1
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
2
|
Mora MT, Ferrero JM, Romero L, Trenor B. Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLoS One 2017; 12:e0187739. [PMID: 29117223 PMCID: PMC5678731 DOI: 10.1371/journal.pone.0187739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/25/2017] [Indexed: 12/27/2022] Open
Abstract
Abnormal intracellular Ca2+ handling is the major contributor to the depressed cardiac contractility observed in heart failure. The electrophysiological remodeling associated with this pathology alters both the action potential and the Ca2+ dynamics, leading to a defective excitation-contraction coupling that ends in mechanical dysfunction. The importance of maintaining a correct intracellular Ca2+ concentration requires a better understanding of its regulation by ionic mechanisms. To study the electrical activity and ionic homeostasis of failing myocytes, a modified version of the O’Hara et al. human action potential model was used, including electrophysiological remodeling. The impact of the main ionic transport mechanisms was analyzed using single-parameter sensitivity analyses, the first of which explored the modulation of electrophysiological characteristics related to Ca2+ exerted by the remodeled parameters. The second sensitivity analysis compared the potential consequences of modulating individual channel conductivities, as one of the main effects of potential drugs, on Ca2+ dynamic properties under both normal conditions and in heart failure. The first analysis revealed the important contribution of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) dysfunction to the altered Ca2+ homeostasis, with the Na+/Ca2+ exchanger (NCX) and other Ca2+ cycling proteins also playing a significant role. Our results highlight the importance of improving the SR uptake function to increase Ca2+ content and restore Ca2+ homeostasis and contractility. The second sensitivity analysis highlights the different response of the failing myocyte versus the healthy myocyte to potential pharmacological actions on single channels. The result of modifying the conductances of the remodeled proteins such as SERCA and NCX in heart failure has less impact on Ca2+ modulation. These differences should be taken into account when designing drug therapies.
Collapse
Affiliation(s)
- Maria T. Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jose M. Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
3
|
Status of Therapeutic Gene Transfer to Treat Cardiovascular Disease in Dogs and Cats. Vet Clin North Am Small Anim Pract 2017. [PMID: 28647114 DOI: 10.1016/j.cvsm.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene therapy is a procedure resulting in the transfer of a gene into an individual's cells to treat a disease. One goal of gene transfer is to express a functional gene when the endogenous gene is inactive. However, because heart failure is a complex disease characterized by multiple abnormalities at the cellular level, an alternate gene delivery approach is to alter myocardial protein levels to improve function. This article discusses background information on gene delivery, including packaging, administration, and a brief discussion of some of the candidate transgenes likely to alter the progression of naturally occurring heart disease in dogs and cats.
Collapse
|
4
|
Sorriento D, Ciccarelli M, Cipolletta E, Trimarco B, Iaccarino G. "Freeze, Don't Move": How to Arrest a Suspect in Heart Failure - A Review on Available GRK2 Inhibitors. Front Cardiovasc Med 2016; 3:48. [PMID: 27999776 PMCID: PMC5138235 DOI: 10.3389/fcvm.2016.00048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease and heart failure (HF) still collect the largest toll of death in western societies and all over the world. A growing number of molecular mechanisms represent possible targets for new therapeutic strategies, which can counteract the metabolic and structural changes observed in the failing heart. G protein-coupled receptor kinase 2 (GRK2) is one of such targets for which experimental and clinical evidence are established. Indeed, several strategies have been carried out in place to interface with the known GRK2 mechanisms of action in the failing heart. This review deals with results from basic and preclinical studies. It shows different strategies to inhibit GRK2 in HF in vivo (βARK-ct gene therapy, treatment with gallein, and treatment with paroxetine) and in vitro (RNA aptamer, RKIP, and peptide-based inhibitors). These strategies are based either on the inhibition of the catalytic activity of the kinase (“Freeze!”) or the prevention of its shuttling within the cell (“Don’t Move!”). Here, we review the peculiarity of each strategy with regard to the ability to interact with the multiple tasks of GRK2 and the perspective development of eventual clinical use.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno , Baronissi, SA , Italy
| | - Ersilia Cipolletta
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples , Italy
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno , Baronissi, SA , Italy
| |
Collapse
|
5
|
Tevaearai HT, Gazdhar A, Giraud MN, Flück M. In vivo electroporation-mediated gene delivery to the beating heart. Methods Mol Biol 2014; 1121:223-9. [PMID: 24510826 DOI: 10.1007/978-1-4614-9632-8_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. Here, we describe two protocols involving in vivo electroporation for gene transfer to the beating heart.
