1
|
Zhang B, Li Y, Wu K, Wei L, Chen Y, Zhang Y, Ren Y, Zou T, Yu P, Ma H, Chen R, Liu X, Cheng Y. Okra juice used for rapid wound healing through its bioadhesive and antioxidant capabilities. Mater Today Bio 2025; 31:101495. [PMID: 39896277 PMCID: PMC11787035 DOI: 10.1016/j.mtbio.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Rapid wound healing is of great importance as it plays a crucial role in the body's response to injury or trauma. Biological adhesives are generally easy to apply, allowing for quick and efficient wound closure. In this study, we develop a natural biological adhesive derived from okra juice through a simple and environmentally friendly producing process. The strongest adhesion ability of this bioadhesive to wet tissue was 5.51 kPa, the ability to inhibit 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl radical, superoxide radical, hydroxyl radical, and hydrogen peroxide was 56.58 %, 49.94 %, 53.86 %, and 52.89 %, respectively, and the ability to promote cell proliferation was 181.46 %. The levels of pro-inflammatory tumor necrosis factor alpha (33.17 %) and Interleukin-6 (46.73 %) were significantly reduced. Both in vitro and in vivo evaluations indicate that it can effectively accelerate the healing process by sealing the wound, improving epithelial regeneration and angiogenesis, and alleviating inflammation. In addition, it has improved biocompatibility compared to commercial medical glue. Based on the favorable properties of the natural source, simple production process, and inherent nontoxicity, it shows potential as a medical bioadhesive for surgical procedures and emergency wound treatment.
Collapse
Affiliation(s)
- Biao Zhang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yuanqiang Li
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Kaijie Wu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Liqi Wei
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yining Chen
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yuan Zhang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yiping Ren
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Tianshu Zou
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Pengcheng Yu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun, 130022, PR China
| | - Hongxia Ma
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Rui Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun, 130022, PR China
| | - Xin Liu
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yan Cheng
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| |
Collapse
|
2
|
Zhang Y, Wei X, Xu Y, Xia W, Zheng C, Zhang H, Chen W, Xu K, Huang Q. Zinc sulfate gel reshapes the wound microenvironment to promote full-thickness wound healing in mice. Regen Ther 2025; 28:582-590. [PMID: 40034541 PMCID: PMC11872640 DOI: 10.1016/j.reth.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Delayed healing of skin wounds significantly impacts human life, Zinc plays a pivotal role in human growth, the immune system, and various cellular processes. Previous studies have demonstrated that zinc supplementation or topical zinc ion therapy can accelerate wound healing in cases of skin injury. Zinc deficiency has been linked to delayed wound healing, but the role it plays remains to be elucidated. In this study, we report the preparation of zinc sulfate gel to promote wound healing by treating inflammation, antioxidant effects, and angiogenesis. We demonstrated the efficacy of zinc sulfate gel in wound healing in a mouse model of full-thickness skin excision, spared the anti-inflammatory and antioxidant capabilities of zinc ions. Furthermore, Zinc sulfate gel can stimulate tissue to enter the proliferative phase by regulating macrophage polarization, thereby accelerating collagen deposition, granulation tissue formation, and extracellular matrix production and remodeling. In conclusion, zinc ion gel provides a promising strategy for skin wounds regeneration.
