1
|
Wang J, Zou Z, Huang H, Zhang Y, He X, Su H, Wang W, Chen Y, Liu Y. Effects of repetitive transcranial magnetic stimulation on prefrontal cortical activation in children with attention deficit hyperactivity disorder: a functional near-infrared spectroscopy study. Front Neurol 2024; 15:1503975. [PMID: 39711791 PMCID: PMC11659132 DOI: 10.3389/fneur.2024.1503975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. With the continuous development of neuromodulation technology, Repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as a potential non-invasive treatment for ADHD. However, there is a lack of research on the mechanism of rTMS for ADHD. Functional near infrared spectroscopy (fNIRS) is an optical imaging technique that reflects the brain function by measuring changes in blood oxygen concentration in brain tissue. Consequently, this research utilized fNIRS to examine the impact of rTMS on the core symptoms and prefrontal cortex activation in children with ADHD, which provides a reference for the clinical application of rTMS in the treatment of ADHD. Methods Forty children with ADHD were chosen as research subjects and randomly assigned to two groups: a treatment group (20 subjects) and a control group (20 subjects). The control group received non-pharmacological interventions, whereas the treatment group was administered rTMS in conjunction with non-pharmacological interventions. Clinical symptom improvement was evaluated using SNAP-IV scale scores both before and after treatment. Additionally, fNIRS was utilized to monitor alterations in the relative concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) in the prefrontal cortex during resting state and during the Go/no-go task state, both pre- and post-treatment. Results In conclusion, the study comprised 17 participants in the treatment group and 18 in the control group. Initially, the SNAP-scale scores were comparable between the groups, with no significant differences observed (p > 0.05). Post-treatment, a notable reduction in SNAP-scale scores was evident (p < 0.05), with the treatment group exhibiting a more pronounced decrease (p < 0.05). Following the intervention, both groups demonstrated enhanced Resting-state functional connectivity (RSFC) in the prefrontal cortex, as indicated by a significant increase compared to pre-treatment levels (p < 0.05). Specifically, the treatment group showed superior RSFC in the left dorsolateral prefrontal cortex, right dorsolateral prefrontal cortex, left medial prefrontal cortex, and right medial prefrontal cortex compared to the control group (p < 0.05). However, no significant differences were noted in RSFC of the left and right temporal lobes between the two groups (p > 0.05). In the Go/no-go task, the treatment group recorded higher mean HbO2 concentrations in the aforementioned prefrontal cortical regions compared to the control group (p < 0.05). Conversely, no statistically significant disparities were observed in the left and right temporal lobes of both groups. Conclusion rTMS shows promise as a treatment for ADHD by modulating prefrontal cortical activation. fNIRS provides a valuable method for assessing these effects, offering insights into the neurobiological mechanisms underlying rTMS therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Liu
- Department of Rehabilitation, Kunming Children's Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
AlQahtani NJ, Al-Naib I, Ateeq IS, Althobaiti M. Hybrid Functional Near-Infrared Spectroscopy System and Electromyography for Prosthetic Knee Control. BIOSENSORS 2024; 14:553. [PMID: 39590012 PMCID: PMC11591744 DOI: 10.3390/bios14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
The increasing number of individuals with limb loss worldwide highlights the need for advancements in prosthetic knee technology. To improve control and quality of life, integrating brain-computer communication with motor imagery offers a promising solution. This study introduces a hybrid system that combines electromyography (EMG) and functional near-infrared spectroscopy (fNIRS) to address these limitations and enhance the control of knee movements for individuals with above-knee amputations. The study involved an experiment with nine healthy male participants, consisting of two sessions: real execution and imagined execution using motor imagery. The OpenBCI Cyton board collected EMG signals corresponding to the desired movements, while fNIRS monitored brain activity in the prefrontal and motor cortices. The analysis of the simultaneous measurement of the muscular and hemodynamic responses demonstrated that combining these data sources significantly improved the classification accuracy compared to using each dataset alone. The results showed that integrating both the EMG and fNIRS data consistently achieved a higher classification accuracy. More specifically, the Support Vector Machine performed the best during the motor imagery tasks, with an average accuracy of 49.61%, while the Linear Discriminant Analysis excelled in the real execution tasks, achieving an average accuracy of 89.67%. This research validates the feasibility of using a hybrid approach with EMG and fNIRS to enable prosthetic knee control through motor imagery, representing a significant advancement potential in prosthetic technology.
