1
|
Stanić R, Vukojević K, Filipović N, Benzon B, Ogorevc M, Kunac N, Čanović S, Kovačević P, Paradžik Šimunović M, Konjevoda S. The Effect of Prostaglandin F2 Analog Treatment on the Immunoexpression of Fibrosis-Associated Factors in Patients with Glaucoma Undergoing Deep Sclerotomy. Int J Mol Sci 2024; 25:12618. [PMID: 39684329 DOI: 10.3390/ijms252312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Long-term use of topical prostaglandins might initiate chronic conjunctival inflammation, leading to poor outcomes of glaucoma surgery. The aim of this study was to evaluate the immunoexpression pattern of HSP70, CTGF, SNAIL, aSMA, cMYB, and HIFa in the conjunctiva, episclera, and deep sclera in patients with glaucoma undergoing deep sclerectomy in order to establish an association between staining intensities and prostaglandin F2 (PGF2) treatment. Double immunofluorescence (HSP70, CTGF, SNAIL, aSMA, cMYB, and HIFa) was performed on conjunctiva, episclera, and deep sclera samples, which were obtained from 23 patients treated with PGF2 and 8 patients without PGF2 treatment. When comparing the ocular tissues of patients regarding treatment with PGF2 analogs, we found a significant increase in the immunoexpression of HSP70 in the conjunctival epithelium of patients treated with PGF2 analogs compared to those without PGF2 treatment. These patients also had an increase in SNAIL immunoexpression and a decrease in aSMA immunoexpression in the deep sclera. There were no significant differences in HIFa, CTGF, or cMYB immunoexpression levels between the two groups. Further research into the regulation of these factors in ocular tissues could lead to the development of potential novel therapeutic approaches in glaucoma management.
Collapse
Affiliation(s)
- Robert Stanić
- Department of Ophthalmology, University Hospital in Split, Šoltanska 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Nenad Kunac
- Department of Pathology, Forensic Medicine and Cytology, University Hospital in Split, Spinčićeva 1, 21000 Split, Croatia
| | - Samir Čanović
- Department of Ophtalmology, General Hospital Zadar, Ul. Bože Peričića 5, 23000 Zadar, Croatia
| | - Petra Kovačević
- Department of Ophthalmology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | | | - Suzana Konjevoda
- Department of Ophtalmology, General Hospital Zadar, Ul. Bože Peričića 5, 23000 Zadar, Croatia
- Department of Health Studies, University of Zadar, Ulica Mihovila Pavlinovica 1, 23000 Zadar, Croatia
| |
Collapse
|
2
|
Wang Y, Wu M, Chen D, Tan B, Lin P, Huang D, Ye C. SDMA attenuates renal tubulointerstitial fibrosis through inhibition of STAT4. J Transl Med 2023; 21:326. [PMID: 37194066 DOI: 10.1186/s12967-023-04181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Renal tubulointerstitial fibrosis is the hallmark of various chronic kidney diseases. Symmetric dimethylarginine (SDMA) is an independent cardiovascular risk factor in patients with chronic kidney diseases, which is mostly excreted through renal tubules. However, the effect of SDMA on kidneys in a pathological condition is currently unknown. In this study, we investigated the role of SDMA in renal tubulointerstitial fibrosis and explored its underlying mechanisms. METHODS Mouse unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI) models were established to study renal tubulointerstitial fibrosis. SDMA was injected into kidneys through ureter retrogradely. TGF-β stimulated human renal epithelial (HK2) cells were used as an in vitro model and treated with SDMA. Signal transducer and activator of transcription-4 (STAT4) was inhibited by berbamine dihydrochloride or siRNA or overexpressed by plasmids in vitro. Masson staining and Western blotting were performed to evaluate renal fibrosis. Quantitative PCR was performed to validate findings derived from RNA sequencing analysis. RESULTS We observed that SDMA (from 0.01 to 10 µM) dose-dependently inhibited the expression of pro-fibrotic markers in TGF-β stimulated HK2 cells. Intrarenal administration of SDMA (2.5 µmol/kg or 25 µmol/kg) dose-dependently attenuated renal fibrosis in UUO kidneys. A significant increase in SDMA concentration (from 19.5 to 117.7 nmol/g, p < 0.001) in mouse kidneys was observed after renal injection which was assessed by LC-MS/MS. We further showed that intrarenal administration of SDMA attenuated renal fibrosis in UIRI induced mouse fibrotic kidneys. Through RNA sequencing analysis, we found that the expression of STAT4 was reduced by SDMA in UUO kidneys, which was further confirmed by quantitative PCR and Western blotting analysis in mouse fibrotic kidneys and renal cells. Inhibition of STAT4 by berbamine dihydrochloride (0.3 mg/ml or 3.3 mg/ml) or siRNA reduced the expression of pro-fibrotic markers in TGF-β stimulated HK2 cells. Furthermore, blockage of STAT4 attenuated the anti-fibrotic effect of SDMA in TGF-β stimulated HK2 cells. Conversely, overexpression of STAT4 reversed the anti-fibrotic effect of SDMA in TGF-β stimulated HK2 cells. CONCLUSION Taken together, our study indicates that renal SDMA ameliorates renal tubulointerstitial fibrosis through inhibition of STAT4.
