: 10.1016/j.carbpol.2024.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties. The average pore diameter of the optimal hydrogel expanded to 45 μm, accompanied by zeta potentials of +34.72 ± 4.13 mV. The loading efficiency notably surpassed 90 %, while the sustained release of recombinant human bone morphogenetic proteins 9 (rhBMP9) was observed to last over 25 days at pH = 6.0 and over 36 days at pH = 7.4. This chitosan-based hydrogel, which sustained rhBMP9 release, significantly enhanced the proliferation and migration of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells and promoted osteogenesis and angiogenesis both in vitro and in vivo. Collectively, our study presents an rhBMP9-loaded chitosan-based composite hydrogel system that offers innovative avenues for the research and clinical application of advanced biomaterials in the treatment of early ONFH.
Collapse
Affiliation(s)
- You Lv
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang 221000, China; Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zelun Wang
- Department of Emergency Surgery, the Second People's Hospital of Lianyungang, 41 Hailian East Rd, Lianyungang 222002, China
| | - Yifan Wei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China
| | - Chang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Rd, Nanjing 210002, China
| | - Ming Chen
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang 221000, China
| | - Rujie Qin
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang 221000, China
| | - Haonan Qin
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, 1 Huanghe West Rd, Huai'an 223300, China
| | - Cheng Ma
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China.
| | - Yongxin Ren
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China.
| | - Shoulin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
2
|
Gao H, Pol M, Makara CA, Song J, Zhang H, Zou X, Benson JM, Burris DL, Fox JM, Jia X. Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes. Nat Protoc 2025; 20:727-778. [PMID: 39501109 PMCID: PMC11898115 DOI: 10.1038/s41596-024-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/21/2024] [Indexed: 03/12/2025]
Abstract
Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction. After a few days of culture, matrix properties can be altered by supplementing the cell culture media with TCO-tagged molecules through the rapid reaction with the remaining Tz groups in the network at the gel-liquid interface. As the Tz/TCO reaction is faster than molecular diffusion, matrix properties can be modified in a spatiotemporal fashion simply by altering the identity of the diffusive species and the diffusion time/path. Our strategy does not interfere with native biochemical processes nor does it require external triggers or a second, independent chemistry. The biomimetic three-dimensional cultures can be analyzed by standard molecular and cellular techniques and visualized by confocal microscopy. We have previously used this method to demonstrate how in situ modulation of matrix properties induces epithelial-to-mesenchymal transition, elicits fibroblast transition from mesenchymal stem cells and regulates myofibroblast differentiation. Following the detailed procedures, individuals with a bachelor's in science and engineering fields can successfully complete the protocol in 4-5 weeks. This protocol can be applied to model tissue morphogenesis and disease progression and it can also be used to establish engineered constructs with tissue-like anisotropy and tissue-specific functions.
Collapse
Affiliation(s)
- Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Colette A Makara
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Jamie M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Zaffagnini M, Boffa A, Andriolo L, Raggi F, Zaffagnini S, Filardo G. Orthobiologic therapies delay the need for hip arthroplasty in patients with avascular necrosis of the femoral head: A systematic review and survival analysis. Knee Surg Sports Traumatol Arthrosc 2025; 33:1112-1127. [PMID: 39543728 PMCID: PMC11848991 DOI: 10.1002/ksa.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE The aim of this systematic review and survival analysis was to quantify the benefits of orthobiologic augmentation therapies for the treatment of avascular necrosis (AVN) of the femoral head and identify the most effective approach to delay the need for total hip arthroplasty (THA). METHODS A systematic review of the literature was performed on PubMed, Scopus, and Cochrane on clinical studies on orthobiologic therapies used alone or as an augmentation to core decompression or other procedures to address hip AVN. A qualitative analysis of the different biological therapies applied was performed. Afterward, the results of these procedures were quantitatively analysed to document their survivorship from THA compared to treatment groups without orthobiologics. Kaplan-Meier analysis was performed for all studies and then by categorising orthobiologics into treatment subgroups. RESULTS A total of 106 studies were included (4505 patients). Different orthobiologic approaches have been evaluated: cell-based therapies including bone marrow aspirate concentrate (BMAC) and bone marrow mesenchymal stromal cells (BM-MSCs), platelet-rich plasma (PRP), or other bioactive molecules applied in the osteonecrotic area or as intra-arterial injections. The survival analysis at 120 months documented a higher (p < 0.0005) cumulative survivorship with orthobiologics (69.4%) compared to controls (48.5%). The superiority was shown specifically for BMAC (p < 0.0005), BM-MSCs (p < 0.0005), intra-arterial (p < 0.0005) and PRP (p = 0.011) approaches, but the direct comparison of these approaches with their controls confirmed benefits only for BMAC (p < 0.0005). CONCLUSION This systematic review and survival analysis demonstrated that orthobiologics have the potential to improve survivorship in patients affected by hip AVN. In particular, the specific analysis of different orthobiologic products supported relevant benefits for BMAC augmentation in terms of survival from the need for THA, while no clear benefits were confirmed for other orthobiologics. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Marco Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Federico Raggi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of SurgeryEOC, Service of Orthopaedics and TraumatologyLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità Della Svizzera ItalianaLuganoSwitzerland
| |
Collapse
|
4
|
Liu L, Chen S, Song Y, Cui L, Chen Y, Xia J, Fan Y, Yang L, Yang L. Hydrogels empowered mesenchymal stem cells and the derived exosomes for regenerative medicine in age-related musculoskeletal diseases. Pharmacol Res 2025; 213:107618. [PMID: 39892438 DOI: 10.1016/j.phrs.2025.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
As the population ages, musculoskeletal diseases (MSK) have emerged as a significant burden for individuals, healthcare systems, and social care systems. Recently, regenerative medicine has exhibited vast potential in age-related MSK, with mesenchymal stromal cells (MSCs) and their derived exosomes (Exos) therapies showing distinct advantages. However, these therapies face several limitations, including issues related to ensuring stability and effective distribution within the body. Hydrogels, acting as an ideal carrier, can enhance the therapeutic effects and application range of MSCs and Exos derived from MSCs (MSC-Exos). Therefore, this review comprehensively summarizes the application progress of MSCs and MSC-Exos combined with hydrogels in age-related MSK disease research. It aims to provide a detailed perspective, showcasing the functional enhancement of MSCs and MSC-Exos when incorporated into hydrogels. Additionally, this review explores their potential and challenges in treating age-related MSK diseases, offering references for future research directions and potential innovative strategies.