Collapse
Affiliation(s)
- Nouf Jubran AlQahtani
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (N.J.A.)
| | - Ibraheem Al-Naib
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Communication Systems and Sensing, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ijlal Shahrukh Ateeq
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (N.J.A.)
| | - Murad Althobaiti
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia; (N.J.A.)
| |
Collapse
|
3
|
Mukli P, Pinto CB, Owens CD, Csipo T, Lipecz A, Szarvas Z, Peterfi A, Langley ACDCP, Hoffmeister J, Racz FS, Perry JW, Tarantini S, Nyúl‐Tóth Á, Sorond FA, Yang Y, James JA, Kirkpatrick AC, Prodan CI, Toth P, Galindo J, Gardner AW, Sonntag WE, Csiszar A, Ungvari Z, Yabluchanskiy A. Impaired Neurovascular Coupling and Increased Functional Connectivity in the Frontal Cortex Predict Age-Related Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303516. [PMID: 38155460 PMCID: PMC10962492 DOI: 10.1002/advs.202303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/19/2023] [Indexed: 12/30/2023]
Abstract
Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.2±7.0 years) and aged (n = 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n-back) paradigm, oxy- and deoxyhemoglobin concentration changes from the frontal cortex using functional near-infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2-back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p < 0.05). Both impaired NVC and increased FC correlate with age-related decline in accuracy during the 2-back task. These findings suggest that task-related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.
Collapse
|
4
|
Fu S, Liu F, Zhi X, Wang Y, Liu Y, Chen H, Wang Y, Luo M. Applications of functional near-infrared spectroscopy in non-drug therapy of traditional Chinese medicine: a review. Front Neurosci 2024; 17:1329738. [PMID: 38333602 PMCID: PMC10851877 DOI: 10.3389/fnins.2023.1329738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Non-drug therapies of traditional Chinese medicine (TCM), including acupuncture, massage, tai chi chuan, and Baduanjin, have emerged as widespread interventions for the treatment of various diseases in clinical practice. In recent years, preliminary studies on the mechanisms of non-drug therapies of TCM have been mostly based on functional near-infrared spectroscopy (fNIRS) technology. FNIRS is an innovative, non-invasive tool to monitor hemodynamic changes in the cerebral cortex. Our review included clinical research conducted over the last 10 years, establishing fNIRS as a reliable and stable neuroimaging technique. This review explores new applications of this technology in the field of neuroscience. First, we summarize the working principles of fNIRS. We then present preventive research on the use of fNIRS in healthy individuals and therapeutic research on patients undergoing non-drug therapies of TCM. Finally, we emphasize the potential for encouraging future advancements in fNIRS studies to establish a theoretical framework for research in related fields.
Collapse
Affiliation(s)
- Shifang Fu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhi
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanguo Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Castaldi E, Bonaudo C, Maduli G, Anobile G, Pedone A, Capelli F, Arrighi R, Della Puppa A. Neurocognitive Assessment of Mathematics-Related Capacities in Neurosurgical Patients. Brain Sci 2024; 14:69. [PMID: 38248284 PMCID: PMC10813954 DOI: 10.3390/brainsci14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
A precise neuropsychological assessment is of the utmost importance for neurosurgical patients undergoing the surgical excision of cerebral lesions. The assessment of mathematical abilities is usually limited to arithmetical operations while other fundamental visuo-spatial aspects closely linked to mathematics proficiency, such as the perception of numerical quantities and geometrical reasoning, are completely neglected. We evaluated these abilities with two objective and reproducible psychophysical tests, measuring numerosity perception and non-symbolic geometry, respectively. We tested sixteen neuro-oncological patients before the operation and six after the operation with classical neuropsychological tests and with two psychophysical tests. The scores of the classical neuropsychological tests were very heterogeneous, possibly due to the distinct location and histology of the tumors that might have spared (or not) brain areas subserving these abilities or allowed for plastic reorganization. Performance in the two non-symbolic tests reflected, on average, the presumed functional role of the lesioned areas, with participants with parietal and frontal lesions performing worse on these tests than patients with occipital and temporal lesions. Single-case analyses not only revealed some interesting exceptions to the group-level results (e.g., patients with parietal lesions performing well in the numerosity test), but also indicated that performance in the two tests was independent of non-verbal reasoning and visuo-spatial working memory. Our results highlight the importance of assessing non-symbolic numerical and geometrical abilities to complement typical neuropsychological batteries. However, they also suggest an avoidance of reliance on an excessively rigid localizationist approach when evaluating the neuropsychological profile of oncological patients.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Camilla Bonaudo
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Giuseppe Maduli
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Giovanni Anobile
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Agnese Pedone
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Federico Capelli
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy (G.A.); (R.A.)