Collapse
Affiliation(s)
- Hendrik T Tevaearai
- Department of Cardiovascular Surgery, Inselspital, Berne University Hospital, Berne, Switzerland
| | | | | | | |
Collapse
|
6
|
Koenig O, Walker T, Perle N, Zech A, Neumann B, Schlensak C, Wendel HP, Nolte A. New aspects of gene-silencing for the treatment of cardiovascular diseases. Pharmaceuticals (Basel) 2013; 6:881-914. [PMID: 24276320 PMCID: PMC3816708 DOI: 10.3390/ph6070881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/15/2013] [Accepted: 07/11/2013] [Indexed: 01/17/2023] Open
Abstract
Coronary heart disease (CHD), mainly caused by atherosclerosis, represents the single leading cause of death in industrialized countries. Besides the classical interventional therapies new applications for treatment of vascular wall pathologies are appearing on the horizon. RNA interference (RNAi) represents a novel therapeutic strategy due to sequence-specific gene-silencing through the use of small interfering RNA (siRNA). The modulation of gene expression by short RNAs provides a powerful tool to theoretically silence any disease-related or disease-promoting gene of interest. In this review we outline the RNAi mechanisms, the currently used delivery systems and their possible applications to the cardiovascular system. Especially, the optimization of the targeting and transfection procedures could enhance the efficiency of siRNA delivery drastically and might open the way to clinical applicability. The new findings of the last years may show the techniques to new innovative therapies and could probably play an important role in treating CHD in the future.
Collapse
Affiliation(s)
- Olivia Koenig
- Clinical Research Laboratory, Dept. of Thoracic, Cardiac and Vascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Louridas GE, Lourida KG. A conceptual paradigm of heart failure and systems biology approach. Int J Cardiol 2012; 159:5-13. [DOI: 10.1016/j.ijcard.2011.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/03/2011] [Indexed: 10/17/2022]
|
8
|
Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, Ghaedi M, Arjmand S, Najavand S, Khoshdel A. HIF-1α Overexpression Induces Angiogenesis in Mesenchymal Stem Cells. Biores Open Access 2012; 1:174-83. [PMID: 23514846 PMCID: PMC3559201 DOI: 10.1089/biores.2012.9905] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapy continues to be an innovative and promising strategy for heart failure. Stem cell injection alone, however, is hampered by poor cell survival and differentiation. This study was aimed to explore the possibility of improving stem cell therapy through genetic modification of stem cells, in order for them to promote angiogenesis in an auto- and paracrine manner under hypoxic conditions. Hypoxia inducible factor-1α was overexpressed in bone marrow-derived mesenchymal stem cells (MSCs) by stable transduction using a lentiviral vector. Under hypoxic and normoxic conditions, the vascular endothelial growth factor (VEGF) concentration in the cells' supernatant was measured by an enzyme-linked immunosorbent assay. Migration was assayed by wound healing and c-Met expression by flow cytometry. Tube formation was evaluated on a Matrigel basement membrane. The concentration of VEGF was significantly increased in the supernatant of HIF-1α-overexpressing MSCs; this medium was significantly more effective in inducing endothelial cell migration compared to untransduced MSCs. Transduced cells showed increased levels of c-Met expression and were more efficient at tube formation. However, no indication of differentiation toward an endothelial phenotype was observed. This study indicated that genetic modification of MSCs by HIF-1α overexpression has the potential to improve components of the angiogenesis process under a hypoxic condition by paracrine and autocrine mechanisms.
Collapse
Affiliation(s)
- Vahid Razban
- National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Eigeldinger-Berthou S, Buntschu P, Flück M, Frobert A, Ferrié C, Carrel TP, Tevaearai HT, Kadner A. Electric pulses augment reporter gene expression in the beating heart. J Gene Med 2012; 14:191-203. [PMID: 22262642 DOI: 10.1002/jgm.2603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gene therapy of the heart has been attempted in a number of clinical trials with the injection of naked DNA, although quantitative information on myocellular transfection rates is not available. The present study aimed to quantify the efficacy of electropulsing protocols that differ in pulse duration and number to stimulate transfection of cardiomyocytes and to determine the impact on myocardial integrity. METHODS Reporter plasmid for constitutive expression of green fluorescent protein (GFP) was injected into the left ventricle of beating hearts of adult, male Lewis rats. Four electrotransfer protocols consisting of repeated long pulses (8 × 20 ms), trains of short pulses (eight trains of either 60 or 80 × 100 µs) or their combination were compared with control procedures concerning the degree of GFP expression and the effect on infiltration, fibrosis and apoptosis. RESULTS All tested protocols produced GFP expression at the site of plasmid injection. Continuous pulses were most effective and increased the number of GFP-positive cardiomyocytes by more than 300-fold compared to plasmid injection alone (p < 0.05). Concomitantly, the incidence of macrophage infiltration, fibrosis and cell death was increased. Trains of short pulses reduced macrophage infiltration and fibrosis by four- and two-fold, respectively, although they were 20-fold less efficient in stimulating cardiomyocyte transfection. GFP expression co-related to delivered electric energy, infiltration and fibrosis, although not apoptosis. CONCLUSIONS The data imply that electropulsing of the myocardium promotes the overexpression of exogenous protein in mature cardiomyocytes in relation to an injury component. Fractionation of pulses is indicated as a option for sophisticated gene therapeutic approaches to the heart.
