1
|
Jain N, Waidi YO. The Multifaceted Role of 3D Printed Conducting Polymers in Next-Generation Energy Devices: A Critical Perspective. JACS AU 2025; 5:411-425. [PMID: 40017762 PMCID: PMC11862948 DOI: 10.1021/jacsau.4c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
The increasing human population is leading to growing consumption of energy sources which requires development in energy devices. The modern iterations of these devices fail to offer sustainable and environmentally friendly answers since they require costly equipment and produce a lot of waste. Three-dimensional (3D) printing has spurred incredible innovation over the years in a variety of fields and is clearly an attractive option because technology can create unique geometric items quickly, cheaply, and with little waste. Conducting polymers (CPs) are a significant family of functional materials that have garnered interest in the research community because of their high conductivity, outstanding sustainability, and economic significance. They have an extensive number of applications involving supercapacitors, power sources, electrochromic gadgets, electrostatic components, conducting pastes, sensors, and biological devices thanks to their special physical and electrical attributes, ease of synthesis, and appropriate frameworks for functional attachment. The use of three-dimensional printing has become popular as an exact way to enhance prepared networks. Rapid technological advancements are reproducing patterns and building structures that enable automated deposition of polymers for intricate structures. Different composites have been created using oxides of metals and carbon to improve the efficiency of the CPs. Such composites have been actively investigated as exceptional energy producers for low-power electronic techniques, and by increasing the range of applications, they have verified increasing surface area, electronic conductivity, and remarkable electrochemical behavior. The hybridization with such materials has produced a range of equipment, such as gathering energy, sensors, protective gadgets, and storage facilities. A few possible uses for these CPs such as sensors and energy storage devices are discussed in this perspective. We also provide an overview of the key strategies for scientific and industrial applications with an eye on potential improvements for a sustainable future.
Collapse
Affiliation(s)
- Nipun Jain
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Yusuf Olatunji Waidi
- Department
of Materials Engineering, Indian Institute
of Science, C.V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
2
|
Vazquez A, de Pariza XL, Ballinger N, Sadaba N, Sun A, Olanrewaju A, Sardon H, Nelson A. Photobase-Catalyzed Thiol-ene Click Chemistry for Light-Based Additive Manufacturing. Polym Chem 2025; 16:589-597. [PMID: 40271496 PMCID: PMC12014190 DOI: 10.1039/d4py01120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Photo-mediated additive manufacturing from liquid resins (vat photopolymerization) is a rapidly growing field that will enable a new generation of electronic devices, sensors, and soft robotics. Radical-based polymerization remains the standard for photo-curing resins during the printing process due to its fast polymerization kinetics and the range of available photoinitiators. Comparatively, there are fewer examples of non-radical chemical reactions for vat photopolymerization, despite the potential for expanding the range of functional materials and devices. Herein, we demonstrate ionic liquid resins for vat photopolymerization that utilize photo-base generators (PBGs) to catalyze thiol-Michael additions as the network forming reaction. The ionic liquid increased the rate of curing, while also introducing ionic conductivity to the printed structures. Among the PBGs explored, 2-(2-nitrophenyl)-propyloxycarbonyl tetramethylguanidine (NPPOC-TMG) was the most effective for the vat photopolymerization process wherein 250 μm features were successfully printed. Lastly, we compared the mechanical properties of the PBG catalyzed thiol-Michael network versus the radical polymerized network. Interestingly, the thiol-Michael network had an overall improvement in ductility compared to the radical initiated resin, since step-growth methodologies afford more defined networks than chain growth. These ionic liquid resins for thiol-Michael additions expand the chemistries available for vat photopolymerization and present opportunities for fabricating devices such as sensors.
Collapse
Affiliation(s)
- Antonio Vazquez
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Nathan Ballinger
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Aileen Sun
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Ayokunle Olanrewaju
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Kazmer DO, Olanrewaju RH, Elbert DC, Nguyen TD. Design of Shape Forming Elements for Architected Composites via Bayesian Optimization and Genetic Algorithms: A Concept Evaluation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5339. [PMID: 39517609 PMCID: PMC11547659 DOI: 10.3390/ma17215339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This article presents the first use of shape forming elements (SFEs) to produce architected composites from multiple materials in an extrusion process. Each SFE contains a matrix of flow channels connecting input and output ports, where materials are routed between corresponding ports. The mathematical operations of rotation and shifting are described, and design automation is explored using Bayesian optimization and genetic algorithms to select fifty or more parameters for minimizing two objective functions. The first objective aims to match a target cross-section by minimizing the pixel-by-pixel error, which is weighted with the structural similarity index (SSIM). The second objective seeks to maximize information content by minimizing the SSIM relative to a white image. Satisfactory designs are achieved with better objective function values observed in rectangular rather than square flow channels. Validation extrusion of modeling clay demonstrates that while SFEs impose complex material transformations, they do not achieve the material distributions predicted by the digital model. Using the SSIM for results comparison, initial stages yielded SSIM values near 0.8 between design and simulation, indicating a good initial match. However, the control of material processing tended to decline with successive SFE processing with the SSIM of the extruded output dropping to 0.023 relative to the design intent. Flow simulations more closely replicated the observed structures with SSIM values around 0.4 but also failed to predict the intended cross-sections. The evaluation highlights the need for advanced modeling techniques to enhance the predictive accuracy and functionality of SFEs for biomedical, energy storage, and structural applications.
