1
|
Yan Y, Yu H, Sun L, Liu H, Wang C, Wei X, Song F, Li H, Ge H, Qian H, Li X, Tang X, Liu P. Laminin α4 overexpression in the anterior lens capsule may contribute to the senescence of human lens epithelial cells in age-related cataract. Aging (Albany NY) 2020; 11:2699-2723. [PMID: 31076560 PMCID: PMC6535067 DOI: 10.18632/aging.101943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/27/2019] [Indexed: 12/16/2022]
Abstract
Senescence is a leading cause of age-related cataract (ARC). The current study indicated that the senescence-associated protein, p53, total laminin (LM), LMα4, and transforming growth factor-beta1 (TGF-β1) in the cataractous anterior lens capsules (ALCs) increase with the grades of ARC. In cataractous ALCs, patient age, total LM, LMα4, TGF-β1, were all positively correlated with p53. In lens epithelial cell (HLE B-3) senescence models, matrix metalloproteinase-9 (MMP-9) alleviated senescence by decreasing the expression of total LM and LMα4; TGF-β1 induced senescence by increasing the expression of total LM and LMα4. Furthermore, MMP-9 silencing increased p-p38 and LMα4 expression; anti-LMα4 globular domain antibody alleviated senescence by decreasing the expression of p-p38 and LMα4; pharmacological inhibition of p38 MAPK signaling alleviated senescence by decreasing the expression of LMα4. Finally, in cataractous ALCs, positive correlations were found between LMα4 and total LM, as well as between LMα4 and TGF-β1. Taken together, our results implied that the elevated LMα4, which was possibly caused by the decreased MMP-9, increased TGF-β1 and activated p38 MAPK signaling during senescence, leading to the development of ARC. LMα4 and its regulatory factors show potential as targets for drug development for prevention and treatment of ARC.
Collapse
Affiliation(s)
- Yu Yan
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Haiyang Yu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Liyao Sun
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hanruo Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing, 100000, China
| | - Chao Wang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xi Wei
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Fanqian Song
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Hulun Li
- Department of Neurobiology, Neurobiology Key Laboratory, Harbin Medical University, Harbin, 150081, China
| | - Hongyan Ge
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Hua Qian
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xiaoguang Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, and Heilongjiang Academy of Medical Sciences, Harbin, 150081, China
| | - Xianling Tang
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
2
|
Tajiri M, Nakahashi O, Kagawa T, Masuda M, Ohminami H, Iwano M, Takeda E, Taketani Y, Yamamoto H. Association of increased renal Cyp24a1 gene expression with low plasma 1,25-dihydroxyvitamin D levels in rats with streptozotocin-induced diabetes. J Clin Biochem Nutr 2020; 66:49-56. [PMID: 32001956 PMCID: PMC6983441 DOI: 10.3164/jcbn.19-79] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Decreases in plasma vitamin D concentrations have been reported in diabetes, although the mechanism involved in this decrease is unclear. Here, we investigated the association between Cyp24a1, a vitamin D catabolic enzyme, and abnormalities in vitamin D metabolism in streptozotocin-induced diabetes rats, an animal model of type 1 diabetes. Plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels were significantly lower in streptozotocin-induced diabetes rats and renal Cyp24a1 mRNA expression levels were increased. Western blotting analysis of streptozotocin-induced diabetes rats kidney tissues with anti-CYP24A1 antibody showed a strong signal around 40 kDa, which differs from the predicted 50–55 kDa molecular weight for full-length Cyp24a1 and could represent the Cyp24a1-splicing variant that lacks exons 1 and 2. We observed high levels of renal Cyp24a1-splicing variant mRNA expression in streptozotocin-induced diabetes rats. We also confirmed transcriptional up-regulation of endogenous Cyp24a1 mRNA expression through glucocorticoid receptors by glucocorticoid in opossum kidney proximal cells. Taken together, our results indicated that high Cyp24a1 expression levels may play a role in the decrease of plasma 1,25(OH)2D levels in streptozotocin-induced diabetes rats. High plasma corticosterone levels in diabetes may affect transcriptional regulation to promote increases in Cyp24a1 expression.
Collapse
Affiliation(s)
- Mari Tajiri
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Otoki Nakahashi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Division of Functional Food Chemistry, Institute for Health Science, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Tomohiro Kagawa
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka, Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Eiji Takeda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.,Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka, Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan.,Department of Health and Nutrition, Faculty of Human Life, Jin-ai University, 3-1-1 Ohde-cho, Echizen-city, Fukui 915-8586, Japan
| |
Collapse
|
3
|
Filipović N, Bočina I, Restović I, Grobe M, Kretzschmar G, Kević N, Mašek T, Vitlov Uljević M, Jurić M, Vukojević K, Saraga-Babić M, Vuica A. Ultrastructural characterization of vitamin D receptors and metabolizing enzymes in the lipid droplets of the fatty liver in rat. Acta Histochem 2020; 122:151502. [PMID: 31932064 DOI: 10.1016/j.acthis.2020.151502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023]
Abstract
Vitamin D is a steroid hormone with numerous actions in the organism. There are strong evidences that relate vitamin D deficiency with liver lipid metabolism disturbances, but the mechanism of this action is still unknown. In our previous work we postulated the localization and accumulation of vitamin D receptor (VDR) in membrane of the lipid droplets (LDs) in hepatocytes. In this study, we applied the transmission electron microscopy (TEM) to confirm this hypothesis by using a long-term (6 months) high sucrose intake rat model that was previously found to be appropriate for research of the hepatic lipid accumulation. In addition to the VDR, we also found key vitamin D metabolizing enzymes, 1α-hydroxylase and CYP 24 associated with the membrane of the LDs. A light-microscopy data revealed significant increase in expression of VDR and CYP 24 in liver of high-sucrose treated rats, in comparison to controlones. According to the best of our knowledge, this is a first study confirming the presence of the VDR in the membrane of the LDs in general and also in particular in LDs of the hepatocytes that were accumulated as a consequence of the prolonged high sucrose intake. Moreover, we found association of main vitamin D metabolizing enzymes with LD membrane. These results provide a new insight in the possible relation of vitamin D signalling system with LD morphology and function and with the lipid metabolism in general.