Collapse
Affiliation(s)
- Sylvie Eigeldinger-Berthou
- Department of Cardiovascular Surgery, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Simón-Yarza T, Formiga FR, Tamayo E, Pelacho B, Prosper F, Blanco-Prieto MJ. Vascular endothelial growth factor-delivery systems for cardiac repair: an overview. Am J Cancer Res 2012; 2:541-52. [PMID: 22737191 PMCID: PMC3381347 DOI: 10.7150/thno.3682] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/23/2011] [Indexed: 11/05/2022] Open
Abstract
Since the discovery of the Vascular Endothelial Growth Factor (VEGF) and its leading role in the angiogenic process, this has been seen as a promising molecule for promoting neovascularization in the infarcted heart. However, even though several clinical trials were initiated, no therapeutic effects were observed, due in part to the short half life of this factor when administered directly to the tissue. In this context, drug delivery systems appear to offer a promising strategy to overcome limitations in clinical trials of VEGF.The aim of this paper is to review the principal drug delivery systems that have been developed to administer VEGF in cardiovascular disease. Studies published in the last 5 years are reviewed and the main features of these systems are explained. The tissue engineering concept is introduced as a therapeutic alternative that holds promise for the near future.
Collapse
|
11
|
Miyazaki Y, Ikeda Y, Shiraishi K, Fujimoto SN, Aoyama H, Yoshimura K, Inui M, Hoshijima M, Kasahara H, Aoki H, Matsuzaki M. Heart failure-inducible gene therapy targeting protein phosphatase 1 prevents progressive left ventricular remodeling. PLoS One 2012; 7:e35875. [PMID: 22558250 PMCID: PMC3338799 DOI: 10.1371/journal.pone.0035875] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/23/2012] [Indexed: 01/16/2023] Open
Abstract
Background The targeting of Ca2+ cycling has emerged as a potential therapy for the treatment of severe heart failure. These approaches include gene therapy directed at overexpressing sarcoplasmic reticulum (SR) Ca2+ ATPase, or ablation of phospholamban (PLN) and associated protein phosphatase 1 (PP1) protein complexes. We previously reported that PP1β, one of the PP1 catalytic subunits, predominantly suppresses Ca2+ uptake in the SR among the three PP1 isoforms, thereby contributing to Ca2+ downregulation in failing hearts. In the present study, we investigated whether heart-failure-inducible PP1β-inhibition by adeno-associated viral-9 (AAV9) vector mediated gene therapy is beneficial for preventing disease progression in genetic cardiomyopathic mice. Methods We created an adeno-associated virus 9 (AAV9) vector encoding PP1β short-hairpin RNA (shRNA) or negative control (NC) shRNA. A heart failure inducible gene expression system was employed using the B-type natriuretic protein (BNP) promoter conjugated to emerald-green fluorescence protein (EmGFP) and the shRNA sequence. AAV9 vectors (AAV9-BNP-EmGFP-PP1βshRNA and AAV9-BNP-EmGFP-NCshRNA) were injected into the tail vein (2×1011 GC/mouse) of muscle LIM protein deficient mice (MLPKO), followed by serial analysis of echocardiography, hemodynamic measurement, biochemical and histological analysis at 3 months. Results In the MLPKO mice, BNP promoter activity was shown to be increased by detecting both EmGFP expression and the induced reduction of PP1β by 25% in the myocardium. Inducible PP1βshRNA delivery preferentially ameliorated left ventricular diastolic function and mitigated adverse ventricular remodeling. PLN phosphorylation was significantly augmented in the AAV9-BNP-EmGFP-PP1βshRNA injected hearts compared with the AAV9-BNP-EmGFP-NCshRNA group. Furthermore, BNP production was reduced, and cardiac interstitial fibrosis was abrogated at 3 months. Conclusion Heart failure-inducible molecular targeting of PP1β has potential as a novel therapeutic strategy for heart failure.
