1
|
Pradhan A, Biswal S, Bhal S, Biswal BK, Kundu CN, Subuddhi U, Pati A, Hassan PA, Patel S. Amphiphilic Poly(ethylene glycol)-Cholesterol Conjugate: Stable Micellar Formulation for Efficient Loading and Effective Intracellular Delivery of Curcumin. ACS APPLIED BIO MATERIALS 2025; 8:1418-1436. [PMID: 39907519 DOI: 10.1021/acsabm.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A biodegradable and biocompatible micellar-based drug delivery system was developed using amphiphilic methoxy-poly(ethylene glycol)-cholesterol (C1) and poly(ethylene glycol)-S-S-cholesterol (C2) conjugates and applied to the tumoral release of the water-insoluble drug curcumin. These synthesized surfactants C1 and C2 were found to form stable micelles (CMC ∼ 6 μM) and an average hydrodynamic size of around 20-25 nm. The curcumin-encapsulated C1 micelle was formulated by a solvent evaporation method. A very high drug encapsulation efficiency (EE) of ∼88% and a drug loading (DL) capacity of ∼9% were determined for both the micelles. From the reduced rate of curcumin degradation and differential scanning calorimetry (DSC) analysis, the stability of the curcumin-loaded C1 micelle was found to be higher than that of the unloaded micelle, which confirmed a more compact structural arrangement in the presence of hydrophobic curcumin. A pH-sensitive release of curcumin (faster release with decrease in pH) was observed for the curcumin-loaded C1 micelle, attributed to the diffusion and relaxation/erosion of micellar aggregates. To achieve reduction environment-sensitive drug release, a disulfide (S-S) chemical linkage-incorporated mPEG-cholesterol conjugate (C2) was synthesized, which was found to show glutathione-responsive faster release of curcumin. The in vitro experiments carried out in SCC9 oral cancer cell lines showed that the blank C1 and C2 micelles were noncytotoxic at lower concentrations (<50 μM), while curcumin-loaded C1 and C2 micelles inhibited the proliferation and promoted the apoptosis. An increased in vitro cytotoxicity was observed for curcumin-loaded micelles compared to that of curcumin itself, demonstrating a better cell penetration efficacy of the micelle. These results were further supplemented by the in vivo anticancer analysis of the curcumin-loaded C1 and C2 micellar formulations using the mice xenograft model. Notably, curcumin-loaded C2 micelles showed a significantly stronger apoptotic effect in xenograft mice compared to curcumin-loaded C1 micelles, indicating the GSH environment-sensitive drug release and improved bioavailability. In conclusion, the mPEG-cholesterol C1 and C2 micellar system with the advantages of small size, high encapsulation efficiency, high drug loading, simple preparing technique, biocompatibility, and good in vitro and in vivo performance may have the potential to be used as a drug carrier for sustained and stimuli-responsive release of the hydrophobic drug curcumin.
Collapse
Affiliation(s)
- Aiswarya Pradhan
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| | - Stuti Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela 769 008, India
| | - Subhasmita Bhal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - Bijesh K Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela 769 008, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| | - Anita Pati
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar 751024, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sabita Patel
- Department of Chemistry, National Institute of Technology, Rourkela 769 008, India
| |
Collapse
|
2
|
Cordeiro AP, Feuser PE, Araújo PHH, Dos Santos DC, Ourique F, Hübner LJ, Pedrosa RC, Sayer C. Doxorubicin and 4-nitrochalcone loaded in beeswax-based nanostructured lipid carriers: In vitro antitumoral screening and evaluation of synergistic effect on HepG-2 cells. Int J Pharm 2024; 666:124788. [PMID: 39368675 DOI: 10.1016/j.ijpharm.2024.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Cancer is the second most deadly disease worldwide, and the most traditional approaches such as chemotherapy still face limitations associated to drug dosage and off-target side effects. To address these issues, we propose the simultaneous administration of 4-Nitrochalcone (4NC) and Doxorubicin (DOX) using beeswax based nanostructured lipid carriers (NLCs). The co-encapsulation of 4NC and DOX in the beeswax based NLCs was performed using the water/oil/water double emulsion technique in association with the melt dispersion approach. The system composed by semi-spherical NLCs with an average diameter around 200 nm and narrow size distribution, displayed colloidal stability before and after redispersion, keeping the zeta potential below -30 mV. The antitumor activity of the nanoparticles was screened on different tumor cell lines, and the induced cellular death and internal ROS levels were analyzed on hepatocarcinoma cells, which were found to be more affected by the combination of 4NC and DOX. The results indicated that 4NC + DOX-NCLs could promote cytotoxicity and oxidative damage-mediated apoptosis in a HepG-2 cell line.
Collapse
Affiliation(s)
- Arthur Poester Cordeiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Paulo Emílio Feuser
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Pedro H H Araújo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Daniela Coelho Dos Santos
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Fabiana Ourique
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora
| | - Luiza Johanna Hübner
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Rozangela Curi Pedrosa
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Claudia Sayer
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, SC, Brazil.
