1
|
Morsi AA, Mersal EA, Abdelmoneim AM, Hussein G, Sofii MM, Ibrahim KE, Salim MS. Interrogating the estrogen-mediated regulation of adrenocortical Klotho expression using ovariectomized albino rat model exposed to repeated restraint stress. Hum Cell 2024; 37:1008-1023. [PMID: 38753278 DOI: 10.1007/s13577-024-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 06/24/2024]
Abstract
Reproductive aging is associated with altered stress response and many other menopausal symptoms. Little is known about the adrenal expression of the anti-aging protein Klotho or how it is modulated by estrogen in ovariectomized stressed rats. Fifty-six Wistar female rats were assigned into seven equal groups. Sham-operated (Sham), sham stressed (Sham/STS), ovariectomized (OVR), ovariectomized stressed (OVR/STS), ovariectomized stressed rosiglitazone-treated (OVR/STS/R), ovariectomized stressed estrogen-treated (OVR/STS/E), and ovariectomized stressed estrogen/GW9662 co-treated (OVR/STS/E/GW) groups. All stressed rats were subjected daily to a one-hour restraint stress test for 19 days. At the end of the experiment, blood was collected for serum corticosterone (CORT) analysis. Adrenal tissues were obtained and prepared for polymerase chain reaction (PCR) assay, hematoxylin and eosin (H&E), immunohistochemistry-based identification of Klotho and PPAR-γ, and Oil Red O (ORO) staining. The rise in serum CORT was negligible in the OVR/STS group, in contrast to the Sham/STS group. The limited CORT response in the former group was restored by estrogen and rosiglitazone and blocked by estrogen/GW9226 co-administration. ORO-staining revealed a more evident reduction in the adrenal fat in the OVR/STS group, which was reversed by estrogen and counteracted by GW. Also, there was a comparable expression pattern of Klotho and PPAR-γ in the adrenals. The adrenal Klotho decreased in the OVR/STS group, but was reversed by estrogen treatment. GW9226/estrogen co-treatment interfered with the regulatory effect of estrogen on Klotho. The study suggested modulation of the adrenal Kotho expression by estrogen, in the ovariectomized rats subjected to a restraint stress test. This estrogen-provided adrenal protection might be mediated by PPAR-γ activation.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, 63511, Egypt.
| | - Ezat A Mersal
- Biochemistry Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Ahmed M Abdelmoneim
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, 63511, Egypt
| | - Ghaiath Hussein
- Medical Ethics and Law, Department of Medical Education, School of Medicine, Trinity College Dublin, 152-160 Pearse St, Dublin, D02 R590, Ireland
| | - Mohamed M Sofii
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum, 63511, Egypt
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Salim
- Medical Laboratory Technology Department, Higher Technological Institute of Applied Health Sciences, Beni-Suef, Egypt
| |
Collapse
|
2
|
Lonc G, Hrabia A, Krakowska I, Korzekwa AJ, Zarzycka M, Wolak D, Wajdzik M, Kotula-Balak M. Is membrane androgen and estrogen receptor signaling imperative in the governing function of the adrenal cortex in the Eurasian beaver (Castor fiber L.)? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:587-596. [PMID: 38497306 DOI: 10.1002/jez.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
There is a need to fully know the physiology of Eurasian beaver due to its essential role in environmental homeostasis. However, a "human factor" impacts this, including stress conditions and environmental pollution. Adrenal glands protect these all. The regulation of endocrine processes by nonclassical androgen and estrogen signaling, the first and fastest control, is still a matter of research. The specific analyses performed here in mature female and male beaver adrenals contained: anatomical and histological examinations, expression and localization of membrane androgen receptor (zinc transporter, Zinc- and Iron-like protein 9; ZIP9) and membrane estrogen receptor coupled with G protein (GPER), and measurement of zinc (Zn2+) and copper (Ca2+) ion levels and corticosterone levels. We revealed normal anatomical localization, size, and tissue histology in female and male beavers, respectively. Equally, ZIP9 and GPER were localized in the membrane of all adrenal cortex cells. The protein expression of these receptors was higher (p < 0.001) in male than female adrenal cortex cells. Similarly, Zn2+ and Ca2+ ion levels were higher (p < 0.05, p < 0.01) in male than female adrenal cortex. The increased corticosterone levels (p < 0.001) were detected in the adrenal cortex of females when compared to males. The present study is the first to report the presence of nonclassical androgen and estrogen signaling and its possible regulatory function in the adrenal cortex of Eurasian beavers. We assume that this first-activated and fast-transmitted regulation can be important in the context of the effect of environmental physical and chemical stressors especially on adrenal cortex cells. The beaver adrenals may constitute an additional supplementary model for searching for universal mechanisms of adrenal cortex physiology and diseases.