Collapse
Affiliation(s)
- Ying Zhang
- The Third People's Hospital Health Care Group of Cixi, Ningbo, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xuebo Wei
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Weidong Xia
- National Key Clinical Specialty (Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ChaoYu Zheng
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Weiting Chen
- The Third People's Hospital Health Care Group of Cixi, Ningbo, China
| | - Ke Xu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Qun Huang
- The Third People's Hospital Health Care Group of Cixi, Ningbo, China
| |
Collapse
|
3
|
Wang J, Zhao W, Tu H, Zu X, Li J, Lei K, Li J, Zhuang Y, Dong Y, Tulupov A, Zhang F, Bao J. Copper doped magnetic vortex nanoring based nanotherapeutics for bacterial infection tri-therapy: interplay of magnetic hyperthermia, chemodynamic therapy and photothermal therapy. NANOSCALE 2025; 17:3421-3435. [PMID: 39711063 DOI: 10.1039/d4nr03799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity. Exposure to an alternating magnetic field (AMF) and near-infrared (NIR) light allows the nanoring to elevate environmental temperatures through hysteresis losses and the non-radiative decay effects of the PDA coating. At a concentration of 150 μg mL-1, Cu-MVNp increases the temperature by 18.2 °C under an AMF, achieving a specific absorption rate (SAR) of 640.9 W g-1. On the other hand, under 808 nm NIR irradiation, the temperature rises by 42.6 °C, with a photothermal conversion efficiency of 46.45%. Furthermore, by incorporating copper ions (Cu), which can damage cell membranes themselves, Cu-MVNp was endowed with Fenton-like functions and can catalyze the formation of hydroxyl radicals (˙OH) from low concentrations (1 mM) of hydrogen peroxide (H2O2), thus enhancing the effectiveness of chemodynamic therapy (CDT). Cu-MVNp exhibits significant antibacterial efficacy, achieving notable kill rates against E. coli and S. aureus, with enhanced effects under NIR and nearly complete eradication with an AMF. In vivo tests using a mouse wound model confirm its potent bactericidal properties and good biocompatibility. The Cu-MVNp nanoring shows promise as an antibacterial treatment, potentially effective at inhibiting bacterial growth.
Collapse
Affiliation(s)
- Jing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Wenqian Zhao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Hui Tu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Xiangyang Zu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Jing Li
- Office of Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Yanbo Dong
- Faculty of Teacher Education, Pingdingshan University, Pingdingshan, Henan, 467000, People's Republic of China
| | - Andrey Tulupov
- Laboratory of MRT Technologies, The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090, Novosibirsk, Russia
| | - Fengshou Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| | - Jianfeng Bao
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
| |
Collapse
|
4
|
Ge H, Wang M, Wei X, Chen XL, Wang X. Copper-Based Nanozymes: Potential Therapies for Infectious Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407195. [PMID: 39757568 DOI: 10.1002/smll.202407195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Indexed: 01/07/2025]
Abstract
Bacterial infections are a significant obstacle to the healing of acute and chronic wounds, such as diabetic ulcers and burn injuries. Traditional antibiotics are the primary treatment for bacterial infections, but they present issues such as antibiotic resistance, limited efficacy, and potential side effects. This challenge leads to the exploration of nanozymes as alternative therapeutic agents. Nanozymes are nanomaterials with enzyme-like activities. Owing to their low production costs, high stability, scalability, and multifunctionality, nanozymes have emerged as a prominent focus in antimicrobial research. Among various types of nanozymes, metal-based nanozymes offer several benefits, including broad-spectrum antimicrobial activity and robust catalytic properties. Specifically, copper-based nanozymes (CuNZs) have shown considerable potential in promoting wound healing. They exhibit strong antimicrobial effects, reduce inflammation, and enhance tissue regeneration, making them highly advantageous for use in wound care. This review describes the dual functions of CuNZs in combating infection and facilitating wound repair. Recent advancements in the design and synthesis of CuNZs, evaluating their antimicrobial efficacy, healing promotion, and biosafety both in vitro and in vivo on the basis of their core components, are critically important.