| |
Collapse
|
3
|
Pathak A, Jain NK, Jain K. Dendrimer-mediated targeting of angiogenic biomarkers: therapeutic intervention against cancer. Expert Opin Drug Deliv 2024; 21:1235-1250. [PMID: 39161976 DOI: 10.1080/17425247.2024.2394631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Development of novel vascular networks is a fundamental requirement for tumor growth and progression. In the last decade, biomarkers and underlying molecular pathways of angiogenesis have been intensely investigated to disrupt the initiation and progression of tumor angiogenesis. However, the clinical applications of anti-angiogenic agents are constrained due to toxic side effects, acquired drug resistance, and unavailability of validated biomarkers. AREA COVERED This review discusses the development of dendrimeric nanocarriers that could be a promising domain to explore for the eradication of current challenges associated with angiogenesis-based cancer therapy. Novel drug-delivery approaches with subtle readouts and better understanding of molecular mechanisms have revealed that dendrimers comprise innate anti-angiogenic activity and incorporation of anti-angiogenic agents or gene-silencing RNA could lead to synergistic anti-angiogenic and anticancer effects with reduced side effects. EXPERT OPINION Dendrimer-mediated targeting of angiogenic biomarkers has efficiently led to the vascular normalization, and rational linking of dendrimers with anti-angiogenic agent or siRNA or both might be a potential area to eradicate the current challenges of angiogenesis-based cancer therapy. However, drawbacks associated with the dendrimers-mediated targeting of angiogenic biomarkers, such as poor stability or small expression of these biomarkers on the normal cells, limit their application at market scale.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Narendra Kumar Jain
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| |
Collapse
|
4
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
5
|
Abdel-Wahhab KG, Ashry M, Hassan LK, Gadelmawla MHA, Elqattan GM, El-Fakharany EM, Mannaaa FA. Nano-chitosan/bovine lactoperoxidase and lactoferrin formulation modulates the hepatic deterioration induced by 7,12-dimethylbenz[a]anthracene. COMPARATIVE CLINICAL PATHOLOGY 2023; 32:981-991. [DOI: 10.1007/s00580-023-03510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 11/09/2023]
|
6
|
Elsayed A, Al-Remawi M, Jaber N, Abu-Salah KM. Advances in buccal and oral delivery of insulin. Int J Pharm 2023; 633:122623. [PMID: 36681204 DOI: 10.1016/j.ijpharm.2023.122623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Diabetes mellitus is a metabolic endocrine disease characterized by chronic hyperglycemia with disturbances in metabolic processes, such as those related to carbohydrates, fat, and protein. There are two main types of this disease: type 1 diabetes (T1D) and type 2 diabetes (T2D). Insulin therapy is pivotal to the management of diabetes. Over the last two decades, many routes of administration, including nasal, pulmonary, rectal, transdermal, buccal, and ocular, have been investigated. Nevertheless, subcutaneous parenteral administration is still the most common route for insulin therapy. To overcome poor bioavailability and the barriers to oral insulin absorption, novel approaches in the field of oral drug delivery and administration have been brought about by the coalescence of different branches of nanoscience and nanotechnology, such as nanomedicine, nano-biochemistry, and nano-pharmacy. Novel drug delivery systems, including nanoparticles, nano-platforms, and nanocarriers, have been suggested. The objective of this review is to provide an update on the various promising approaches that have been explored and evaluated for the safe and efficient oral and buccal administration of insulin.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid M Abu-Salah
- King Saud bin Abdulaziz University for Health Sciences/ King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Patel R, Yadav BK, Patel G. Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:208-227. [PMID: 35762539 DOI: 10.2174/1872210516666220628150447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations. OBJECTIVE This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy. METHODS Related research reports and patents associated with topics are collected, utilized, and summarized the key findings. RESULTS The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty. CONCLUSION Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.
Collapse
Affiliation(s)
- Riya Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Bindu Kumari Yadav
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Gayatri Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
8
|
Li G, Liu D, Zuo YY. Nano-bio Interactions in the Lung. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Zhang C, Zhang Y, Liang M, Shi X, Jun Y, Fan L, Yang K, Wang F, Li W, Zhu R. Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases. Front Immunol 2022; 13:1063678. [PMID: 36532036 PMCID: PMC9751193 DOI: 10.3389/fimmu.2022.1063678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
The theranostics of lymph node metastasis has always been one of the major obstacles to defeating breast cancer and an important decisive factor in the prognosis of patients. Herein, we design NaGdF4:Yb,Tm@NaLuF4 upconversion nanoparticles with PEG and anti-HER2 monoclonal antibody (trastuzumab, Herceptin) (NP-mAb), the delivery of NP-mAb through the lymphatic system allows for effective targeting and accumulation in lymphatic metastasis. Combination of radionuclides 68Ga and 177Lu could be chelated by the bisphosphate groups of NP-mAb. The obtained nanoprobe (NP-mAb) and nanonuclear drug (68Ga-NP-mAb or 177Lu-NP-mAb) exhibited excellent stability and show high accumulation and prolong retention in the lymph node metastasis after intratumoral injection into the foot pad by near-infrared fluorescence (NIRF), single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. Utilizing the β-rays released by 177Lu, 177Lu-NP-mAb could not only decrease the incidence of lymph node metastasis, but also significantly decrease the volumes of lymph node metastasis. Additionally, 177Lu-NP-mAb induce no obvious toxicity to treated mice through blood routine, liver and kidney function assay. Therefore, nanoprobe and nanonuclear drug we designed could be acted as excellent theranostics agents for lymph node metastasis, providing potential alternatives diagnose and treatment option for lymph node metastasis.
Collapse
Affiliation(s)
- Chuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China,Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujuan Zhang
- Department of Pathology, Experimental Center of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Maolin Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Xiumin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China,Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Jun
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Longfei Fan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Ran Zhu, ; Wei Li,
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Ran Zhu, ; Wei Li,
| |
Collapse
|
10
|
Elasticity regulates nanomaterial transport as delivery vehicles: Design, characterization, mechanisms and state of the art. Biomaterials 2022; 291:121879. [DOI: 10.1016/j.biomaterials.2022.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
11
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Process design and economic assessment of large-scale production of molybdenum disulfide nanomaterials. CHEMICAL PRODUCT AND PROCESS MODELING 2022. [DOI: 10.1515/cppm-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The design of large-scale nanomaterial production is nowadays a major research topic that requires efficient tools for appropriate decision-making and process simulation is considered among the rational approach to address such difficult issue. The present study deals with process design and economic assessment of Molybdenum Disulfide (MoS2) nanomaterials production at large-scale via solvothermal method basing on our previous bench scale results. The commercial simulator Aspen Plus was used for process modelling and assuming a plant capacity of 100 tonnes/year. The simulation results were used to perform the cost assessment and profitability analysis while taking into account two relevant cases with (Recycle Case) and without recycling of Ethylenediamine and Hydrazine (Base Case). Note that for the technological and economical assessment the effluent treatment system was not taken into account. The total capital investment was estimated to be ca.14.3 M$ for the base case and ca. 17.4 M$ for recycle case, while the total operating costs were about 2945 $ for the base case and 503 $ for the recycle case for the production of 1 kg of MoS2. Thus, in addition to intrinsic advantages associated with the easier preparation and lower environmental impact of solvothermal method, larger production with recycling option can make the process more economically profitable.