Collapse
Affiliation(s)
- Yanzhe Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China.
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Dongping Chen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pinglan Lin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528 Zhangheng Road, Pudong District, Shanghai, 201203, People's Republic of China.
- TCM Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
3
|
Mizdrak M, Kumrić M, Kurir TT, Božić J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J Pers Med 2022; 12:jpm12040548. [PMID: 35455664 PMCID: PMC9025702 DOI: 10.3390/jpm12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a major and serious global health problem that leads to kidney damage as well as multiple systemic diseases. Early diagnosis and treatment are two major measures to prevent further deterioration of kidney function and to delay adverse outcomes. However, the paucity of early, predictive and noninvasive biomarkers has undermined our ability to promptly detect and treat this common clinical condition which affects more than 10% of the population worldwide. Despite all limitations, kidney function is still measured by serum creatinine, cystatin C, and albuminuria, as well as estimating glomerular filtration rate using different equations. This review aims to provide comprehensive insight into diagnostic methods available for early detection of CKD. In the review, we discuss the following topics: (i) markers of glomerular injury; (ii) markers of tubulointerstitial injury; (iii) the role of omics; (iv) the role of microbiota; (v) and finally, the role of microRNA in the early detection of CKD. Despite all novel findings, none of these biomarkers have met the criteria of an ideal early marker. Since the central role in CKD progression is the proximal tubule (PT), most data from the literature have analyzed biomarkers of PT injury, such as KIM-1 (kidney injury molecule-1), NGAL (neutrophil gelatinase-associated lipocalin), and L-FABP (liver fatty acid-binding protein).
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Nephrology and Hemodialysis, University Hospital of Split, 21000 Split, Croatia;
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
| | - Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Disorders, University Hospital of Split, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
- Correspondence:
| |
Collapse
|
4
|
Kolobaric A, Vukojevic K, Brekalo S, Misković J, Ries M, Lasic Arapovic L, Soljic V. Expression and localization of FGFR1, FGFR2 and CTGF during normal human lung development. Acta Histochem 2021; 123:151719. [PMID: 33962151 DOI: 10.1016/j.acthis.2021.151719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Aim of our study was to provide insight into the temporal and spatial expression of FGFR1, FGFR2 and CTGF during normal human lung development which may have an important impact on understanding occurrence of developmental lung anomalies. Morphological parameters were analysed using double immunofluorescence on human embryonal (6th and 7th developmental week-dw) and foetal (8th, 9th and 16th developmental week) human lung samples. FGFR1 and FGFR2 was positive during all the dw in both the epithelium and mesenchyme. The highest number of FGFR1 positive cells was observed during the 6th dw (112/mm2) and 9th dw (87/mm2) in the epithelium compared to the 7th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The highest number of FGFR1 positive cells in the mesenchyme was observed during the 8th dw (19/mm2) and 16th dw (13/mm2) compared to the 6th, 7th, and 9th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The number of FGFR1 positive cells in the epithelium was higher for FGFR2 compared to number of positive cells (Mann-Whitney test, p < 0.0001). FGFR2 showed the highest number in the epithelium during the 7th dw (111/mm2) and 9th dw (87/mm2) compared to 6th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001, p < 0.01 respectively). The highest number of FGFR2 positive cells in the mesenchyme was observed during the 9th dw (26/mm2), compared to the 6th, 7th,8th and 16th dw (Kruskal-Wallis test, p < 0.0001), while the number of FGFR2 positive cells in the epithelium was significantly higher than in the mesenchyme (Mann-Whitney test, p < 0.0001). CTGF was negative in both epithelium and mesenchyme during all except the 16th dw in the mesenchyme where it co-localized with FGFR2. FGFR1 and FGFR2 might be essential for epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth during early lung development. Sudden increase in FGF1 in the epithelium and FGF2 in the mesenchyme in the foetus at 9th dw could be associated with the onset of foetal breathing movements. CTGF first appear during the foetal lung development.