Collapse
Affiliation(s)
- Haojie Ge
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xiaolong Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xianwen Wang
- Department of Burns, The First Hospital Affiliated of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
5
|
Zhang Y, Zhang N, Xing J, Sun Y, Jin X, Shen C, Cheng L, Wang Y, Wang X. In situ hydrogel based on Cu-Fe 3O 4 nanoclusters exploits oxidative stress and the ferroptosis/cuproptosis pathway for chemodynamic therapy. Biomaterials 2024; 311:122675. [PMID: 38943822 DOI: 10.1016/j.biomaterials.2024.122675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Chemodynamic therapy (CDT) involving the use of metal nanozymes presents new opportunities for the treatment of deep-seated tumors. However, the lower ROS catalytic rate and dependence on high H2O2 concentrations affect therapeutic efficacy. To address this issue, a hydrogel was constructed for the treatment of osteosarcoma by combining Cu-Fe3O4 nanozymes (NCs) and artemisinin (AS) coencapsulated in situ with sodium alginate (ALG) and calcium ions. This hydrogel can release nanoparticles and AS within tumor tissue for an extended period of time, utilizing the multienzyme activity of NCs to achieve ROS accumulation. The carbon radicals (•C) generated from the interaction of Fe2+/Cu2+ with AS amplify oxidative stress, leading to tumor cell damage. Simultaneously, the NCs activate ferroptosis via the GPX4 pathway by depleting GSH and activate cuproptosis via the DLAT pathway by causing intracellular copper overload, enhancing therapeutic efficacy. In vitro experiments confirmed that the NCs-AS-ALG hydrogel has an excellent tumor cell killing effect, while in vivo experimental results demonstrated that it can effectively eliminate tumors with excellent biocompatibility, providing a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, PR China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Yiwei Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Xu Jin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, PR China
| | - Yuanyin Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, PR China.
| | - Xianwen Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
6
|
Pan Y, Sun D, Kong L, Liu Y, Li H, Yu D, Jiang W, Zhan J. Self-adaptive carbon nanozyme regulation of ROS balance for bacteria-infected wound therapy. CHEMICAL ENGINEERING JOURNAL 2024; 499:155904. [DOI: 10.1016/j.cej.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Zhang Y, Wu D, Zhou C, Bai M, Wan Y, Zheng Q, Fan Z, Wang X, Yang C. Engineered extracellular vesicles for tissue repair and regeneration. BURNS & TRAUMA 2024; 12:tkae062. [PMID: 39439545 PMCID: PMC11495891 DOI: 10.1093/burnst/tkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-like vesicles secreted by living cells that are involved in many physiological and pathological processes and act as intermediaries of intercellular communication and molecular transfer. Recent studies have shown that EVs from specific sources regulate tissue repair and regeneration by delivering proteins, lipids, and nucleic acids to target cells as signaling molecules. Nanotechnology breakthroughs have facilitated the development and exploration of engineered EVs for tissue repair. Enhancements through gene editing, surface modification, and content modification have further improved their therapeutic efficacy. This review summarizes the potential of EVs in tissue repair and regeneration, their mechanisms of action, and their research progress in regenerative medicine. This review highlights their design logic through typical examples and explores the development prospects of EVs in tissue repair. The aim of this review is to provide new insights into the design of EVs for tissue repair and regeneration applications, thereby expanding their use in regenerative medicine.
Collapse
Affiliation(s)
- Yan Zhang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
- School of Public Health, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Dan Wu
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Chen Zhou
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025 Shennan Middle Road, Futian District, Shenzhen, China
| | - Muran Bai
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Yucheng Wan
- Hospital of Stomatology, Zunyi Medical University, No. 89, Wujiang East Road, Xinpu New District, Zunyi City, Guizhou Province, China
| | - Qing Zheng
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, No. 1168 Chunrong West Road, Yuhua Street, Chenggong District, Kunming City, Yunnan Province China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No.81 Meishan Road, Shushan District, Hefei 230032, China
| | - Chun Yang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| |
Collapse
|
8
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
9
|
Lou C, Zhu L, Yang F. NH 2-MIL-88B@TP-TA@CuS for photothermal catalytic synergistic antibacterial activity. Colloids Surf B Biointerfaces 2024; 242:114094. [PMID: 39047641 DOI: 10.1016/j.colsurfb.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Reactive oxygen species (ROS) provide a promising way to fight bacterial infection and meet the persistent challenge of antibiotic resistance. Nanoenzyme mimics natural enzyme and becomes an effective regulator of ROS level. In this study, NH2-MIL-88B with high specific surface area was selected as the core, and the covalent organic skeleton material TP-TA COF was wrapped by "sequential growth" technology. Subsequently, through the second hydrothermal treatment, the inorganic material CuS with excellent photothermal performance was integrated into the outer layer, and the NH2-MIL-88B@TP-TA@CuSX composite nanoenzyme was synthesized. Different from the traditional nano-enzyme, NH2-MIL-88B@TP-TA@CuSX nano-enzyme still has good catalytic effect under neutral conditions (pH=7). In addition, NH2-MIL-88B@TP-TA@CuSX has good near infrared (NIR) absorption rate and high photothermal conversion efficiency (PTCE is 48.7 %), which can be used for photothermal treatment (PTT) of bacteria. Mild photothermal effect can further enhance the enzyme-like catalytic activity of NH2-MIL-88B@TP-TA@CuSX, so that H2O2 can be more efficiently catalyzed to produce a large number of ROS. The experimental results in vitro show that NH2-MIL-88B@TP-TA@CuSX can effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in the presence of laser irradiation and H2O2.