| | - Alessandro Della Puppa
- Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, University Hospital of Careggi, 50134 Florence, Italy; (C.B.); (A.P.); (F.C.); (A.D.P.)
| |
Collapse
|
6
|
Huang YH, Chen WY, Liu YH, Li TY, Lin CP, Cheong PL, Wang YM, Jeng JS, Sun CW, Wu CC. Mild cognitive impairment estimation based on functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300251. [PMID: 37697821 DOI: 10.1002/jbio.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Patients with mild cognitive impairment (MCI) are at a high risk of developing future dementia. However, early identification and active intervention could potentially reduce its morbidity and the incidence of dementia. Functional near-infrared spectroscopy (fNIRS) has been proposed as a noninvasive modality for detecting oxygenation changes in the time-varying hemodynamics of the prefrontal cortex. This study sought to provide an effective method for detecting patients with MCI using fNIRS and the Wisconsin card sorting test (WCST) to evaluate changes in blood oxygenation. The results revealed that all groups with a lower mini-mental state examination grade had a higher increase in HHb concentration during a modified WCST (MCST). The increase in the change in oxygenated hemoglobin concentration in the stroke group was smaller than that in the normal group due to weak cerebrovascular reactivity.
Collapse
Affiliation(s)
- Yi-Hua Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Yu Chen
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yao-Hong Liu
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Ying Li
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pou-Leng Cheong
- Department of Pediatrics, National Taiwan University Hospital, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Min Wang
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wei Sun
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chau-Chung Wu
- Department of Internal Medicine (Cardiology Section), National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Education and Bioethics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Katsumata R, Hosokawa T, Manabe N, Mori H, Wani K, Ishii K, Tanikawa T, Urata N, Ayaki M, Nishino K, Murao T, Suehiro M, Fujita M, Kawanaka M, Haruma K, Kawamoto H, Takao T, Kamada T. Brain activity in response to food images in patients with irritable bowel syndrome and functional dyspepsia. J Gastroenterol 2023; 58:1178-1187. [PMID: 37572136 PMCID: PMC10657794 DOI: 10.1007/s00535-023-02031-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Functional dyspepsia (FD) and irritable bowel syndrome (IBS) are caused and exacerbated by consumption of fatty foods. However, no study has evaluated brain activity in response to food images in patients with disorders of gut-brain interaction (DGBI). This study aimed to compare food preference and brain activity when viewing food images between patients with DGBI and healthy controls. METHODS FD and IBS were diagnosed using the ROME IV criteria. Food preference was assessed using a visual analog scale (VAS). Brain activity in the prefrontal cortex (PFC) in response to food images was investigated using functional near-infrared spectroscopy (fNIRS). RESULTS Forty-one patients were enrolled, including 25 with DGBI. The mean VAS scores for all foods (controls vs. FD vs. IBS: 69.1 ± 3.3 vs. 54.8 ± 3.8 vs. 62.8 ± 3.7, p = 0.02), including fatty foods (78.1 ± 5.4 vs. 43.4 ± 6.3 vs. 64.7 ± 6.1, p < 0.01), were the lowest in patients with FD among all groups. Patients with FD had significantly higher brain activity in the left PFC than those with IBS and healthy controls (mean z-scores in controls vs. FD vs. IBS: - 0.077 ± 0.03 vs. 0.125 ± 0.04 vs. - 0.002 ± 0.03, p < 0.001). CONCLUSIONS Patients with DGBI, particularly those with FD, disliked fatty foods. The brain activity in patients with DGBI differed from that in healthy controls. Increased activity in the PFC of patients with FD was confirmed.
Collapse
Affiliation(s)
- Ryo Katsumata
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan.