Collapse
|
13
|
Imran M, Akhileshwar Jha L, Hasan N, Shrestha J, Pangeni R, Parvez N, Mohammed Y, Kumar Jha S, Raj Paudel K. “Nanodecoys”- Future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 2022; 621:121790. [DOI: 10.1016/j.ijpharm.2022.121790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
|
14
|
Raikwar S, Jain A, Saraf S, Bidla PD, Panda PK, Tiwari A, Verma A, Jain SK. Opportunities in combinational chemo-immunotherapy for breast cancer using nanotechnology: an emerging landscape. Expert Opin Drug Deliv 2022; 19:247-268. [PMID: 35184620 DOI: 10.1080/17425247.2022.2044785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Breast carcinoma (BC) is one of the most frequent causes of cancer-related death among women, which is due to the poor response to conventional therapy. There are several complications associated with monotherapy for cancer, such as cytotoxicity to normal cells, multidrug resistance (MDR), side effects, and limited applications. To overcome these challenges, a combination of chemotherapy and immunotherapy (monoclonal antibodies, anticancer vaccines, checkpoint inhibitors, and cytokines) has been introduced. Drug delivery systems (DDSs) based on nanotechnology have more applications in BC treatment owing to their controlled and targeted drug release with lower toxicity and reduced adverse drug effects. Several nanocarriers, such as liposomes, nanoparticles, dendrimers, and micelles, have been used for the effective delivery of drugs. AREAS COVERED This article presents opportunities and challenges in BC treatment, the rationale for cancer immunotherapy, and several combinational approaches with their applications for BC treatment. EXPERT OPINION Nanotechnology can be used for the early prognosis and cure of BC. Several novel and targeted DDSs have been developed to enhance the efficacy of anticancer drugs. This article aims to understand new strategies for the treatment of BC and the appropriate design of nanocarriers used as a combinational DDS.
Collapse
Affiliation(s)
- Sarjana Raikwar
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| | - Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Shivani Saraf
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| | - Pooja Das Bidla
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| | - Pritish Kumar Panda
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| | - Ankita Tiwari
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| | - Amit Verma
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Sagar, Madhya Pradesh, India
| |
Collapse
|
15
|
Atmaca H, Oguz F, Ilhan S. Drug delivery systems for cancer treatment: a review of marine-derived polysaccharides. Curr Pharm Des 2022; 28:1031-1045. [DOI: 10.2174/1381612828666220211153931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is a disease characterized by uncontrolled cell proliferation and the spread of cells to other tissues and remains one of the worldwide problems waiting to be solved. There are various treatment strategies for cancer, such as chemotherapy, surgery, radiotherapy, and immunotherapy, although it varies according to its type and stage. Many chemotherapeutic agents have limited clinical use due to lack of efficacy, off-target toxicity, metabolic instability, or poor pharmacokinetics. One possible solution to this high rate of clinical failure is to design drug delivery systems that deliver drugs in a controlled and specific manner and are not toxic to normal cells.
Marine systems contain biodiversity, including components and materials that can be used in biomedical applications and therapy. Biomaterials such as chitin, chitosan, alginate, carrageenan, fucoidan, hyaluronan, agarose, and ulvan obtained from marine organisms have found use in DDSs today. These polysaccharides are biocompatible, non-toxic, biodegradable, and cost-effective, making them ideal raw materials for increasingly complex DDSs with a potentially regulated release. In this review, the contributions of polysaccharides from the marine environment to the development of anticancer drugs in DDSs will be discussed.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, The Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| |
Collapse
|
16
|
Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:582. [PMID: 35214911 PMCID: PMC8875160 DOI: 10.3390/nano12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.
Collapse
Affiliation(s)
- Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
17
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
18
|
Abdul Manas NHB, Abang Zaidel DN, Wan Azelee NI, Zaharah Mohd Fuzi SF, Mazila Ramli AN, Shaarani S, Illias RM, Karim NA. Delivery of bioencapsulated proteins. SMART NANOMATERIALS FOR BIOENCAPSULATION 2022:63-75. [DOI: 10.1016/b978-0-323-91229-7.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Nano-Bio Interactions in the Lung. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_14-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
20
|
Liu J, Shen J, Mu C, Liu Y, He D, Luo H, Wu W, Zheng X, Liu Y, Chen S, Pan Q, Hu Y, Ni Y, Wang Y, Liu Y, Li Z. High-dose vitamin D metabolite delivery inhibits breast cancer metastasis. Bioeng Transl Med 2022; 7:e10263. [PMID: 35111955 PMCID: PMC8780911 DOI: 10.1002/btm2.10263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 02/05/2023] Open
Abstract
Besides its well-known benefits on human health, calcitriol, the hormonally active form of vitamin D3, has been being evaluated in clinical trials as an anticancer agent. However, currently available results are contradictory and not fundamentally deciphered. To the best of our knowledge, hypercalcemia caused by high-dose calcitriol administration and its low bioavailability limit its anticancer investigations and translations. Here, we show that the one-step self-assembly of calcitriol and amphiphilic cholesterol-based conjugates leads to the formation of a stable minimalist micellar nanosystem. When administered to mice, this nanosystem demonstrates high calcitriol doses in breast tumor cells, significant tumor growth inhibition and antimetastasis capability, as well as good biocompatibility. We further reveal that the underlying molecular antimetastatic mechanisms involve downregulation of proteins facilitating metastasis and upregulation of paxillin, the key protein of focal adhesion, in primary tumors.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina
- Respiratory Health InstituteFrontiers Science Center for Disease Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Junyi Shen
- Department of Liver Surgery & Liver Transplantation CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyang Mu
- Department of Liver Surgery & Liver Transplantation CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Yang Liu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Dongsheng He
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Han Luo
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Wenshuang Wu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xun Zheng
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China HospitalSichuan UniversityChengduChina
| | | | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Yinyun Ni
- Respiratory Health InstituteFrontiers Science Center for Disease Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Yang Wang
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Yong Liu
- Department of Gastroenterological SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Zhihui Li
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
21
|
Ke R, Zhen X, Wang HS, Li L, Wang H, Wang S, Xie X. Surface functionalized biomimetic bioreactors enable the targeted starvation-chemotherapy to glioma. J Colloid Interface Sci 2021; 609:307-319. [PMID: 34896831 DOI: 10.1016/j.jcis.2021.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Altering the glucose supply and the metabolic pathways would be an intriguing strategy in starvation therapy toward cancers. Nevertheless, starvation therapy alone could be inadequate to eliminate tumor cells completely. Herein, a multifunctional bioreactor was fabricated for synergistic starvation-chemotherapy through embedding glucose oxidase (GOx) and doxorubicin (DOX) in the tumor targeting ligands (RGD) modified red blood cell membrane camouflaged metal-organic framework (MOF) nanoparticle (denoted as RGD-mGZD). Owing to the remarkable biointerfacing property, the designed RGD-mGZD could not only possess enhanced blood retention time inherited from red blood cells, but also preferentially target the tumor site after the modification with RGD peptide. Once the bioreactor reached the desired region, GOx promptly consumed the intratumoral glucose and oxygen to starve cancer cells for robust starvation therapy. More importantly, the aggravated acidic microenvironment at the tumor region was found to induce the decomposition of the MOF structure, thus triggering the release of DOX for reinforced chemotherapy. This bioreactor would further prompt the development of synergistic patterns toward cancer treatment in a spatiotemporally controlled manner.