Collapse
Affiliation(s)
- Congcong Lou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250000, China
| | - Liqin Zhu
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250000, China
| | - Fei Yang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250000, China.
| |
Collapse
|
10
|
Zhao K, Zhao Y, Wang Y, Han B, Lian M. Progress in antibacterial applications of nanozymes. Front Chem 2024; 12:1478273. [PMID: 39376729 PMCID: PMC11456495 DOI: 10.3389/fchem.2024.1478273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial infections are a growing problem, and antibiotic drugs can be widely used to fight bacterial infections. However, the overuse of antibiotics and the evolution of bacteria have led to the emergence of drug-resistant bacteria, severely reducing the effectiveness of treatment. Therefore, it is very important to develop new effective antibacterial strategies to fight multi-drug resistant bacteria. Nanozyme is a kind of enzyme-like catalytic nanomaterials with unique physical and chemical properties, high stability, structural diversity, adjustable catalytic activity, low cost, easy storage and so on. In addition, nanozymes also have excellent broad-spectrum antibacterial properties and good biocompatibility, showing broad application prospects in the field of antibacterial. In this paper, we reviewed the research progress of antibacterial application of nanozymes. At first, the antibacterial mechanism of nanozymes was summarized, and then the application of nanozymes in antibacterial was introduced. Finally, the challenges of the application of antibacterial nanozymes were discussed, and the development prospect of antibacterial nanozymes was clarified.
Collapse
Affiliation(s)
- Keyuan Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Yuwei Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin, China
| | - Bo Han
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
11
|
Upadhyay A, Pal D, Kumar A. Combinatorial therapeutic enzymes to combat multidrug resistance in bacteria. Life Sci 2024; 353:122920. [PMID: 39047898 DOI: 10.1016/j.lfs.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
AIMS Antibiotic resistance including multidrug resistance (MDR) is a negative symbol to the human health system because it loses the capability to treat infections. Unfortunately, the available antibiotics do not show an effective therapeutic response against bacterial infections. In the situation of global antibiotic unresponsiveness, enzymatic therapy especially in combinatorial form seems an effective approach to control bacterial infection and combat resistance. The article is important because it focuses on combinatorial enzymatic therapy that has multiple properties (effective antibacterial performances, antibiofilm capacity, immunomodulators, targeted actions, synergistic actions, multiple targeting, and resistance-proof properties) and can address antibiotic resistance effectively. MATERIALS AND METHODS We searched the related topics with Pubmed, Scopus, and Google Scholar databases and finally 73 relevant papers were reviewed in detail and cited in this article. KEY FINDINGS Discusses properties of combinatorial therapeutic enzymes made it an accomplished means over antibiotic therapy. This article discusses the need for combinatorial enzymatic therapy against bacterial infection, its distinguished features, and properties with multi-mechanistic antibacterial action. It discussed the European Medicine Agency and Food and Drug Administration-approved therapeutic enzymes (antibacterial and antibiofilm). SIGNIFICANCE This article provided the possible combination of the enzyme that may be used as an antibacterial agent along with limitations and future scope of combinatorial antibacterial enzymatic agents. This article could draw the attention of researchers to combinatorial therapeutic enzymatic molecules as effective and futuristic therapy to overcome the problem of multiple antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
12
|
Zhou C, Wang Q, Cao H, Jiang J, Gao L. Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403362. [PMID: 38874860 DOI: 10.1002/adma.