Collapse
Affiliation(s)
- Lixin Liu
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, PR China
| | - Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jiangli Xia
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, PR China
| | - Yibo Fan
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
5
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
7
|
O’Shea TC, Croland KJ, Salem A, Urbanski R, Schultz KM. A Rheological Study on the Effect of Tethering Pro- and Anti-Inflammatory Cytokines into Hydrogels on Human Mesenchymal Stem Cell Migration, Degradation, and Morphology. Biomacromolecules 2024; 25:5121-5137. [PMID: 38961715 PMCID: PMC11956429 DOI: 10.1021/acs.biomac.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Polymer-peptide hydrogels are being designed as implantable materials that deliver human mesenchymal stem cells (hMSCs) to treat wounds. Most wounds can progress through the healing process without intervention. During the normal healing process, cytokines are released from the wound to create a concentration gradient, which causes directed cell migration from the native niche to the wound site. Our work takes inspiration from this process and uniformly tethers cytokines into the scaffold to measure changes in cell-mediated degradation and motility. This is the first step in designing cytokine concentration gradients into the material to direct cell migration. We measure changes in rheological properties, encapsulated cell-mediated pericellular degradation and migration in a hydrogel scaffold with covalently tethered cytokines, either tumor necrosis factor-α (TNF-α) or transforming growth factor-β (TGF-β). TNF-α is expressed in early stages of wound healing causing an inflammatory response. TGF-β is released in later stages of wound healing causing an anti-inflammatory response in the surrounding tissue. Both cytokines cause directed cell migration. We measure no statistically significant difference in modulus or the critical relaxation exponent when tethering either cytokine in the polymeric network without encapsulated hMSCs. This indicates that the scaffold structure and rheology is unchanged by the addition of tethered cytokines. Increases in hMSC motility, morphology and cell-mediated degradation are measured using a combination of multiple particle tracking microrheology (MPT) and live-cell imaging in hydrogels with tethered cytokines. We measure that tethering TNF-α into the hydrogel increases cellular remodeling on earlier days postencapsulation and tethering TGF-β into the scaffold increases cellular remodeling on later days. We measure tethering either TGF-β or TNF-α enhances cell stretching and, subsequently, migration. This work provides rheological characterization that can be used to design new materials that present chemical cues in the pericellular region to direct cell migration.
Collapse
Affiliation(s)
- Thomas C. O’Shea
- Purdue University, Davidson School of Chemical Engineering, West Lafayette, Indiana 47907, United States
| | - Kiera J. Croland
- University of Colorado at Boulder, Department of Chemical and Biological Engineering, Boulder, Colorado 80303, United States
| | - Ahmad Salem
- Lehigh University, Department of Chemical and Biomolecular Engineering, Bethlehem, Pennsylvania 18015, United States
| | - Rylie Urbanski
- Lehigh University, Department of Chemical and Biomolecular Engineering, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M. Schultz
- Purdue University, Davidson School of Chemical Engineering, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Zhu X, Liu H, Mei C, Chen F, Guo M, Wei C, Wang D, Luo M, Hu X, Zhao Y, Hao F, Shi C, Li W. A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2024; 160:213848. [PMID: 38581745 DOI: 10.1016/j.bioadv.2024.213848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Tissue engineering shows promise in repairing extensive bone defects. The promotion of proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by biological scaffolds has a significant impact on bone regeneration outcomes. In this study we used an injectable hydrogel, known as aminated mesoporous silica gel composite hydrogel (MSNs-NH2@GelMA), loaded with a natural drug, processed pyritum (PP), to promote healing of bone defects. The mechanical properties of the composite hydrogel were significantly superior to those of the blank hydrogel. In vitro experiments revealed that the composite hydrogel stimulated the osteogenic differentiation of BMSCs, and significantly increased the expression of type I collagen (Col 1), runt-related transcription factor 2 (Runx 2), alkaline phosphatase (ALP), osteocalcin (OCN). In vivo experiments showed that the composite hydrogel promoted the generation of new bones. These findings provide evidence that the composite hydrogel pyritum-loaded holds promise as a biomaterial for bone repair.
Collapse
Affiliation(s)
- Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China; Jiangsu College of Nursing, Huai'an 223001, China
| | - Huanjin Liu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Changzhou 213003, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fugui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Chenxu Wei
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Jiangyin, 214400, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100000, China
| | - Meimei Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Xiaofang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Yuwei Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fangyu Hao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Changcan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| |
Collapse
|