Collapse
Affiliation(s)
- Yosuke Miyazaki
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuhiro Ikeda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
- * E-mail:
| | - Kozo Shiraishi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shizuka N. Fujimoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hidekazu Aoyama
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koichi Yoshimura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masahiko Hoshijima
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Masunori Matsuzaki
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
12
|
Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res 2012; 109:1415-28. [PMID: 22158649 DOI: 10.1161/circresaha.111.243071] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment, and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches must be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review highlights biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long-lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells before reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease, or aging.
Collapse
|
13
|
Gao G, Bish LT, Sleeper MM, Mu X, Sun L, Lou Y, Duan J, Hu C, Wang L, Sweeney HL. Transendocardial Delivery of AAV6 Results in Highly Efficient and Global Cardiac Gene Transfer in Rhesus Macaques. Hum Gene Ther 2011; 22:979-84. [PMID: 21563985 DOI: 10.1089/hum.2011.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Guangping Gao
- Gene Therapy Center, University of Massachusetts School of Medicine, Worcester, MA 01605
- Department of Microbiology and Physiology Systems, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Lawrence T. Bish
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Meg M. Sleeper
- Division of Cardiology, Department of Clinical Studies, Veterinary Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Xin Mu
- Gene Therapy Center, University of Massachusetts School of Medicine, Worcester, MA 01605
- Department of Microbiology and Physiology Systems, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Lan Sun
- West China School of Clinical Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - You Lou
- West China School of Clinical Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Jiachuan Duan
- Chengdu National Center for Safety Evaluation of Drugs, Chengdu, 610041, P.R. China
| | - Chunyan Hu
- Chengdu National Center for Safety Evaluation of Drugs, Chengdu, 610041, P.R. China
| | - Li Wang
- Chengdu National Center for Safety Evaluation of Drugs, Chengdu, 610041, P.R. China
| | - H. Lee Sweeney
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
14
|
Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats. J Vet Cardiol 2011; 13:131-40. [PMID: 21640678 DOI: 10.1016/j.jvc.2011.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/24/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
Abstract
Gene therapy is a procedure resulting in the transfer of a gene(s) into an individual's cells to treat a disease, which is designed to produce a protein or functional RNA (the gene product). Although most current gene therapy clinical trials focus on cancer and inherited diseases, multiple studies have evaluated the efficacy of gene therapy to abrogate various forms of heart disease. Indeed, human clinical trials are currently underway. One goal of gene transfer may be to express a functional gene when the endogenous gene is inactive. Alternatively, complex diseases such as end stage heart failure are characterized by a number of abnormalities at the cellular level, many of which can be targeted using gene delivery to alter myocardial protein levels. This review will discuss issues related to gene vector systems, gene delivery strategies and two cardiovascular diseases in dogs successfully treated with therapeutic gene delivery.
Collapse
|
15
|
Xu XH, Xu J, Xue L, Cao HL, Liu X, Chen YJ. VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation. J Cardiothorac Surg 2011; 6:54. [PMID: 21496294 PMCID: PMC3094376 DOI: 10.1186/1749-8090-6-54] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/16/2011] [Indexed: 01/16/2023] Open
Abstract
Background Aortic stenosis (AS) affects 3 percent of persons older than 65 years and leads to greater morbidity and mortality than other cardiac valve diseases. Surgery with aortic valve replacement (AVR) for severe symptomatic AS is currently the only treatment option. Unfortunately, in patients with poor ventricular function, the mortality and long-term outcome is unsatisfied, and only a minority of these patients could bear surgery. Our previous studies demonstrated that vascular endothelial growth factor (VEGF) protects cardiac function in myocardial infarction model through classic VEGF-PI3k-Akt and unclear mitochondrial anti-apoptosis pathways; promoting cardiomyocyte (CM) proliferation as well. The present study was designed to test whether pre-operative treatment with VEGF improves AS-induced cardiac dysfunction, to be better suitable for AVR, and its potential mechanism. Methods Adult male mice were subjected to AS or sham operation. Two weeks later, adenoviral VEGF (Ad-VEGF), enhanced green fluorescence protein (Ad-EGFP, as a parallel control) or saline was injected into left ventricle free wall. Two weeks after delivery, all mice were measured by echocardiography and harvested for further detection. Results AS for four weeks caused cardiac hypertrophy and left ventricular dysfunction. VEGF treatment increased capillary density, protected mitochondrial function, reduced CMs apoptosis, promoted CMs proliferation and eventually preserved cardiac function. Conclusions Our findings indicate that VEGF could repair AS-induced transition from compensatory cardiac hypertrophy to heart failure.
Collapse
Affiliation(s)
- Xiao H Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P R China
| | | | | | | | | | | |
Collapse
|