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Infectious diseases caused by bacterial, viral, and fungal pathogens present significant global health challenges. The rapid emergence of antimicrobial resistance exacerbates this issue, leading to a scenario where effective antibiotics are increasingly scarce. Traditional antibiotic development strategies are proving inadequate against the swift evolution of microbial resistance. Therefore, there is an urgent need to develop novel antimicrobial strategies with mechanisms distinct from those of existing antibiotics. Nanozybiotics, which are nanozyme-based antimicrobials, mimic the catalytic action of lysosomal enzymes in innate immune cells to kill infectious pathogens. This review reinforces the concept of nanozymes and provides a comprehensive summary of recent research advancements on potential antimicrobial candidates. Initially, nanozybiotics are categorized based on their activities, mimicking either oxidoreductase-like or hydrolase-like functions, thereby highlighting their superior mechanisms in combating antimicrobial resistance. The review then discusses the progress of nanozybiotics in treating bacterial, viral, and fungal infections, confirming their potential as novel antimicrobial candidates. The translational potential of nanozybiotic-based products, including hydrogels, nanorobots, sprays, bandages, masks, and protective clothing, is also considered. Finally, the current challenges and future prospects of nanozybiotic-related products are explored, emphasizing the design and antimicrobial capabilities of nanozybiotics for future applications.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| |
Collapse
|
13
|
He M, Wang Z, Xiang D, Sun D, Chan YK, Ren H, Lin Z, Yin G, Deng Y, Yang W. A H₂S-Evolving Alternately-Catalytic Enzyme Bio-Heterojunction with Antibacterial and Macrophage-Reprogramming Activity for All-Stage Infectious Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405659. [PMID: 38943427 DOI: 10.1002/adma.202405659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The disorder of the macrophage phenotype and the hostile by-product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)-evolving alternately catalytic bio-heterojunction enzyme (AC-BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC-BioHJzyme exhibits circular enzyme-mimetic antibacterial (EMA) activity and macrophage re-rousing capability, which can be activated by near-infrared-II (NIR-II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase-mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx-mimetic activity endows AC-BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT-mimetic activity can generate 1O2 under the NIR-II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC-BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme-mimetic antibiosis and macrophage re-rousing.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuyao Wang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Department Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Yau Kai Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Huilin Ren
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhijie Lin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Deaconu M, Prelipcean AM, Brezoiu AM, Mitran RA, Seciu-Grama AM, Matei C, Berger D. Design of Scaffolds Based on Zinc-Modified Marine Collagen and Bilberry Leaves Extract-Loaded Silica Nanoparticles as Wound Dressings. Int J Nanomedicine 2024; 19:7673-7689. [PMID: 39099793 PMCID: PMC11296363 DOI: 10.2147/ijn.s466905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well. Methods Wild bilberry leaves extract was prepared by ultrasound-assisted extraction in ethanol and its properties were evaluated by UV-Vis spectroscopy (radical scavenging activity, total amount of polyphenols, flavonoids, anthocyanins, and condensed tannins). The extract components were identified by HPLC, and the antidiabetic properties of the extract were evaluated via α-glucosidase inhibitory activity. Spherical MSN were modified with propionic acid or proline moieties by post-synthesis method and used as carriers for the WB leaves extract. The textural and structural features of functionalized MSN were assessed by nitrogen adsorption/desorption isotherms, small-angle XRD, SEM, TEM, and FTIR spectroscopy. The composite porous scaffolds were prepared by freeze drying of the zinc-modified collagen suspension containing WB extract loaded silica nanoparticles. Results The properties of the new composites demonstrated enhanced properties in terms of thermal stability of the zinc-collagen scaffold, without altering the protein conformation, and stimulation of NCTC fibroblasts mobility. The results of the scratch assay showed contributions of both zinc ions from collagen and the polyphenolic extract incorporated in functionalized silica in the wound healing process. The extract encapsulated in functionalized MSN proved enhanced biological activities compared to the extract alone: better inhibition of P. aeruginosa and S. aureus strains, higher biocompatibility on HaCaT keratinocytes, and anti-inflammatory potential demonstrated by reduced IL-1β and TNF-α levels. Conclusion The experimental data shows that the novel composites can be used for the development of effective wound dressings.