Collapse
Affiliation(s)
- Ruifang Ke
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyan Zhen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Linhao Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongying Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
22
|
Wang Q, Wang J, Wang J, Ju X, Zhang H. Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment. Toxicol Res (Camb) 2021; 10:1077-1084. [PMID: 34956612 PMCID: PMC8692723 DOI: 10.1093/toxres/tfab107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Shikonin is one of the major bioactive components of Lithospermum erythrorhizon. It has a good killing effect in a variety of tumor cells. Its antitumor effect involves multiple targets and pathways and has received extensive attention and study in recent years. In this review, we systematically review recent progress in determining the antitumor mechanism of shikonin and its derivatives, specifically their induction of reactive oxygen species production, inhibition of EGFR and PI3K/AKT signaling pathway activation, inhibition of angiogenesis and induction of apoptosis and necroptosis. We also discuss the application of nanoparticles loaded with shikonin in the targeted therapy of various cancers. Finally, we suggest new strategies for the clinical application of shikonin and its derivatives.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Jing Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Jiayou Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Lv C, Ao J, Wang J, Tang M, Liu AA, Pang DW. Host-cell-assisted construction of a folate-engineered nanocarrier based on viral light particles for targeted cancer therapy. NANOSCALE 2021; 13:17881-17889. [PMID: 34673870 DOI: 10.1039/d1nr04903h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted cancer therapy has aroused the broad interest of researchers due to its accuracy in specific tumor targeting and its few side effects on normal cells. In the last decades, oncolytic viral light particles (L-particles) have been transformed into smart nanocarriers for targeted drug delivery. However, these L-particles, similar to the oncolytic viruses that they are derived from, can only recognize tumor cells expressing corresponding receptors, severely limiting their universal application. Although modification of targeting agents onto their envelope can overcome this limitation, it is still a great challenge to do so without interfering with their biofunction since the envelope is fragile. Herein, a host-cell-assisted strategy is proposed to construct folate-engineered nanocarriers (F-L-particles) with their biofunctions maintained to the largest extent. The F-L-particles were further multi-functionalized by encapsulating ultrasmall near-infrared quantum dots and antitumor drugs in them for tumor real-time imaging and therapy. Such a moderate, efficient and convenient cell-based strategy facilitates the development and widespread application of these bio-nanocarriers in the field of targeted cancer therapy, and drives the interdisciplinary studies of nanotechnology, chemistry, and virology.
Collapse
Affiliation(s)
- Cheng Lv
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, 1800 Yuntai Road, Shanghai 200123, People's Republic of China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ji Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Man Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
24
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|
25
|
Kaduri M, Sela M, Kagan S, Poley M, Abumanhal-Masarweh H, Mora-Raimundo P, Ouro A, Dahan N, Hershkovitz D, Shklover J, Shainsky-Roitman J, Buganim Y, Schroeder A. Targeting neurons in the tumor microenvironment with bupivacaine nanoparticles reduces breast cancer progression and metastases. SCIENCE ADVANCES 2021; 7:eabj5435. [PMID: 34613777 PMCID: PMC8494443 DOI: 10.1126/sciadv.abj5435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurons within the tumor microenvironment promote cancer progression; thus, their local targeting has potential clinical benefits. We designed PEGylated lipid nanoparticles loaded with a non-opioid analgesic, bupivacaine, to target neurons within breast cancer tumors and suppress nerve-to-cancer cross-talk. In vitro, 100-nm nanoparticles were taken up readily by primary neurons, trafficking from the neuronal body and along the axons. We demonstrate that signaling between triple-negative breast cancer cells (4T1) and neurons involves secretion of cytokines stimulating neurite outgrowth. Reciprocally, neurons stimulated 4T1 proliferation, migration, and survival through secretion of neurotransmitters. Bupivacaine curbs neurite growth and signaling with cancer cells, inhibiting cancer cell viability. In vivo, bupivacaine-loaded nanoparticles intravenously administered suppressed neurons in orthotopic triple-negative breast cancer tumors, inhibiting tumor growth and metastatic dissemination. Overall, our findings suggest that reducing nerve involvement in tumors is important for treating cancer.