Collapse
Affiliation(s)
- G Lonc
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - I Krakowska
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - M Zarzycka
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - D Wolak
- Department of Animal Physiology and Endocrinology, Faculty of Animal Science, University of Agriculture in Krakow, Krakow, Poland
| | - M Wajdzik
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, Krakow, Poland
| | - M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
3
|
Pawlicki P, Koziorowska A, Koziorowski M, Pawlicka B, Duliban M, Wieczorek J, Płachno BJ, Pardyak L, Korzekwa AJ, Kotula-Balak M. Senescence and autophagy relation with the expressional status of non-canonical estrogen receptors in testes and adrenals of roe deer (Capreolus capreolus) during the pre-rut period. Theriogenology 2023; 198:141-152. [PMID: 36586352 DOI: 10.1016/j.theriogenology.2022.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The roe deer bucks represent a spontaneous model to study the synchronized testicular involution and recrudescence cycles. However, cellular processes and hormonal control of steroidogenic glands are scarcely known. For the present study testes and adrenal glands obtained from roe deer during the pre-rut season were used. We aimed to determine (i) senescence and autophagy involvement in testis atrophy (immunohistochemical analysis for tumor suppressor protein encoded by the cyclin-dependent kinase inhibitor 2A; p16 and microtubule-associated protein 1A/1B-light chain 3; LC3, respectively), (ii) the size of the adrenal cortex and medulla (morphometric analysis), (iii) G-protein coupled estrogen receptor (GPER) and estrogen-related receptors (ERRs; type α, β, and Y) distribution and expression (qRT-PCR and immunohistochemical analyses) and (iv) serum testosterone and estradiol levels (immunoassay ELISA). This study revealed pre-rut characteristics of testis structure with the presence of both senescence and autophagy-positive cells and higher involvement of senescence, especially in spermatogenic cells (P < 0.05). In the adrenal cortex, groups of cells exhibiting shrinkage were observed. The presence of ERRs in cells of the seminiferous epithelium and interstitial Leydig cells and GPER presence distinctly in Leydig cells was revealed. In adrenals, these receptors were localized in groups of normal-looking cells and those with shrinkage. Morphometric analysis showed differences in cortex width which was smaller (P < 0.05) than that of the medulla. A weak immunohistochemical signal was observed for ERRβ when compared to ERRα and ERRγ. The mRNA expression level of ERRα and ERRγ was lower (P < 0.001 and P < 0.05, respectively) while ERRβ was higher (P < 0.001) in adrenals when compared to testes. mRNA GPER expression was similar in both glands. In the pre-rut season, the testosterone level was 4.89 ng/ml while the estradiol level was 0.234 ng/ml. We postulate that: (i) senescence and autophagy may be involved in both reinitiation of testis function and/or induction of abnormal processes, (ii) hormonal modulation of testis inactivity may affect adrenal cortex causing cell shrinkage, (iii) ERRs and GPER localization in spermatogenic cells and interstitial cells, as well as cortex cells, may maintain and control the morpho-functional status of both glands, and (iv) androgens and estrogens (via ERRs and GPER) drive cellular processes in the testis and adrenal pre-rut physiology.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna Koziorowska
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; College of Natural Sciences, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Marek Koziorowski
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszów, Poland
| | - Bernadetta Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Jarosław Wieczorek
- Department of Clinical Diagnostics and Internal Animal Diseases, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, 30-059, Krakow, Poland.