Collapse
|
5
|
Expression of renal vitamin D receptors and metabolizing enzymes in IgA nephropathy. Acta Histochem 2021; 123:151740. [PMID: 34111685 DOI: 10.1016/j.acthis.2021.151740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
AIM One of the main causes of end-stage renal disease (ESRD) in the world is IgA nephropathy (IgAN). Since kidney is a key player in vitamin D metabolism, we investigated the expression of renal vitamin D receptors (VDR) and metabolizing enzymes in IgA nephropathy patients (IgAN-P). METHODS The sample included twelve IgAN-P who underwent ultrasound-guided renal biopsies and five controls who underwent nephrectomy due to clear renal carcinoma. Immunofluorescent staining was used to determine the expression of VDR, 25-hydroxyvitamin D3 -alpha-hydroxylase (1alpha-OHase) and vitamin D3 24-hydroxylase (CYP24A1). RESULTS Significant increase in expression of VDR, which was prominent in distal tubular cells (DTCs) in tissues from IgAN-P, was found in comparison to the controls (p = 0.0368). The expression of 1alpha-OHase, calcitriol synthesizing enzyme, was significantly lower in IgAN-P, in comparison with controls (p < 0.0001). The opposite, expression of CYP24A1 (vitamin D degrading enzyme), was significantly higher in IgAN-P in comparison with controls (p = 0.0003). Additionally, we found significant negative correlation between percentage of CYP24A1 immunoreactive nuclei in proximal tubular cells (PTCs) and estimated glomerular filtration rate (eGFR) in IgAN-P (r = -0.6139; p = 0.0337). CONCLUSIONS Our research indicates substantially decreased renal calcitriol production and increased vitamin D degradation in kidneys of IgAN-P, but larger studies are needed to confirm our results.
Collapse
|
6
|
Spatio-Temporal Expression Pattern of Ki-67, pRB, MMP-9 and Bax in Human Secondary Palate Development. Life (Basel) 2021; 11:life11020164. [PMID: 33672637 PMCID: PMC7924200 DOI: 10.3390/life11020164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/11/2023] Open
Abstract
We analyzed the immunohistochemical expression of Ki-67, pRb, Bax, and MMP-9 during the human secondary palate formation (7th to 12th developmental weeks (DWs). The most significant proliferation was observed in the seventh DW with 32% of Ki-67-positive cells in the epithelium, while loose ectomesenchyme condensations (lec) and loose non-condensing ectomesenchyme (lnc) had only 18 and 11%, respectively (Kruskal–Wallis, p < 0.001), and diminished afterwards. Contrarily, pRb-positive cells were mostly located in the lnc (67%), with significant difference in comparison to epithelium and lec in all investigated periods (Kruskal–Wallis, p < 0.001). Ki-67- and pRb-positive cells co-expressed occasionally in all investigated periods. MMP-9 displayed a strong expression pattern with the highest number of positive cells during the seventh DW in the epithelium, with significant difference in comparison to lec and lnc (Kruskal–Wallis, p < 0.0001). The ninth DW is particularly important for the Bax expression, especially in the epithelium (84%), in comparison to lec (58%) and lnc (47%) (Kruskal–Wallis, p < 0.001). The co-expression of Bax and MMP-9 was seen only in the epithelium during seventh and ninth DWs. Our study indicates the parallel persistence of proliferation (Ki-67, pRb) and remodeling (MMP-9) that enables growth and apoptotic activity (Bax) that enable the removal of the epithelial cells at the fusion point during secondary palate formation.
Collapse
|
7
|
Lasić V, Kosović I, Jurić M, Racetin A, Čurčić J, Šolić I, Lozić M, Filipović N, Šoljić V, Martinović V, Saraga-Babić M, Vukojević K. GREB1L, CRELD2 and ITGA10 expression in the human developmental and postnatal kidneys: an immunohistochemical study. Acta Histochem 2021; 123:151679. [PMID: 33460985 DOI: 10.1016/j.acthis.2021.151679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/19/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aim of our study is to provide an insight into the genetic expression landscape of GREB1L, ITGA10 and CRELD2 which are important in human genitourinary tract development which might help elucidate the critical stages for the onset of kidney anomalies. METHODS Morphological parameters were analyzed using immunohistochemistry on human foetal (13-38 w) and postnatal (1.5 and 7.5y) human kidney samples. RESULTS GREB1L marker had a strong intensity and the highest rate in proximal tubules (PTC) of 1.5 years' kidney (90.25%). In the distal tubules (DCT) there were statistically significant differences in 13 w, 15 w, 16 w, 21 w, 38 w and 7.5y regarding 1.5y (Kruskal-Wallis test, p < 0.001). There was significantly more GREB1L in the glomeruli at 21 w and 38 w in regard to all other stages (Kruskal-Wallis test, p < 0.01). ITGA10 staining intensity was strongest in PCT with the highest rate in 13 w (92.75%), while the lowest rate was found in glomeruli and DCT (Kruskal-Wallis test, p < 0.001). CRELD2 had the strongest staining intensity in PCT with the highest rate in 13 w and 1.5y (92.25%) and lowest in the glomeruli of 7.5 years (24.3 %). In DCT there were statistically significant differences in CRELD2 positive cells in 13 w, 15 w, 16 w, 21 w, 38 w and 7.5y regarding 1.5y (Kruskal-Wallis test, p < 0.01). ITGA10 and CRELD2 co-localised in the postnatal period in DCT. CONCLUSION High kidney expressions of GREB1L, ITGA10 and CRELD2 even in the postnatal period implicate their importance not only for the onset of CAKUT in the case of their mutation but also for maintenance of kidney homeostasis.