Collapse
Affiliation(s)
- Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Mor Sela
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Shaked Kagan
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Hanan Abumanhal-Masarweh
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Developmental Biology and Cancer Research and The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Nitsan Dahan
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Dov Hershkovitz
- Pathology Institute, Sourasky Medical Center, Tel Aviv, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research and The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Corresponding author.
| |
Collapse
|
26
|
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: Progress and perspectives. Biochim Biophys Acta Rev Cancer 2021; 1876:188621. [PMID: 34454983 DOI: 10.1016/j.bbcan.2021.188621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Liver cancer is one of the most common cancers worldwide and is also one of the most difficult cancers to treat, resulting in almost one million deaths per year, and the danger of this cancer is compounded when the tumor is nonresectable. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has the third highest mortality rate worldwide. Considering the morbid statistics surrounding this cancer it is a popular research topic to target for better therapy practices. This review summarizes the role of nanotechnology in these endeavors. Nanoparticles (NPs) are a very broad class of material and many different kinds have been used to potentially combat liver cancer. Gold, silver, platinum, metal oxide, calcium, and selenium NPs as well as less common materials are all inorganic NPs that have been used as a therapeutic, carrier, or imaging agent in drug delivery systems (DDS) and these efforts are described. Carbon-based NPs, including polymeric, polysaccharide, and lipid NPs as well as carbon dots, have also been widely studied for this purpose and the role they play in DDS for the treatment of liver cancer is illustrated in this review. The multifunctional nature of many NPs described herein, allows these systems to display high anticancer activity in vitro and in vivo and highlights the advantage of and need for combinatorial therapy in treating this difficult cancer. These works are summarized, and future directions are presented for this promising field.
Collapse
Affiliation(s)
- Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
27
|
Zhou J, Lei M, Peng XL, Wei DX, Yan LK. Fenton Reaction Induced by Fe-Based Nanoparticles for Tumor Therapy. J Biomed Nanotechnol 2021; 17:1510-1524. [PMID: 34544529 DOI: 10.1166/jbn.2021.3130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fenton reaction, a typical inorganic reaction, is broadly utilized in the field of wastewater treatment. Recently In case of its ability to inhibit the growth of cancer cells, it has been frequently reported in cancer treatment. Using the unique tumor microenvironment in cancer cells, many iron-based nanoparticles have been developed to release iron ions in cancer cells to induce Fenton reaction. In this mini review, we outline several different types of iron-based nanoparticles and several main means to enhance Fenton reaction in cancer cells. Finally, we discussed the advantages and disadvantages of iron-based nanoparticles for cancer therapy, prospected the future development of iron-based nanoparticles. It is believed that iron-based nanoparticles can make certain contribution to the cause of human cancer in the future.
Collapse
Affiliation(s)
- Jian Zhou
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Miao Lei
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Xue-Liang Peng
- Electronics Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Electronics Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lu-Ke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
28
|
Niza E, Ocaña A, Castro-Osma JA, Bravo I, Alonso-Moreno C. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers (Basel) 2021; 13:3387. [PMID: 34298604 PMCID: PMC8304499 DOI: 10.3390/cancers13143387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Many therapeutic agents have failed in their clinical development, due to the toxic effects associated with non-transformed tissues. In this context, nanotechnology has been exploited to overcome such limitations, and also improve navigation across biological barriers. Amongst the many materials used in nanomedicine, with promising properties as therapeutic carriers, the following one stands out: biodegradable and biocompatible polymers. Polymeric nanoparticles are ideal candidates for drug delivery, given the versatility of raw materials and their feasibility in large-scale production. Furthermore, polymeric nanoparticles show great potential for easy surface modifications to optimize pharmacokinetics, including the half-life in circulation and targeted tissue delivery. Herein, we provide an overview of the current applications of polymeric nanoparticles as platforms in the development of novel nanomedicines for cancer treatment. In particular, we will focus on the raw materials that are widely used for polymeric nanoparticle generation, current methods for formulation, mechanism of action, and clinical investigations.
Collapse
Affiliation(s)
- Enrique Niza
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain;
| | - José Antonio Castro-Osma
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain; (E.N.); (J.A.C.-O.)
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
29
|
Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 2021; 174:482-503. [PMID: 34015417 DOI: 10.1016/j.addr.2021.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Peptide-based supramolecular hydrogels have shown great promise as drug delivery systems (DDSs) because of their excellent biocompatibility, biodegradability, biological function, synthetic feasibility, and responsiveness to external stimuli. Self-assembling peptide molecules are able rationally designed into specific nanoarchitectures in response to the different environmental factors under different circumstances. Among all stimuli that have been investigated, utilizing inherent biological microenvironment, such as metal ions, enzymes and endogenous redox species, to trigger self-assembly endows such systems spatiotemporal controllability to transport therapeutics more accurately. Materials formed by weak non-covalent interactions result in the shear-thinning and immediate recovery behavior. Thus, they are injectable via a syringe or catheter, making them the ideal vehicles to deliver drugs. Based on the above merits, self-assembling peptide-based DDSs have been applied to treat various diseases via direct administration at the lesion site. Herein, in this review, we outline the triggers for inducing peptide-based hydrogels formation and serving as DDSs. We also described the advancements of peptide-based supramolecular hydrogels for local drug delivery, including intratumoral, subcutaneous, ischemia-related tissue (intramyocardial, intrarenal, and ischemic hind limb), and ocular administration. Finally, we give a brief perspective about the prospects and challenges in this field.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Sifan Ai
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|
30
|
Ielo I, Giacobello F, Sfameni S, Rando G, Galletta M, Trovato V, Rosace G, Plutino MR. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2733. [PMID: 34067241 PMCID: PMC8196899 DOI: 10.3390/ma14112733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
This review presents current literature on different nanocomposite coatings and surface finishing for textiles, and in particular this study has focused on smart materials, drug-delivery systems, industrial, antifouling and nano/ultrafiltration membrane coatings. Each of these nanostructured coatings shows interesting properties for different fields of application. In this review, particular attention is paid to the synthesis and the consequent physico-chemical characteristics of each coating and, therefore, to the different parameters that influence the substrate deposition process. Several techniques used in the characterization of these surface finishing coatings were also described. In this review the sol-gel method for preparing stimuli-responsive coatings as smart sensor materials is described; polymers and nanoparticles sensitive to pH, temperature, phase, light and biomolecules are also treated; nanomaterials based on phosphorus, borates, hydroxy carbonates and silicones are used and described as flame-retardant coatings; organic/inorganic hybrid sol-gel coatings for industrial applications are illustrated; carbon nanotubes, metallic oxides and polymers are employed for nano/ultrafiltration membranes and antifouling coatings. Research institutes and industries have collaborated in the advancement of nanotechnology by optimizing conversion processes of conventional materials into coatings with new functionalities for intelligent applications.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.)
