1
|
Sinha S, Cruz F, Cuenca EM, Przydacz M, Kheir GB, Kanai AJ, Van Huele A, Gajewski JB, Tarcan T, Lazar JM, Weiss JP, Tyagi P, Abrams P, Wein A. Is It Possible to Regenerate the Underactive Detrusor? Part 1. Molecular and Stem Cell Therapies Targeting the Urinary Bladder and Neural Axis - ICI-RS 2024. Neurourol Urodyn 2025; 44:577-584. [PMID: 39370871 DOI: 10.1002/nau.25597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Detrusor muscle weakness is commonly noted on urodynamics in patients with refractory voiding difficulty. No approved therapies have been proven to augment the strength of a detrusor voiding contraction. METHODS This subject was discussed by a think-tank at the International Consultation on Incontinence- Research Society (ICI-RS) meeting held in Bristol, June 2024. The discussions of the think-tank are being published in two parts. This first part discusses molecular and stem cell therapies targeting the urinary bladder and the neural axis. RESULTS Senescence of the urothelium and extracellular ATP acting through P2X3 receptors might be important in detrusor underactivity. Several molecules such as parasympathomimetics, acotiamide, ASP8302, neurokinin-2 agonists have been explored but none has shown unequivocal clinical benefit. Different stem cell therapy approaches have been used, chiefly in neurogenic dysfunction, with some studies showing benefit. Molecular targets for the neural axis have included TRPV-4, Bombesin, and serotoninergic receptors and TAC-302 which induces neurite growth. CONCLUSIONS Several options are currently being pursued in the search for an elusive molecular or stem cell option for enhancing the power of the detrusor muscle. These encompass a wide range of approaches that target each aspect of the contraction mechanism including the urothelium of bladder and urethra, myocyte, and neural pathways. While none of these have shown unequivocal clinical utility, some appear promising. Lessons from other fields of medicine might prove instructive. CLINICAL TRIAL REGISTRATION Not necessary. Not a clinical trial.
Collapse
Affiliation(s)
- Sanjay Sinha
- Department of Urology, Apollo Hospital, Hyderabad, India
| | - Francisco Cruz
- Departamento de Urologia, Hospital de S. João, Faculdade de Medicina do Porto, Porto, Portugal
| | | | | | | | - Anthony J Kanai
- Department of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jerzy B Gajewski
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tufan Tarcan
- Departments of Urology, Marmara University School of Medicine and Koç University School of Medicine, Istanbul, Turkey
| | - Jason M Lazar
- Department of Cardiology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey P Weiss
- Department of Urology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Abrams
- Department of Urology, University of Bristol, Bristol, UK
| | - Alan Wein
- Desai-Seth Institute of Urology, University of Miami, Miami, Florida, USA
| |
Collapse
|
2
|
Uvelius B, Andersson KE. Can Urinary Bladder Innervation Be Restored After Outlet Obstruction and Denervation? Int Neurourol J 2024; 28:75-82. [PMID: 38956767 PMCID: PMC11222827 DOI: 10.5213/inj.2448134.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Transurethral resection of the prostate, or other methods to decrease outlet resistance usually leads to relief of symptoms in patients with bladder outlet obstruction (BOO). If symptoms of underactivity persist after normalization of outflow conditions, treatment options are limited. In this review, we hypothesize, based on results from basic research, what might become treatment options for such patients in the future. The primary local treatment will still aim at reducing outlet obstruction. We speculate that local secondary treatment in the future might include transplantation of stem cells or mature bladder ganglion cells into the bladder wall. There has been some success in transplanting ganglion cells into the rat bladder. The ganglion cells will sprout into the surrounding tissue but functional connections between the axons of the transplanted neurons, and the detrusor smooth muscle have so far not been demonstrated. Neurotrophins or neurotrimin might be injected into the bladder wall to increase the sprouting of existing or transplanted neurons. Stem cell transplantation has been performed and improves detrusor function, but it has so far, been difficult to demonstrate transplanted stem cells. BOO, persisting detrusor underactivity, and decreased nerve density are often combined with inflammatory activity of the lower urinary tract. NLR family pyrin domain containing 3 (NLRP3) and its messenger RNA (mRNA) as well as cyclooxygenase-2 (Cox-2) mRNA are increased in obstructed bladders. Systemic treatment with the NLRP3 inhibitor glyburide normalized nerve density in rat bladder, and, to some extent, bladder function. It is unclear whether Cox-2 is involved in the decreased nerve density following obstruction, but Cox-2 mRNA increases 5-fold in obstructed bladder. Future therapy against bladder underactivity remaining following relief of obstruction includes either systemic treatment, perhaps by anti-inflammatory drugs, or local treatment by injection of stem cells, mature ganglion cells, and/or neurotrophins or neurotrimin into the bladder wall.