Collapse
Affiliation(s)
- Mihaela Deaconu
- CAMPUS Research Institute, National University of Science and Technology Politehnica Bucharest, Bucharest, 060042, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | | | - Ana-Maria Brezoiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | - Raul-Augustin Mitran
- ‘Ilie Murgulescu’ Institute of Physical Chemistry, Romanian Academy, Bucharest, 060021, Romania
| | - Ana-Maria Seciu-Grama
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | - Cristian Matei
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| |
Collapse
|
15
|
Yu Y, Li X, Ying Q, Zhang Z, Liu W, Su J. Synergistic Effects of Shed-Derived Exosomes, Cu 2+, and an Injectable Hyaluronic Acid Hydrogel on Antibacterial, Anti-inflammatory, and Osteogenic Activity for Periodontal Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33053-33069. [PMID: 38899855 DOI: 10.1021/acsami.4c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.
Collapse
Affiliation(s)
- Yiqiang Yu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Xuejing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Qiao Ying
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Zhanwei Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| |
Collapse
|
16
|
Zhao X, Chen Z, Zhang S, Hu Z, Shan J, Wang M, Chen XL, Wang X. Application of metal-organic frameworks in infectious wound healing. J Nanobiotechnology 2024; 22:387. [PMID: 38951841 PMCID: PMC11218092 DOI: 10.1186/s12951-024-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.
| |
Collapse
|
17
|
Li A, Zhang Y, Wan L, Peng R, Zhang X, Guo Q, Xu S, Qiao D, Zheng P, Li N, Zhu W, Pan Q. Coordination-Driven Self-Assembly of Metal Ion-Antisense Oligonucleotide Nanohybrids for Chronic Bacterial Infection Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28041-28055. [PMID: 38767982 DOI: 10.1021/acsami.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacterial infection poses a significant challenge to wound healing and skin regeneration, leading to substantial economic burdens on patients and society. Therefore, it is crucial to promptly explore and develop effective methodologies for bacterial infections. Herein, we propose a novel approach for synthesizing nanostructures based on antisense oligonucleotides (ASOs) through the coordination-driven self-assembly of Zn2+ with ASO molecules. This approach aims to provide effective synergistic therapy for chronic wound infections caused by Staphylococcus aureus (S. aureus). The resulting hybrid nanoparticles successfully preserve the structural integrity and biological functionalities of ASOs, demonstrating excellent ASO encapsulation efficiency and bioaccessibility. In vitro antibacterial experiments reveal that Zn-ASO NPs exhibit antimicrobial properties against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. This antibacterial ability is attributed to the high concentration of metal zinc ions and the generation of high levels of reactive oxygen species. Additionally, the ftsZ-ASO effectively inhibits the expression of the ftsZ gene, further enhancing the antimicrobial effect. In vivo antibacterial assays demonstrate that the Zn-ASO NPs promote optimal skin wound healing and exhibit favorable biocompatibility against S. aureus infections, resulting in a residual infected area of less than 8%. This combined antibacterial strategy, which integrates antisense gene therapy and metal-coordination-directed self-assembly, not only achieves synergistic and augmented antibacterial outcomes but also expands the horizons of ASO coordination chemistry. Moreover, it addresses the gap in the antimicrobial application of metal-coordination ASO self-assembly, thereby advancing the field of ASO-based therapeutic approaches.
Collapse
Affiliation(s)
- Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Rujue Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Na Li
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|