| |
Collapse
|
4
|
Wang T, He K, Blaney L, Chung JS. 17β-Estradiol (E2) may be involved in the mode of crustacean female sex hormone (CFSH) action in the blue crab, Callinectes sapidus. Front Endocrinol (Lausanne) 2022; 13:962576. [PMID: 35957817 PMCID: PMC9358259 DOI: 10.3389/fendo.2022.962576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
17β-estradiol (E2) has been proved to control reproduction, sexual differentiation, and the development of the secondary sexual characteristics of vertebrate females. In decapod crustacean species, crustacean female sex hormone (CFSH), a protein hormone, is required for developing adult-specific ovigerous setae for embryo brooding and gonophores for mating at the blue crab Callinectes sapidus puberty molting. However, it is unclear that whether the mode of CFSH action involves a vertebrate-type sex steroid hormone in crustaceans. To this end, E2 levels were first measured using a competitive ELISA in the hemolymph and the potential CFSH target tissues from both prepuberty and adult females; the presence of E2 was further confirmed with a liquid chromatography tandem mass spectrometry method. Then, the cDNAs of the following genes known to be associated with vertebrate steroidogenic pathways were isolated: StAR-related lipid transfer protein 3 (StAR3); 3β-hydroxysteroid dehydrogenase (3βHSD); two isoforms of 17β-hydroxysteroid dehydrogenase 8 (17βHSD8); and, estradiol-related receptor (ERR). RT-PCR analysis revealed that these genes were widely distributed in the eyestalk ganglia, hepatopancreas, brain, ovary, spermathecae, ovigerous and plumose setae tissues of adult females. The 17βHSD8 transcripts were localized in the follicle cells, the periphery of the nuclear membrane of primary oocytes, and yolk granules of the vitellogenic oocytes using in situ hybridization, and the corresponding protein was detected in the follicle cells and ooplasm of primary oocytes using immunohistochemistry. Furthermore, the adult females injected with CFSH-dsRNA (n = 30 times) had E2 and StAR3 transcripts levels lower in the ovigerous and plumose setae, spermathecae than controls. These results suggested that the mode of CFSH action in C. sapidus might involve E2 in these adult-female-specific tissues.
Collapse
Affiliation(s)
- Tao Wang
- Department of Marine Biotechnology & Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, United States
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Ke He
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|
5
|
Xu D, He H, Jiang X, Yang L, Liu D, Yang L, Geng G, Cheng J, Chen H, Hua R, Duan J, Li X, Wu L, Li Y, Li Q. Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis in bovine ovarian granulosa cells. Reprod Domest Anim 2019; 54:741-749. [PMID: 30785650 DOI: 10.1111/rda.13419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022]
Abstract
Steroid hormones are required for normal reproductive function of female. The aim of this study was to investigate the role of Raf-ERK1/2 on steroid hormone synthesis in bovine ovarian granulosa cells. Immunohistochemistry assay showed that both B-Raf and C-Raf were expressed in granulosa cells, theca cells and Sertoli cells. The protein expression of Raf or ERK1/2 was clearly decreased by Raf inhibitor GSK2118436 or ERK1/2 inhibitor SCH772984, respectively (p < 0.05). In addition, western blotting was performed for investigating the crosstalk between Raf and ERK1/2, the data showed that Raf positively regulated ERK1/2, whereas ERK1/2 had a negative feedback effect on Raf. The biosynthesis of oestradiol or testosterone was significantly decreased by treatment with GSK2118436 or SCH772984 (p < 0.05). Conversely, the progesterone biosynthesis was clearly increased by treatment with those inhibitors (p < 0.05). Furthermore, the mRNA expression of STAR, aromatase and CYP17 was blocked by Raf-ERK1/2 signalling inhibition, which oppositely induced the mRNA expression of CYP11. Together, these findings suggested that Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis via affecting the expression of steroidogenic enzymes.
Collapse
Affiliation(s)
- Dejun Xu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huanshan He
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaohan Jiang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lulu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dinbang Liu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Li Yang
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Huali Chen
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Rongmao Hua
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jiaxin Duan
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Lin Wu
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Yuan Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| |
Collapse
|