Collapse
Affiliation(s)
- David O. Kazmer
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Rebecca H. Olanrewaju
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - David C. Elbert
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (D.C.E.); (T.D.N.)
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; (D.C.E.); (T.D.N.)
| |
Collapse
|
4
|
Berman A, Hsiao K, Root SE, Choi H, Ilyn D, Xu C, Stein E, Cutkosky M, DeSimone JM, Bao Z. Additively manufactured micro-lattice dielectrics for multiaxial capacitive sensors. SCIENCE ADVANCES 2024; 10:eadq8866. [PMID: 39365852 PMCID: PMC11451511 DOI: 10.1126/sciadv.adq8866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Soft sensors that can perceive multiaxial forces, such as normal and shear, are of interest for dexterous robotic manipulation and monitoring of human performance. Typical planar fabrication techniques have substantial design constraints that often prohibit the creation of functionally compelling and complex architectures. Moreover, they often require multiple-step operations for production. Here, we use an additive manufacturing process based on continuous liquid interface production to create high-resolution (30-micrometer) three-dimensional elastomeric polyurethane lattices for use as dielectric layers in capacitive sensors. We show that the capacitive responses and sensitivities are highly tunable through designs of lattice type, thickness, and material-void volume percentage. Microcomputed tomography and finite element simulation are used to elucidate the influence of lattice design on the deformation mechanism and concomitant sensing behavior. The advantage of three-dimensional printing is exhibited with examples of fully printed representative athletic equipment with integrated sensors.
Collapse
Affiliation(s)
- Arielle Berman
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kaiwen Hsiao
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Samuel E. Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hojung Choi
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Daniel Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily Stein
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mark Cutkosky
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph M. DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Brown NM, VanSaders B, Kronenfeld JM, DeSimone JM, Jaeger HM. Direct measurement of forces in air-based acoustic levitation systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:094901. [PMID: 39230560 DOI: 10.1063/5.0225745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Acoustic levitation is frequently used for non-contact manipulation of objects and to study the impact of microgravity on physical and biological processes. While the force field produced by sound pressure lifts particles against gravity (primary acoustic force), multiple levitating objects in the same acoustic cavity interact via forces that arise from scattered sound (secondary acoustic forces). Current experimental techniques for obtaining these force fields are not well-suited for mapping the primary force field at high spatial resolution and cannot directly measure the secondary scattering force. Here, we introduce a method that can measure both acoustic forces in situ, including secondary forces in the near-field limit between arbitrarily shaped, closely spaced objects. Operating similarly to an atomic force microscope, the method inserts into the acoustic cavity a suitably shaped probe tip at the end of a long, flexible cantilever and optically detects its deflection. This makes it possible to measure forces with a resolution better than 50 nN and also to apply stress or strain in a controlled manner to manipulate levitated objects. We demonstrate this by extracting the acoustic potential present in a levitation cavity, directly measuring the acoustic scattering force between two objects, and applying tension to a levitated granular raft of acoustically bound particles in order to obtain the force-displacement curve for its deformation.
Collapse
Affiliation(s)
- Nina M Brown
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Bryan VanSaders
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Jason M Kronenfeld
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Joseph M DeSimone
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Heinrich M Jaeger
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
7
|
Kronenfeld JM, Rother L, Saccone MA, Dulay MT, DeSimone JM. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature 2024; 627:306-312. [PMID: 38480965 PMCID: PMC10937373 DOI: 10.1038/s41586-024-07061-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/12/2024] [Indexed: 03/17/2024]
Abstract
Particle fabrication has attracted recent attention owing to its diverse applications in bioengineering1,2, drug and vaccine delivery3-5, microfluidics6,7, granular systems8,9, self-assembly5,10,11, microelectronics12,13 and abrasives14. Herein we introduce a scalable, high-resolution, 3D printing technique for the fabrication of shape-specific particles based on roll-to-roll continuous liquid interface production (r2rCLIP). We demonstrate r2rCLIP using single-digit, micron-resolution optics in combination with a continuous roll of film (in lieu of a static platform), enabling the rapidly permutable fabrication and harvesting of shape-specific particles from a variety of materials and with complex geometries, including geometries not possible to achieve with advanced mould-based techniques. We demonstrate r2rCLIP production of mouldable and non-mouldable shapes with voxel sizes as small as 2.0 × 2.0 µm2 in the print plane and 1.1 ± 0.3 µm unsupported thickness, at speeds of up to 1,000,000 particles per day. Such microscopic particles with permutable, intricate designs enable direct integration within biomedical, analytical and advanced materials applications.