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine (BG), Italy;
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine (BG), Italy;
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
| |
Collapse
|
31
|
Xing Y, Lu P, Xue Z, Liang C, Zhang B, Kebebe D, Liu H, Liu Z. Nano-Strategies for Improving the Bioavailability of Inhaled Pharmaceutical Formulations. Mini Rev Med Chem 2021; 20:1258-1271. [PMID: 32386491 DOI: 10.2174/1389557520666200509235945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary pharmaceutical formulations are targeted for the treatment of respiratory diseases. However, their application is limited due to the physiological characteristics of the lungs, such as branching structure, mucociliary and macrophages, as well as certain properties of the drugs like particle size and solubility. Nano-formulations can ameliorate particle sizes and improve drug solubility to enhance bioavailability in the lungs. The nano-formulations for lungs reviewed in this article can be classified into nanocarriers, no-carrier-added nanosuspensions and polymer-drug conjugates. Compared with conventional inhalation preparations, these novel pulmonary pharmaceutical formulations have their own advantages, such as increasing drug solubility for better absorption and less inflammatory reaction caused by the aggregation of insoluble drugs; prolonging pulmonary retention time and reducing drug clearance; improving the patient compliance by avoiding multiple repeated administrations. This review will provide the reader with some background information for pulmonary drug delivery and give an overview of the existing literature about nano-formulations for pulmonary application to explore nano-strategies for improving the bioavailability of pulmonary pharmaceutical formulations.
Collapse
Affiliation(s)
- Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
32
|
Omar MM, Laprise-Pelletier M, Chevallier P, Tuduri L, Fortin MA. High-Sensitivity Permeation Analysis of Ultrasmall Nanoparticles Across the Skin by Positron Emission Tomography. Bioconjug Chem 2021; 32:729-745. [PMID: 33689293 DOI: 10.1021/acs.bioconjchem.1c00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasmall nanoparticles (US-NPs; <20 nm in hydrodynamic size) are now included in a variety of pharmacological and cosmetic products, and new technologies are needed to detect at high sensitivity the passage of small doses of these products across biological barriers such as the skin. In this work, a diffusion cell adapted to positron emission tomography (PET), a highly sensitive imaging technology, was developed to measure the passage of gold NPs (AuNPs) in skin samples in continuous mode. US-AuNPs (3.2 nm diam.; TEM) were functionalized with deferoxamine (DFO) and radiolabeled with 89Zr(IV) (half-life: 3.3 days, matching the timeline of diffusion tests). The physicochemical properties of the functionalized US-AuNPs (US-AuNPs-PEG-DFO) were characterized by FTIR (DFO grafting; hydroxamate peaks: 1629.0 cm-1, 1569.0 cm-1), XPS (presence of the O═C-N C 1s peak of DFO at 287.49 eV), and TGA (organic mass fraction). The passage of US-AuNPs-PEG-DFO-89Zr(IV) in skin samples was measured by PET, and the diffusion parameters were extracted thereby. The signals of radioactive US-AuNPs-PEG-DFO-89Zr(IV) leaving the donor compartment, passing through the skin, and entering the acceptor compartment were detected in continuous at concentrations as low as 2.2 nM of Au. The high-sensitivity acquisitions performed in continuous allowed for the first time to extract the lag time to the start of permeation, the lag time to start of the steady state, the diffusion coefficients, and the influx data for AuNPs permeating into the skin. PET could represent a highly valuable tool for the development of nanoparticle-containing topical formulations of drugs and cosmetics.
Collapse
Affiliation(s)
- Mahmoud M Omar
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les matériaux avancés (CERMA), Université Laval, Québec G1V 0A6, Canada.,Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Myriam Laprise-Pelletier
- Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Pascale Chevallier
- Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| | - Ludovic Tuduri
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5805, Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Équipe Physico et Toxico Chimie de l'environnement, Université de Bordeaux, Talence 33405, France
| | - Marc-André Fortin
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les matériaux avancés (CERMA), Université Laval, Québec G1V 0A6, Canada.,Axe Médecine régénératrice, Centre Hospitalier Universitaire (CHU) de Québec, 2705, boul. Laurier (T1-61a), Québec G1V 4G2, Canada
| |
Collapse
|
33
|
Ren X, Yang S, Yu N, Sharjeel A, Jiang Q, Macharia DK, Yan H, Lu C, Geng P, Chen Z. Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors. J Colloid Interface Sci 2021; 591:229-238. [PMID: 33609894 DOI: 10.1016/j.jcis.2021.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Bi nanoparticles (NPs) have been demonstrated as effective all-in-one type theranostic agent for imaging-guided photothermal therapy, but their applications have been limited by relatively low biocompatibility and target accumulation capacity. To address this issue, we report the camouflage of Bi NPs (size: ~42 ± 2 nm) by using the mouse colon cancer CT26 cells membrane (CT26 CCM). The camouflaging process confers the efficient coating of CCM shell layer with thickness of ~8 ± 2 nm on Bi NPs cores, which can be confirmed by TEM image, zeta potential and protein gel electrophoresis tests. Simultaneously, CCM shell has no side effects on the photoabsorption/photothermal effect. Importantly, Bi@CCM NPs retain significant features of CCM, including good biocompatibility and homologous targeting ability. When Bi@CCM dispersion was intravenously (i.v.) injected into mice, they exhibited higher blood circulation half-life (11.5 h, ~2.9 times) and accumulation amount (4.7 ± 0.56% ID/g, ~2.3 times) in homotypic CT26 tumor compared to those (4.0 h in blood and 2.03 ± 0.60% ID/g in tumor) from uncoated Bi NPs. After 808 nm laser irradiation, CT26 cancer cells could be effectively ablated after the photothermal therapy of high-accumulated Bi@CCM NPs, and then the tumor tends to be eradicated after 12 days. Thus, Bi NPs camouflaged with CT26 CCM have great potential for the targeted photothermal therapy of homotypic tumors.
