1
|
Zhang X, Wang Y, Lv J. STAT4 targets KISS1 to inhibit the oxidative damage, inflammation and neuronal apoptosis in experimental PD models by inactivating the MAPK pathway. Neurochem Int 2024; 175:105683. [PMID: 38341034 DOI: 10.1016/j.neuint.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Oxidative stress and neuroinflammation are proven to play critical roles in the pathogenesis of Parkinson's disease (PD). As reported, patients with PD have lower level of STAT4 compared with healthy subjects. However, the biological functions and mechanisms of STAT4 in PD pathogenesis remain uncertain. This study aimed to investigate the roles and related mechanisms of STAT4 in PD development. METHODS The intraperitoneal injection of MPTP (20 mg/kg) dissolved in physiological saline was performed to mimic PD-like conditions in vivo. MPP + solution was prepared for cell model of PD. Cell viability was measured by CCK-8. Griess reaction was conducted to measure NO concentrations. The mRNA and protein levels were evaluated by RT-qPCR and western blotting. ROS generation was assessed by DCFH-DA. The levels of inflammatory cytokines were measured by ELISA. Cell apoptosis was examined by flow cytometry and western blotting. Moreover, the SH-SY5Y cells were treated with conditioned medium from LPS-stimulated microglia and subjected to CCK-8 assays and ELISA. Mechanistically, CHIP assays and luciferase reporter assays were performed to verify the binding relationship between KISS1 and STAT4. For in vivo analysis, the histological changes of midbrain tissues of mice were determined by hematoxylin and eosin staining. The expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry staining. Iba-1 positive microglial cells in the striatum were assessed by immunofluorescence staining. RESULTS For in vitro analysis, STAT4 level was downregulated after MPP+ treatment, and STAT4 upregulation inhibited the oxidative damage, inflammation and apoptosis in SH-SY5Y cells. STAT4 bound at +215-228 region of KISS1, and KISS1 upregulation counteracted the protection of STAT4 upregulation against cell damage. Moreover, STAT4 upregulation inhibited cell viability loss and inflammation induced by conditioned medium from LPS-treated microglia, whereas KISS1 upregulation had the opposite effect. For in vivo analysis, the protective effects of STAT4 upregulation against inflammatory response, oxidative stress, dopaminergic neuronal loss and microglia activation were attenuated by KISS1 upregulation. Moreover, the inactivation of MAPK pathway caused by STAT4 upregulation was reversed by KISS1 upregulation, and MAPK inhibition attenuated the MPP+-induced inflammation, oxidative stress and apoptosis in SH-SY5Y cells. CONCLUSION STAT4 inhibits KISS1 to attenuate the oxidative damage, inflammation and neuronal apoptosis in PD by inactivating the MAPK pathway.
Collapse
Affiliation(s)
- XiaoLei Zhang
- Department of Neurology, Shanxi People's Hospital, Taiyuan 030012, China.
| | - Yu Wang
- Department of Neurology, Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Jia Lv
- Department of Neurology, Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| |
Collapse
|
2
|
Liu XY, Zhang LY, Wang XY, Li SC, Hu YY, Zhang JG, Xian XH, Li WB, Zhang M. STAT4-Mediated Klotho Up-Regulation Contributes to the Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning via Inhibiting Neuronal Pyroptosis. Mol Neurobiol 2024; 61:2336-2356. [PMID: 37875707 DOI: 10.1007/s12035-023-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Our previous study has proved that the Klotho up-regulation participated in cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance. However, the exact neuroprotective mechanism of Klotho in CIP remains unclear. We explored the hypothesis that STAT4-mediated Klotho up-regulation contributes to the CIP-induced brain ischemic tolerance via inhibiting neuronal pyroptosis. Firstly, the expressions of pyroptosis-associated proteins (i.e., NLRP3, GSDMD, pro-caspase-1, and cleaved caspase-1) in hippocampal CA1 region were determined during the process of brain ischemic tolerance. We found the expression of pyroptosis-associated proteins was significantly up-regulated in the ischemic insult (II) group, and showed no significant changes in the CIP group. The expression level of each pyroptosis-associated proteins was lower in the CIP + II group than that in the II group. Inhibition of Klotho expression increased the expression of pyroptosis-associated proteins in the CIP + II group and blocked the CIP-induced brain ischemic tolerance. Injection of Klotho protein decreased the expression of pyroptosis-associated proteins in the II group, and protected neurons from ischemic injury. Secondly, the transcription factor STAT4 of Klotho was identified by bioinformatic analysis. Double luciferase reporter gene assay and chromatin immunoprecipitation assay showed STAT4 can bind to the site between nt - 881 and - 868 on the Klotho promoter region and positively regulates Klotho expression. Moreover, we found CIP significantly enhanced the expression of STAT4. Knockdown STAT4 suppressed Klotho up-regulation after CIP and blocked the CIP-induced brain ischemic tolerance. Collectively, it can be concluded that STAT4-mediated the up-regulation of Klotho contributed to the brain ischemic tolerance induced by CIP via inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xi-Yun Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Xiao-Yu Wang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Shi-Chao Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China.