Collapse
Affiliation(s)
| | - Lukas Rother
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Max A Saccone
- Department of Chemical Engineering, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Joseph M DeSimone
- Department of Chemical Engineering, Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
9
|
Roy Barman S, Gavit P, Chowdhury S, Chatterjee K, Nain A. 3D-Printed Materials for Wastewater Treatment. JACS AU 2023; 3:2930-2947. [PMID: 38034974 PMCID: PMC10685417 DOI: 10.1021/jacsau.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
The increasing levels of water pollution pose an imminent threat to human health and the environment. Current modalities of wastewater treatment necessitate expensive instrumentation and generate large amounts of waste, thus failing to provide ecofriendly and sustainable solutions for water purification. Over the years, novel additive manufacturing technology, also known as three-dimensional (3D) printing, has propelled remarkable innovation in different disciplines owing to its capability to fabricate customized geometric objects rapidly and cost-effectively with minimal byproducts and hence undoubtedly emerged as a promising alternative for wastewater treatment. Especially in membrane technology, 3D printing enables the designing of ultrathin membranes and membrane modules layer-by-layer with different morphologies, complex hierarchical structures, and a wide variety of materials otherwise unmet using conventional fabrication strategies. Extensive research has been dedicated to preparing membrane spacers with excellent surface properties, potentially improving the membrane filtration performance for water remediation. The revolutionary developments in membrane module fabrication have driven the utilization of 3D printing approaches toward manufacturing advanced membrane components, including biocarriers, sorbents, catalysts, and even whole membranes. This perspective highlights recent advances and essential outcomes in 3D printing technologies for wastewater treatment. First, different 3D printing techniques, such as material extrusion, selective laser sintering (SLS), and vat photopolymerization, emphasizing membrane fabrication, are briefly discussed. Importantly, in this Perspective, we focus on the unique 3D-printed membrane modules, namely, feed spacers, biocarriers, sorbents, and so on. The unparalleled advantages of 3D printed membrane components in surface area, geometry, and thickness and their influence on antifouling, removal efficiency, and overall membrane performance are underlined. Moreover, the salient applications of 3D printing technologies for water desalination, oil-water separation, heavy metal and organic pollutant removal, and nuclear decontamination are also outlined. This Perspective summarizes the recent works, current limitations, and future outlook of 3D-printed membrane technologies for wastewater treatment.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Pratik Gavit
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Saswat Chowdhury
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kaushik Chatterjee
- Department
of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| | - Amit Nain
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
10
|
Wu YCM, Chyr G, Park H, Makar-Limanov A, Shi Y, DeSimone JM, Bao Z. Stretchable, recyclable thermosets via photopolymerization and 3D printing of hemiacetal ester-based resins. Chem Sci 2023; 14:12535-12540. [PMID: 38020396 PMCID: PMC10646930 DOI: 10.1039/d3sc03623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving a circular plastics economy is one of our greatest environmental challenges, yet conventional mechanical recycling remains inadequate for thermoplastics and incompatible with thermosets. The next generation of plastic materials will be designed with the capacity for degradation and recycling at end-of-use. To address this opportunity in the burgeoning technologies of 3D printing and photolithography, we report a modular system for the production of degradable and recyclable thermosets via photopolymerization. The polyurethane backbone imparts robust, elastic, and tunable mechanical properties, while the use of hemiacetal ester linkages allows for facile degradation under mild acid. The synthetic design based on hemiacetal esters enables simple purification to regenerate a functional polyurethane diol.