| | - Takayuki Hosokawa
- Department of Orthoptics, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Noriaki Manabe
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Hitoshi Mori
- Department of Neurology, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Katsunori Ishii
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Tomohiro Tanikawa
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Noriyo Urata
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Maki Ayaki
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Ken Nishino
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Takahisa Murao
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Mitsuhiko Suehiro
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Minoru Fujita
- Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Hirofumi Kawamoto
- Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Toshihiro Takao
- Department of Health Care Medicine, Kawasaki Medical School, 577, Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoari Kamada
- Department of Health Care Medicine, Kawasaki Medical School General Medical Center, 2-6-1, Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| |
Collapse
|
8
|
Lee TL, Ding Z, Chan AS. Prefrontal hemodynamic features of older adults with preserved visuospatial working memory function. GeroScience 2023; 45:3513-3527. [PMID: 37501047 PMCID: PMC10643746 DOI: 10.1007/s11357-023-00862-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Memory decline has been observed in the aging population and is a risk factor for the later development of dementia. Understanding how memory is preserved in older adults has been an important topic. The present study examines the hemodynamic features of older adults whose memory is comparable with that of young adults. In the present study, 45 younger and 45 older adults performed the visual memory task with various difficulty levels (i.e., the items to be remembered), and their cerebral hemodynamics at each level were measured by functional near-infrared spectroscopy (fNIRS). The results showed that older adults exhibited higher activation than younger adults under more difficult but not easier levels. In addition, older adults whose performance is comparable with that of young adults (i.e., being able to remember six items) showed more right-lateralized activation. However, those unable to do so showed more left-lateralized activation. The results suggested that high-performing older adults possess successful compensatory mechanisms by recruiting cognitive resources in a specialized brain region.
Collapse
Affiliation(s)
- Tsz-Lok Lee
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihan Ding
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Agnes S Chan
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
9
|
Ali MU, Zafar A, Kallu KD, Yaqub MA, Masood H, Hong KS, Bhutta MR. An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study. Bioengineering (Basel) 2023; 10:810. [PMID: 37508837 PMCID: PMC10376657 DOI: 10.3390/bioengineering10070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This work investigates the classification of finger-tapping task images constructed for the initial dip duration of hemodynamics (HR) associated with the small brain area of the left motor cortex using functional near-infrared spectroscopy (fNIRS). Different layers (i.e., 16-layers, 19-layers, 22-layers, and 25-layers) of isolated convolutional neural network (CNN) designed from scratch are tested to classify the right-hand thumb and little finger-tapping tasks. Functional t-maps of finger-tapping tasks (thumb, little) were constructed for various durations (0.5 to 4 s with a uniform interval of 0.5 s) for the initial dip duration using a three gamma functions-based designed HR function. The results show that the 22-layered isolated CNN model yielded the highest classification accuracy of 89.2% with less complexity in classifying the functional t-maps of thumb and little fingers associated with the same small brain area using the initial dip. The results further demonstrated that the active brain area of the two tapping tasks from the same small brain area are highly different and well classified using functional t-maps of the initial dip (0.5 to 4 s) compared to functional t-maps generated for delayed HR (14 s). This study shows that the images constructed for initial dip duration can be helpful in the future for fNIRS-based diagnosis or cortical analysis of abnormal cerebral oxygen exchange in patients.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Karam Dad Kallu
- Department of Robotics and Intelligent Machine Engineering (RIME), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques the Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Haris Masood
- Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
| | - Muhammad Raheel Bhutta
- Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
10
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Xue CY, Gao T, Mao E, Kou ZZ, Dong L, Gao F. Hippocampus Insulin Receptors Regulate Episodic and Spatial Memory Through Excitatory/Inhibitory Balance. ASN Neuro 2023; 15:17590914231206657. [PMID: 37908089 PMCID: PMC10621302 DOI: 10.1177/17590914231206657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
It is well known that the hippocampus is a vital brain region playing a key role in both episodic and spatial memory. Insulin receptors (InsRs) are densely distributed in the hippocampus and are important for its function. However, the effects of InsRs on the function of the specific hippocampal cell types remain elusive. In this study, hippocampal InsRs knockout mice had impaired episodic and spatial memory. GABAergic neurons and glutamatergic neurons in the hippocampus are involved in the balance between excitatory and inhibitory (E/I) states and participate in the processes of episodic and spatial memory. InsRs are located mainly at excitatory neurons in the hippocampus, whereas 8.5% of InsRs are glutamic acid decarboxylase 2 (GAD2)::Ai9-positive (GABAergic) neurons. Next, we constructed a transgenic mouse system in which InsR expression was deleted from GABAergic (glutamate decarboxylase 2::InsRfl/fl, GAD2Cre::InsRfl/fl) or glutamatergic neurons (vesicular glutamate transporter 2::InsRfl/fl,Vglut2Cre::InsRfl/fl). Our results showed that in comparison to the InsRfl/fl mice, both episodic and spatial memory were lower in GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl. In addition, both GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl were associated with more anxiety and lower glucose tolerance. These findings reveal that hippocampal InsRs might be crucial for episodic and spatial memory through E/I balance hippocampal regulation.
Collapse
Affiliation(s)
- Cai-Yan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tian Gao
- Division of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - E Mao
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|