| |
Collapse
|
3
|
Babaei G, Sadraei S, Yarahmadi M, Omidvari S, Aarabi A, Rajabibazl M. STAT protein family and cardiovascular diseases: overview of pathological mechanisms and therapeutic implications. Mol Biol Rep 2024; 51:440. [PMID: 38520542 DOI: 10.1007/s11033-024-09371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Globally, cardiovascular diseases (CVD) are one of the significant causes of death and are considered a major concern of human society. One of the most crucial objectives of scientists is to reveal the mechanisms associated with the pathogenesis of CVD, which has attracted the attention of many scientists. Accumulating evidence showed that the signal transducer and activator of transcription (STAT) signaling pathway is involved in various physiological and pathological processes. According to research on the molecular mechanisms of CVDs, the STAT family of proteins is one of the most crucial players in these diseases. Numerous studies have demonstrated the undeniable relevance of STAT family proteins in various CVDs. The aim of this review is to shed light on how STAT signaling pathways are related to CVD and the potential for using these signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Sadraei
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samareh Omidvari
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Luo W, He M, Luo Q, Li Y. Proteome-wide analysis of lysine β-hydroxybutyrylation in the myocardium of diabetic rat model with cardiomyopathy. Front Cardiovasc Med 2023; 9:1066822. [PMID: 36698951 PMCID: PMC9868477 DOI: 10.3389/fcvm.2022.1066822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Lysine ß-hydroxybutyrylation (kbhb), a novel modification of lysine residues with the ß-hydroxybuty group, is associated with ketone metabolism in numerous species. However, its potential role in diabetes, especially in diabetic cardiomyopathy (DCM), remains largely unexplored. In this study, using affinity enrichment and liquid chromatography-mass spectrometry (LC-MS/MS) method, we quantitatively analyze the kbhb residues on heart tissues of a DCM model rat. A total of 3,520 kbhb sites in 1,089 proteins were identified in this study. Further analysis showed that 336 kbhb sites in 143 proteins were differentially expressed between the heart tissues of DCM and wild-type rats. Among them, 284 kbhb sites in 96 proteins were upregulated, while 52 kbhb sites in 47 proteins were downregulated. Bioinformatic analysis of the proteomic results revealed that these kbhb-modified proteins were widely distributed in various components and involved in a wide range of cellular functions and biological processes (BPs). Functional analysis showed that the kbhb-modified proteins were involved in the tricarboxylic acid cycle, oxidative phosphorylation, and propanoate metabolism. Our findings demonstrated how kbhb is related to many metabolic pathways and is mainly involved in energy metabolism. These results provide the first global investigation of the kbhb profile in DCM progression and can be an essential resource to explore DCM's pathogenesis further.
Collapse
Affiliation(s)
- Weiguang Luo
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mei He
- Henan Medical Key Laboratory of Arrhythmia, The 7th People’s Hospital of Zhengzhou, Zhengzhou Cardiovascular Hospital, Zhengzhou, China
| | - Qizhi Luo
- Department of Immunology, Basic Medical School of Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China,*Correspondence: Yi Li,
| |
Collapse
|
5
|
Cong L, Bai Y, Guo Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med 2022; 9:997469. [PMID: 36386383 PMCID: PMC9650365 DOI: 10.3389/fcvm.2022.997469] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/10/2022] [Indexed: 08/02/2023] Open
Abstract
In recent years, the mechanism of cell death has become a hotspot in research on the pathogenesis and treatment of cardiovascular disease (CVD). Different cell death modes, including autophagy, apoptosis, and pyroptosis, are mosaic with each other and collaboratively regulate the process of CVD. This review summarizes the interaction and crosstalk of key pathways or proteins which play a critical role in the entire process of CVD and explores the specific mechanisms. Furthermore, this paper assesses the interrelationships among these three cell deaths and reviews how they regulate the pathogenesis of CVD. By understanding how these three cell death modes go together we can learn about the pathogenesis of CVD, which will enable us to identify new targets for preventing, controlling, and treating CVD. It will not only reduce mortality but also improve the quality of life.
Collapse
Affiliation(s)
- Lin Cong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Development and verification of the nomogram for dilated cardiomyopathy gene diagnosis. Sci Rep 2022; 12:8908. [PMID: 35618744 PMCID: PMC9135684 DOI: 10.1038/s41598-022-13135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a primary myocardial disease of unclear mechanism and poor prevention. The purpose of this study is to explore the potential molecular mechanisms and targets of DCM via bioinformatics methods and try to diagnose and prevent disease progression early. We screened 333 genes differentially expressed between DCM and normal heart samples from GSE141910, and further used Weighted correlation network analysis to identify 197 DCM-related genes. By identifying the key modules in the protein–protein interaction network and Least Absolute Shrinkage and Selection Operator regression analysis, seven hub DCM genes (CX3CR1, AGTR2, ADORA3, CXCL10, CXCL11, CXCL9, SAA1) were identified. Calculating the area under the receiver’s operating curve revealed that these 7 genes have an excellent ability to diagnose and predict DCM. Based on this, we built a logistic regression model and drew a nomogram. The calibration curve showed that the actual incidence is basically the same as the predicted incidence; while the C-index values of the nomogram and the four external validation data sets are 0.95, 0.90, 0.96, and 0.737, respectively, showing excellent diagnostic and predictive ability; while the decision curve indicated the wide applicability of the nomogram is helpful for clinicians to make accurate decisions.
Collapse
|