Collapse
Affiliation(s)
- Xiaoling Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuangping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ahmed Sharjeel
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Han Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
34
|
Arsenault NE, Downey KT, Wolf MO. Stimuli-responsive flexible Lewis pair-modified nanoparticles for fluorescence imaging. Chem Commun (Camb) 2021; 56:5981-5984. [PMID: 32347856 DOI: 10.1039/d0cc01203c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stimuli-responsive fluorophore, encompassing a Lewis acid-base pair, binds to primary amines on mesoporous silica nanoparticles, which may serve as environment-sensitive drug carriers. The fluorophore switches conformation, exhibiting different emission color and lifetimes, allowing for the detection of the water content of the nanoparticles' surroundings through fluorescence spectroscopy and microscopy.
Collapse
Affiliation(s)
- Nicole E Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Kathleen T Downey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
35
|
Faezeh Ghahreman, Semnani D, Khorasani SN, Varshosaz J, Khalili S, Mohammadi S, Kaviannasab E. Polycaprolactone–Gelatin Membranes in Controlled Drug Delivery of 5-Fluorouracil. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20330020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
El-Fakharany EM. Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. Int J Biol Macromol 2020; 165:970-984. [PMID: 33011258 DOI: 10.1016/j.ijbiomac.2020.09.235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Lactoferrin is a glycoprotein with a molecular weight of 80 kDa, which produced in many mammalian excretions. LF is involved in various physiological processes and known to possess prominent biocidal activities, serving as an effective agent against a wide range of pathogens. This effective biocidal activity of LF in association with immune system response has made this protein an attractive therapeutic candidate. Interaction of proteins with nanoparticles (NPs) gives rise to the formation of a dynamic NP-protein complex and can induce conformational changes in the adsorbed proteins which may lead to the change in their function. With the recent advances in nanotechnology, NPs may provide the protection and stabilization of LF from hydrolysis by some proteases and increase their uptake by targeted cells. These nanoformulations of LF can be used as diagnosis, disease targeting and drug delivery tools. Owing to its multiple functionalities, LF is a promising active ingredient to be loaded or adsorbed to NPs for preparing a stable, controlled surface NPs. Thus, LF NPs can potentially empower the resulting nanocomplex with attracting functionalities and might be useful in many applications, e.g., to modify the optical or rheological properties of products, or to encapsulate and deliver bioactive ingredients.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt.
| |
Collapse
|
37
|
Liu N, Becton M, Zhang L, Wang X. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling. J Phys Chem B 2020; 124:11145-11156. [DOI: 10.1021/acs.jpcb.0c08089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew Becton
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Liuyang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
38
|
Jin Y, Wang H, Yi K, Lv S, Hu H, Li M, Tao Y. Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. NANO-MICRO LETTERS 2020; 13:25. [PMID: 34138224 PMCID: PMC8187515 DOI: 10.1007/s40820-020-00550-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
39
|
Xiao Y, Ho CT, Chen Y, Wang Y, Wei Z, Dong M, Huang Q. Synthesis, Characterization, and Evaluation of Genistein-Loaded Zein/Carboxymethyl Chitosan Nanoparticles with Improved Water Dispersibility, Enhanced Antioxidant Activity, and Controlled Release Property. Foods 2020; 9:E1604. [PMID: 33158107 PMCID: PMC7694205 DOI: 10.3390/foods9111604] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 02/02/2023] Open
Abstract
Genistein is one of major isoflavones derived from soybean products and it is believed to have beneficial effects on human health. However, its low water-solubility and poor oral bioavailability severely hamper its use as a functional food ingredient or for pharmaceutical industry. In this study, zein and zein/carboxymethyl chitosan (CMCS) nanoparticles were prepared to encapsulate genistein using a combined liquid-liquid phase separation method. The physicochemical properties of fabricated nanoparticles were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that genistein encapsulated with zein nanoparticles significantly improved its water dispersibility, antioxidant activity in the aqueous phase, and photostability against UV light. Moreover, genistein encapsulated in zein nanoparticles showed a sustained release property. Furthermore, it was found that encapsulation efficiency of genistein was significantly enhanced after CMCS coating, and this effect was more pronounced after the complex nanoparticles cross-linked with calcium ions when compared with the use of zein as a single encapsulant. In addition, compared to zein nanoparticles without biopolymer coating, CMCS coating significantly enhanced the thermal and storage stability of the formed nanoparticles, and delayed the release of genistein. A schematic diagram of zein and zein/carboxymethyl chitosan (CMCS) nanoparticles formation mechanism for encapsulation of genistein was proposed. According to the results of the current study, it could be concluded that encapsulation of genistein in zein/CMCS nanoparticles is a promising approach to improve its water dispersibility, antioxidant activity, photostability against UV light and provide controlled release for food/pharmaceutical applications.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (Y.W.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.X.); (Y.W.)
| | - Zihao Wei
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA; (C.-T.H.); (Z.W.)
| |
Collapse
|
40
|
Tu Y, Dong Y, Wang K, Shen S, Yuan Y, Wang J. Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration. Biomaterials 2020; 259:120298. [DOI: 10.1016/j.biomaterials.2020.120298] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/25/2022]
|
41
|
Al-Ani LA, Kadir FA, Hashim NM, Julkapli NM, Seyfoddin A, Lu J, AlSaadi MA, Yehye WA. The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon 2020; 6:e05360. [PMID: 33163675 PMCID: PMC7609448 DOI: 10.1016/j.heliyon.2020.e05360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Natural plants derivatives have gained enormous merits in cancer therapy applications upon formulation with nanomaterials. Curcumin, as a popular research focus has acquired such improvements surpassing its disadvantageous low bioavailability. To this point, the available research data had confirmed the importance of nanomaterial type in orienting cellular response and provoking different toxicological and death mechanisms that may range from physical membrane damage to intracellular changes. This in turn underlines the poorly studied field of nanoformulation interaction with cells as the key determinant in toxicology outcomes. In this work, curcumin-AuNPs-reduced graphene oxide nanocomposite (CAG) was implemented as a model, to study the impact on cellular membrane integrity and the possible redox changes using colon cancer in vitro cell lines (HT-29 and SW-948), representing drug-responsive and resistant subtypes. Morphological and biochemical methods of transmission electron microscopy (TEM), apoptosis assay, reactive oxygen species (ROS) and antioxidants glutathione and superoxide dismutase (GSH and SOD) levels were examined with consideration to suitable protocols and vital optimizations. TEM micrographs proved endocytic uptake with succeeding cytoplasm deposition, which unlike other nanomaterials studied previously, conserved membrane integrity allowing intracellular cytotoxic mechanism. Apoptosis was confirmed with gold-standard morphological features observed in micrographs, while redox parameters revealed a time-dependent increase in ROS accompanied with regressive GSH and SOD levels. Collectively, this work demonstrates the success of graphene as a platform for curcumin intracellular delivery and cytotoxicity, and further highlights the importance of suitable in vitro methods to be used for nanomaterial validation.