Collapse
Affiliation(s)
- You-Chi Mason Wu
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
| | - Gloria Chyr
- Department of Materials Science and Engineering, Stanford University Stanford CA 94305 USA
| | - Hyunchang Park
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
| | | | - Yuran Shi
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Joseph M DeSimone
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
- Department of Radiology, Stanford University Stanford CA 94305 USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University Stanford CA 94305 USA
| |
Collapse
|
11
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
12
|
Fonseca N, Thummalapalli SV, Jambhulkar S, Ravichandran D, Zhu Y, Patil D, Thippanna V, Ramanathan A, Xu W, Guo S, Ko H, Fagade M, Kannan AM, Nian Q, Asadi A, Miquelard-Garnier G, Dmochowska A, Hassan MK, Al-Ejji M, El-Dessouky HM, Stan F, Song K. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302718. [PMID: 37501325 DOI: 10.1002/smll.202302718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
Collapse
Affiliation(s)
- Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Hyunwoong Ko
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Mofe Fagade
- Mechanical Engineering, School of Engineering for Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Arunchala M Kannan
- Fuel Cell Laboratory, The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Qiong Nian
- School of Engineering for Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85287, USA
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution (ETID), Texas A&M University, College Station, TX, 77843, USA
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Anna Dmochowska
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Hassan M El-Dessouky
- Physics Department, Faculty of Science, Galala University, Galala City, 43511, Egypt
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Felicia Stan
- Center of Excellence Polymer Processing & Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania
| | - Kenan Song
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Mechanical Engineering, University of Georgia, 302 E. Campus Rd, Athens, Georgia, 30602, United States
| |
Collapse
|
13
|
Rajesh N, Coates I, Driskill MM, Dulay MT, Hsiao K, Ilyin D, Jacobson GB, Kwak JW, Lawrence M, Perry J, Shea CO, Tian S, DeSimone JM. 3D-Printed Microarray Patches for Transdermal Applications. JACS AU 2022; 2:2426-2445. [PMID: 36465529 PMCID: PMC9709783 DOI: 10.1021/jacsau.2c00432] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
The intradermal (ID) space has been actively explored as a means for drug delivery and diagnostics that is minimally invasive. Microneedles or microneedle patches or microarray patches (MAPs) are comprised of a series of micrometer-sized projections that can painlessly puncture the skin and access the epidermal/dermal layer. MAPs have failed to reach their full potential because many of these platforms rely on dated lithographic manufacturing processes or molding processes that are not easily scalable and hinder innovative designs of MAP geometries that can be achieved. The DeSimone Laboratory has recently developed a high-resolution continuous liquid interface production (CLIP) 3D printing technology. This 3D printer uses light and oxygen to enable a continuous, noncontact polymerization dead zone at the build surface, allowing for rapid production of MAPs with precise and tunable geometries. Using this tool, we are now able to produce new classes of lattice MAPs (L-MAPs) and dynamic MAPs (D-MAPs) that can deliver both solid state and liquid cargos and are also capable of sampling interstitial fluid. Herein, we will explore how additive manufacturing can revolutionize MAP development and open new doors for minimally invasive drug delivery and diagnostic platforms.
Collapse
Affiliation(s)
- Netra
U. Rajesh
- Department
of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Ian Coates
- Department
of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Madison M. Driskill
- Department
of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Maria T. Dulay
- Department
of Radiology, Stanford University, Stanford, California94305, United States
| | - Kaiwen Hsiao
- Department
of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Dan Ilyin
- Department
of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Gunilla B. Jacobson
- Department
of Radiology, Stanford University, Stanford, California94305, United States
| | - Jean Won Kwak
- Department
of Radiology, Stanford University, Stanford, California94305, United States
| | - Micah Lawrence
- Department
of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Jillian Perry
- Eshelman
School of Pharmacy, University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina27599, United States
| | - Cooper O. Shea
- Department
of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Shaomin Tian
- Department
of Microbiology and Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Joseph M. DeSimone
- Department
of Chemical Engineering, Stanford University, Stanford, California94305, United States
- Department
of Radiology, Stanford University, Stanford, California94305, United States
| |
Collapse
|
14
|
Hsiao K, Lee BJ, Samuelsen T, Lipkowitz G, Kronenfeld JM, Ilyn D, Shih A, Dulay MT, Tate L, Shaqfeh ESG, DeSimone JM. Single-digit-micrometer-resolution continuous liquid interface production. SCIENCE ADVANCES 2022; 8:eabq2846. [PMID: 36383664 PMCID: PMC9668307 DOI: 10.1126/sciadv.abq2846] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/28/2022] [Indexed: 05/29/2023]
Abstract
To date, a compromise between resolution and print speed has rendered most high-resolution additive manufacturing technologies unscalable with limited applications. By combining a reduction lens optics system for single-digit-micrometer resolution, an in-line camera system for contrast-based sharpness optimization, and continuous liquid interface production (CLIP) technology for high scalability, we introduce a single-digit-micrometer-resolution CLIP-based 3D printer that can create millimeter-scale 3D prints with single-digit-micrometer-resolution features in just a few minutes. A simulation model is developed in parallel to probe the fundamental governing principles in optics, chemical kinetics, and mass transport in the 3D printing process. A print strategy with tunable parameters informed by the simulation model is adopted to achieve both the optimal resolution and the maximum print speed. Together, the high-resolution 3D CLIP printer has opened the door to various applications including, but not limited to, biomedical, MEMS, and microelectronics.
Collapse
Affiliation(s)
- Kaiwen Hsiao
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Lee
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tim Samuelsen
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gabriel Lipkowitz
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Dan Ilyn
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Audrey Shih
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Maria T. Dulay
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lee Tate
- Digital Light Innovations, Austin, TX 78728, USA
| | - Eric S. G. Shaqfeh
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph M. DeSimone
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|