Collapse
|
8
|
Borić Škaro D, Filipović N, Mizdrak M, Glavina Durdov M, Šolić I, Kosović I, Lozić M, Racetin A, Jurić M, Ljutić D, Vukojević K. SATB1 and PTEN expression patterns in biopsy proven kidney diseases. Acta Histochem 2020; 122:151631. [PMID: 33152540 DOI: 10.1016/j.acthis.2020.151631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND In present study we investigated expression pattern of the special tissue markers. SATB1 and PTEN to evaluate possible influence in pathophysiology and development of various biopsy proven kidney diseases. METHODS The 32 kidney biopsy samples were analysed using light, immunofluorescence and electron microscopy. There were 19 samples in proliferative and 13 samples in non- proliferative group of renal diseases. As control group, 9 specimens of healthy kidney tissue taken after surgery of kidney tumour were used. SATB1 and PTEN markers were used for immunofluorescence staining. Analysed tissue structures were glomeruli, proximal convoluted tubules (PCT) and distal convoluted tubules (DCT). The number of SATB1 and PTEN cells were calculated and the data compared between kidney structures, disease groups and control specimens. RESULTS Both markers were positive in all investigated kidney structures, with expression generally, more prominent in tubular epithelial cells than in glomeruli, with the highest staining intensity rate as well as highest rate of both markers in DCT of proliferative diseases group (SATB1 64.5 %, PTEN 52 %). There was statistically significant difference in SATB1 expression in all tissue structures of interest in proliferative as well as non- proliferative group compared to control group (p < 0.01-p < 0.0001). PTEN expression were found significantly decreased in PCT of both disease groups in regard to control (PTEN 25.3 % and 23.8 % vs. 41.1 % (p < 0.01 and p < 0.001 respectively). CONCLUSION SATB1 and PTEN could be considered as markers influenced in kidney disease development. SATB1/PTEN expression should be further investigated as useful markers of kidney disease activity as well as potential therapeutic target.
Collapse
|
9
|
Milardović I, Vitlov Uljević M, Vukojević K, Kostić S, Filipović N. Renal expression of sigma 1 receptors in diabetic rats. Acta Histochem 2020; 122:151580. [PMID: 32778242 DOI: 10.1016/j.acthis.2020.151580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to determine the changes in the expression of sigma 1 receptors (σ1Rs) in the kidney of diabetic rats, which could indicate their possible role in the pathogenesis of diabetic nephropathy (DN). Sprague-Dawley rats were were given intraperitoneal injection of 55 mg/kg streptozotocin (STZ) in order to induce type I of diabetes (DM1). Control and diabetic rats were sacrificed 2 weeks or 2 months after DM1 induction. Expression of σ1Rs was determined in kidneys of the experimental rats, using immunohistochemistry. The most prominent expression of σ1Rs was found in distal tubuli (DT). Results have shown significant increase in renal σ1Rs section percentage area of rats 2 months after DM1 induction, compared to both control group at the same age and diabetic group 2 weeks after induction (P < 0.01 both). Similarly, a number of immunoreactive DT increased in diabetic group 2 months after induction, compared to DM1 group 2 weeks after induction (P < 0.001). We also found a decrease of a number of immunoreactive DT 2 weeks post DM1 induction (P < 0.01). However, the same was found during maturation of the control rats (P < 0.001). In addition, a strong co-expression of σ1R and proinflammatory factor TGFβ was seen in vacuolated DT. The results indicate to the potential role of σ1Rs in postnatal maturation of the rat kidneys and in distal tubular damage in the pathogenesis of the diabetic nephropathy. We conclude that σ1Rs could be potential target in treatment of the diabetic nephropathy.
Collapse
Affiliation(s)
- Ivana Milardović
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marija Vitlov Uljević
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; Department of Anatomy, Histology and Embryology, Laboratory for Early Human Development, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Sandra Kostić
- Department of Anatomy, Histology and Embryology, Laboratory for Microscopy, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, Laboratory for Neurocardiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia.
| |
Collapse
|