Collapse
Affiliation(s)
- Bengt Uvelius
- Department of Urology, Skåne University Hospital, Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karl-Erik Andersson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
3
|
Kim JH, Yang HJ, Choi SS, Kim SU, Lee HJ, Song YS. Improved bladder contractility after transplantation of human mesenchymal stem cells overexpressing hepatocyte growth factor into underactive bladder from bladder outlet obstruction models of rats. PLoS One 2021; 16:e0261402. [PMID: 34936660 PMCID: PMC8694482 DOI: 10.1371/journal.pone.0261402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction An underactive bladder can lead to difficulty in voiding that causes incomplete emptying of the bladder, suggesting the need for a new strategy to increase bladder contractility in such patients. This study was performed to investigate whether human mesenchymal stem cells (hMSCs) were capable of restoring bladder contractility in rats with underactive bladder due to bladder outlet obstruction (BOO) and enhancing their effects by overexpressing hepatocyte growth factor (HGF) in hMSCs. Materials and methods The hMSCs were transplanted into the bladder wall of rats. Fifty female Sprague-Dawley rats at six weeks of age were divided into five groups: group 1: control; group 2: sham intervention; group 3: eight-week BOO; group 4: BOO rats transplanted with hMSCs; and group 5: BOO rats transplanted with hMSCs overexpressing HGF. Two weeks after the onset of BOO in groups 4 and 5, hMSCs were injected into the bladder wall. Cystometry evaluation was followed by Masson’s trichrome staining of bladder tissues. Realtime PCR and immunohistochemical staining were performed to determine for hypoxia, apoptosis, and angiogenesis. Results Collagen deposition of bladder increased in BOO but decreased after transplantation of hMSCs. The increased inter-contraction interval and residual urine volume after BOO was reversed after hMSCs transplantation. The decreased maximal voiding pressure after BOO was restored by hMSCs treatment. The mRNA expression of bladder collagen1 and TGF-β1 increased in BOO but decreased after hMSCs transplantation. The decrease in vWF-positive cells in the bladder following BOO was increased after hMSCs transplantation. Caspase 3 and TUNEL-positive apoptosis of bladder cells increased in BOO but decreased after transplantation of hMSCs. These effects were enhanced by overexpressing HGF in hMSCs. Conclusion Transplantation of hMSCs into bladder wall increased the number of micro-vessels, decreased collagen deposition and apoptosis of detrusor muscle, and improved bladder underactivity. The effects were enhanced by overexpressing HGF in hMSCs. Our findings suggest that the restoration of underactive bladder using hMSCs may be used to rectify micturition disorders in patients following resolution of BOO. Further studies are needed before hMSCs can be used in clinical applications.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
| | - Hee Jo Yang
- Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Sung Sik Choi
- Medical Science Research Institute, Chungbuk National University, Cheong Ju, Republic of Korea
| | - Seung U. Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J. Lee
- Medical Science Research Institute, Chungbuk National University, Cheong Ju, Republic of Korea
- * E-mail: (HJL); (YSS)
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University School of Medicine, Seoul, Republic of Korea
- * E-mail: (HJL); (YSS)
| |
Collapse
|
4
|
Andersson KE. Incontinence in Patients With Underactive Bladder. Int Neurourol J 2020; 24:293-294. [PMID: 33017900 PMCID: PMC7538294 DOI: 10.5213/inj.2040258.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Chermansky C, Mitsogiannis I, Abrams P, Apostolidis A. Stem cells and lower urinary tract dysfunction: Has its potential finally reached clinical maturity? ICI‐RS2018. Neurourol Urodyn 2019; 38 Suppl 5:S134-S141. [DOI: 10.1002/nau.24069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Iraklis Mitsogiannis