Collapse
|
4
|
Lee SM, Lee MH, Son YK, Kim SE, An WS. Combined Treatment with Omega-3 Fatty Acid and Cholecalciferol Increases 1,25-Dihydroxyvitamin D Levels by Modulating Dysregulation of Vitamin D Metabolism in 5/6 Nephrectomy Rats. Nutrients 2019; 11:nu11122903. [PMID: 31805709 PMCID: PMC6950759 DOI: 10.3390/nu11122903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
The protein 1α-hydroxylase (CYP27B1) was expressed in liver and omega-3 fatty acid (FA) elevated 1,25-dihydroxyvitamin D [1,25(OH)2D] levels in dialysis patients. The aim of this study was to determine whether omega-3 FA and cholecalciferol have effects on vitamin D metabolism related to CYP27B1 and 24-hydroxylase (CYP24) activities in the kidney and liver of 5/6 nephrectomy (Nx) rats. Male Sprague–Dawley rats were divided into the following groups: sham control, 5/6 Nx, 5/6 Nx treated with cholecalciferol, 5/6 Nx treated with omega-3 FA, and 5/6 Nx treated with cholecalciferol/omega-3 FA. CYP27B1 and CYP24 expression were measured in the liver and kidney. Further, 1,25(OH)2D and 25-hydroxyvitamin D [25(OH)D] levels were measured in serum. Among Nx groups, 1,25(OH)2D and 25(OH)D levels were lowest in the 5/6 Nx group. CYP24 expression was increased in the kidney of the 5/6 Nx rat model, which was found to be reversed by omega-3 FA or cholecalciferol/omega-3 FA supplementation. Decreased CYP27B1 expression was observed in the liver of the 5/6 Nx rats and its expression was recovered by supplementation with cholecalciferol/omega-3 FA. In conclusion, omega-3 FA and cholecalciferol may synergistically increase 1,25(OH)2D levels by inhibiting CYP24 expression in the kidney and liver and activating CYP27B1 expression in the liver of 5/6 Nx rats.
Collapse
Affiliation(s)
- Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University, Busan 49201, Korea;
| | - Young Ki Son
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| | - Seong Eun Kim
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea; (S.M.L.); (Y.K.S.); (S.E.K.)
- Correspondence: ; Tel.: +82-51-240-2811; Fax: +82-51-242-5852
| |
Collapse
|
5
|
Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-β1 Impairs Vitamin D-Induced and Constitutive Airway Epithelial Host Defense Mechanisms. J Innate Immun 2019; 12:74-89. [PMID: 30970352 DOI: 10.1159/000497415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Airway epithelium is an important site for local vitamin D (VD) metabolism; this can be negatively affected by inflammatory mediators. VD is an important regulator of respiratory host defense, for example, by increasing the expression of hCAP18/LL-37. TGF-β1 is increased in chronic obstructive pulmonary disease (COPD), and known to decrease the expression of constitutive host defense mediators such as secretory leukocyte protease inhibitor (SLPI) and polymeric immunoglobulin receptor (pIgR). VD has been shown to affect TGF-β1-signaling by inhibiting TGF-β1-induced epithelial-to-mesenchymal transition. However, interactions between VD and TGF-β1, relevant for the understanding host defense in COPD, are incompletely understood. Therefore, the aim of the present study was to investigate the combined effects of VD and TGF-β1 on airway epithelial cell host defense mechanisms. Exposure to TGF-β1 reduced both baseline and VD-induced expression of hCAP18/LL-37, partly by increasing the expression of the VD-degrading enzyme CYP24A1. TGF-β1 alone decreased the number of secretory club and goblet cells and reduced the expression of constitutive host defense mediators SLPI, s/lPLUNC and pIgR, effects that were not modulated by VD. These results suggest that TGF-β1 may decrease the respiratory host defense both directly by reducing the expression of host defense mediators, and indirectly by affecting VD-mediated effects such as expression of hCAP18/LL-37.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Grobe M, Kretzschmar G, Vuica A, Filipovic N. Expression of vitamin D receptors in the superior cervical ganglia of rats. Biotech Histochem 2018; 93:320-327. [DOI: 10.1080/10520295.2018.1425910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M Grobe
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split, Croatia
| | - G Kretzschmar
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split, Croatia
| | - A Vuica
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split, Croatia
| | - N Filipovic
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|