Collapse
Affiliation(s)
- Lina A. Al-Ani
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Farkaad A. Kadir
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Najihah M. Hashim
- Department of Pharmaceutical Chemicals, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M. Julkapli
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology, School of Science, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology. Auckland, New Zealand
- College of Perfume and Aroma, Shanghai Institute of Technology, Shanghai, China
| | - Mohammed A. AlSaadi
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia
- National Chair of Materials Sciences and Metallurgy, University of Nizwa, Nizwa, Sultanate of Oman
| | - Wageeh A. Yehye
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Dizman HM, Eroglu GO, Kuruca SE, Arsu N. Photochemically prepared monodisperse gold nanoparticles as doxorubicin carrier and its cytotoxicity on leukemia cancer cells. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01589-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Synthesis of Ciprofloxacin Drug Capped Silver Nanoparticles and Their Antimicrobial Activity: A Joint Spectrophotometric and Density Functional Investigation. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01914-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther Deliv 2020; 11:653-672. [DOI: 10.4155/tde-2020-0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have been conducted to design new strategies for breast cancer treatment. Past studies have shown a wide range of carbon-nanomaterials properties, such as single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in breast cancer diagnosis and treatment. In this regard, the current study aims to review the role of both SWCNTs and MWCNTs in breast cancer treatment and diagnosis. For reaching this goal, we reviewed the literature by using various searching engines such as Scopus, PubMed, Google Scholar, Web of Science and MEDLINE. This comprehensive review showed that CNTs could dramatically improve breast cancer treatment and could be used as a novel modality to increase diagnostic accuracy; however, no clinical studies have been conducted based on CNTs. In addition, the literature review demonstrates a lack of enough studies to evaluate the side effects of using CNTs.
Collapse
|
45
|
Liao Z, Wong SW, Yeo HL, Zhao Y. Smart nanocarriers for cancer treatment: Clinical impact and safety. NANOIMPACT 2020; 20:100253. [DOI: 10.1016/j.impact.2020.100253] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
46
|
Gajbhiye KR, Chaudhari BP, Pokharkar VB, Pawar A, Gajbhiye V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. Int J Pharm 2020; 588:119781. [DOI: 10.1016/j.ijpharm.2020.119781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
|
47
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
48
|
Gharbavi M, Johari B, Eslami SS, Mousazadeh N, Sharafi A. Cholesterol-conjugated bovine serum albumin nanoparticles as a tamoxifen tumor-targeted delivery system. Cell Biol Int 2020; 44:2485-2498. [PMID: 32841441 DOI: 10.1002/cbin.11455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
In the present study, we introduced cholesterol (CLO)-conjugated bovine serum albumin nanoparticles (BSA NPs) as a new system for indirect targeting drug delivery. Tamoxifen, as an anticancer drug, was loaded on BSA NPs (BSA-TAX NPs); CLO was then conjugated to the BSA-TAX NPs surface for the targeted delivery of NPs system, by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide carbodiimide chemistry (CLO-BSA-TAX NPs). The physicochemical properties, toxicity, in vitro, and in vivo biocompatibility of the BSA NPs system were characterized on cancer cell lines (4T1). The results revealed that the BSA NPs system has a regular spherical shape and negative zeta-potential values. The drug release of BSA NPs system has shown controlled and pH-dependent drug release behavior. BSA NPs system was biocompatible but it was potentially toxic on the cancer cell line. The CLO-BSA-TAX NPs exhibited higher toxicity against cancer cell lines than other NPs formulation (BSA NPs and BSA-TAX NPs). It can be concluded that the CLO, as an indirect targeting agent, enhances the toxicity and specificity of NPs system on cancer cell lines. It could potentially be suitable approaches to targeting the tumors in clinical cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
49
|
Han R, Wu S, Tang K, Hou Y. Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, Soboyejo WO. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep 2020; 10:14188. [PMID: 32843673 PMCID: PMC7447811 DOI: 10.1038/s41598-020-71129-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and difficult to treat using conventional bulk chemotherapy that is often associated with increased toxicity and side effects. In this study, we encapsulated targeted drugs [A bacteria-synthesized anticancer drug (prodigiosin) and paclitaxel] using single solvent evaporation technique with a blend of FDA-approved poly lactic-co-glycolic acid-polyethylene glycol (PLGA_PEG) polymer microspheres. These drugs were functionalized with Luteinizing Hormone-Releasing hormone (LHRH) ligands whose receptors are shown to overexpressed on surfaces of TNBC. The physicochemical, structural, morphological and thermal properties of the drug-loaded microspheres were then characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Nuclear Magnetic Resonance Spectroscopy (NMR), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results obtained from in vitro kinetics drug release at human body temperature (37 °C) and hyperthermic temperatures (41 and 44 °C) reveal a non-Fickian sustained drug release that is well-characterized by Korsmeyer-Peppas model with thermodynamically non-spontaneous release of drug. Clearly, the in vitro and in vivo drug release from conjugated drug-loaded microspheres (PLGA-PEG_PGS-LHRH, PLGA-PEG_PTX-LHRH) is shown to result in greater reductions of cell/tissue viability in the treatment of TNBC. The in vivo animal studies also showed that all the drug-loaded PLGA-PEG microspheres for the localized and targeted treatment of TNBC did not caused any noticeable toxicity and thus significantly extended the survival of the treated mice post tumor resection. The implications of this work are discussed for developing targeted drug systems to treat and prevent local recurred triple negative breast tumors after surgical resection.
Collapse
Affiliation(s)
- S M Jusu
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - A A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - C C Nwazojie
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - V Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - O S Odusanya
- Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA.
- Department of Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|