- 2nd Department of UrologySismanogleio General HospitalNational and Kapodistrian University of AthensAthens Greece
| | - Paul Abrams
- Bristol Urological InstituteUniversity of BristolBristol UK
| | - Apostolos Apostolidis
- 2nd Department of Urology, Papageorgiou General HospitalAristotle University of ThessalonikiThessaloniki Greece
| |
Collapse
|
6
|
Colaco M, Osman NI, Karakeçi A, Artibani W, Andersson KE, Badlani GH. Current concepts of the acontractile bladder. BJU Int 2018; 122:195-202. [PMID: 29633516 DOI: 10.1111/bju.14236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The acontractile bladder (AcB) is a urodynamic-based diagnosis wherein the bladder is unable to demonstrate any contraction during a pressure flow study. Although it is often grouped with underactive bladder, it is a unique phenomenon and should be investigated independently. The purpose of the present review was to examine the current literature on AcB regarding its pathology, diagnosis, current management guidelines, and future developments. We performed a review of the PubMed database, classifying the evidence for AcB pathology, diagnosis, treatment, and potential future treatments. Over the 67 years covered in our review period, 42 studies were identified that met our criteria. Studies were largely poor quality and mainly consisted of retrospective review or animal models. The underlying pathology of AcB is variable with both neurological and myogenic aetiologies. Treatment is largely tailored for renal preservation and reduction of infection. Although future developments may allow more functional restorative treatments, current treatments mainly focus on bladder drainage. AcB is a unique and understudied bladder phenomenon. Treatment is largely based on symptoms and presentation. While cellular therapy and neuromodulation may hold promise, further research is needed into the underlying neuro-urological pathophysiology of this disease so that we may better develop future treatments.
Collapse
Affiliation(s)
- Marc Colaco
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nadir I Osman
- Academic Urology Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Walter Artibani
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | | |
Collapse
|
7
|
Translational approaches to the treatment of benign urologic conditions in elderly women. Curr Opin Urol 2016; 26:184-92. [PMID: 26814884 DOI: 10.1097/mou.0000000000000261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Stress urinary incontinence, overactive bladder, interstitial cystitis/painful bladder syndrome, and underactive bladder are highly prevalent among elderly women, and have significant impact on quality of life; however, existing treatments are limited and are not always successful for all patients. Researchers are investigating a multitude of new therapies to treat these conditions. This review will summarize the recent literature on investigative therapies for these conditions. RECENT FINDINGS Multiple new treatments are being developed for lower urinary tract dysfunction. Some of these treatments, including balloon therapy and muscle-derived stem cells for stress urinary incontinence, could provide alternatives to existing therapies. Others require further research before being used in patients, such as pudendal nerve stimulation for overactive bladder and intravesical liposomes for drug delivery in interstitial cystitis/painful bladder syndrome. SUMMARY Multiple new therapies are being investigated that could provide clinicians with additional tools to treat lower urinary tract disorders in millions of elderly women.
Collapse
|
8
|
Damaser MS, Sievert KD. Tissue engineering and regenerative medicine: bench to bedside in urology. Preface. Adv Drug Deliv Rev 2015; 82-83:v-vii. [PMID: 25623935 DOI: 10.1016/j.addr.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|