1
|
Markeev VB, Blynskaya EV, Alekseev KV, Dorofeev VL, Marakhova AI, Vetcher AA. Creation of Long-Term Physical Stability of Amorphous Solid Dispersions N-Butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide, Resistant to Recrystallization Caused by Exposure to Moisture. MATERIALS (BASEL, SWITZERLAND) 2025; 18:203. [PMID: 39795848 PMCID: PMC11722151 DOI: 10.3390/ma18010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Amorphous solid dispersion (ASD) technology is often used as a promising strategy to improve the solubility of active pharmaceutical ingredients (APIs). ASDs allow APIs to be dispersed at the molecular level in a polymer carrier, destroying the crystalline structure of the APIs and, thanks to the polymer, providing long-term supersaturation in solution. However, stability issues are an obstacle to the development of new medications with ASD. In addition to the molecular mobility at elevated temperatures leading to the crystallization of APIs, moisture affects the physical stability of ASD, leading to fractional separation and recrystallization. N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide (GML-3) is an original API with both anxiolytic and antidepressant activity, but its insolubility in water can negatively affect (influence) bioavailability. Our study aims to create ASD GML-3 with moisture-resistant polymers (Soluplus®, HPC) and assess the stability of the amorphous state of ASD after storage in high humidity conditions. As a result, HPC KlucelTM FX was revealed to be more stable than the brand, providing a high level of API release into the purified water environment and stability after 21 days (3 weeks) of storage in high humidity conditions.
Collapse
Affiliation(s)
- Vladimir B. Markeev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Str., 125315 Moscow, Russia; (V.B.M.); (E.V.B.); (K.V.A.); (V.L.D.)
| | - Evgenia V. Blynskaya
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Str., 125315 Moscow, Russia; (V.B.M.); (E.V.B.); (K.V.A.); (V.L.D.)
| | - Konstantin V. Alekseev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Str., 125315 Moscow, Russia; (V.B.M.); (E.V.B.); (K.V.A.); (V.L.D.)
| | - Vladimir L. Dorofeev
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 8 Baltiyskaya Str., 125315 Moscow, Russia; (V.B.M.); (E.V.B.); (K.V.A.); (V.L.D.)
| | - Anna I. Marakhova
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
| | - Alexandre A. Vetcher
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia;
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Str., 119991 Moscow, Russia
| |
Collapse
|
2
|
Chakraborty S, Bansal AK. Application of atomic force microscopy in the development of amorphous solid dispersion. J Pharm Sci 2025; 114:70-81. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
3
|
Badruddoza AZM, Moseson DE, Lee HG, Esteghamatian A, Thipsay P. Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. Int J Pharm 2024; 664:124651. [PMID: 39218326 DOI: 10.1016/j.ijpharm.2024.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Dana E Moseson
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Hong-Guann Lee
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Amir Esteghamatian
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Priyanka Thipsay
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
4
|
Al Tahan MA, Michaelides K, Somasekharan Nair S, AlShatti S, Russell C, Al-Khattawi A. Mesoporous Silica Microparticle-Protein Complexes: Effects of Protein Size and Solvent Properties on Diffusion and Loading Efficiency. Br J Biomed Sci 2024; 81:13595. [PMID: 39445315 PMCID: PMC11496099 DOI: 10.3389/bjbs.2024.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Oral administration of protein-based therapeutics is highly desirable due to lower cost, enhanced patient compliance, and convenience. However, the harsh pH environment of the gastrointestinal tract poses significant challenges. Silica-based carriers have emerged as potential candidates for the delivery of protein molecules, owing to their tuneable surface area and pore volume. We explored the use of a commercial mesoporous silica carrier, SYLOID, for the delivery of octreotide and bovine serum albumin (BSA) using a solvent evaporation method in three different solvents. The loading of proteins into SYLOID was driven by diffusion, as described by the Stokes-Einstein equation. Various parameters were investigated, such as protein size, diffusion, and solubility. Additionally, 3D fluorescence confocal imaging was employed to identify fluorescence intensity and protein diffusion within the carrier. Our results indicated that the loading process was influenced by the molecular size of the protein as octreotide exhibited a higher recovery rate (71%) compared to BSA (32%). The methanol-based loading of octreotide showed uniform diffusion into the silica carrier, whereas water and ethanol loading resulted in the drug being concentrated on the surface, as shown by confocal imaging, and further confirmed by scanning electron microscopy (SEM). Pore volume assessment supported these findings, showing that octreotide loaded with methanol had a low pore volume (1.2 cc/g). On the other hand, BSA loading was affected by its solubility in the three solvents, its tendency to aggregate, and its low solubility in ethanol and methanol, which resulted in dispersed particle sizes of 223 and 231 μm, respectively. This reduced diffusion into the carrier, as confirmed by fluorescence intensity and diffusivity values. This study underscores the importance of protein size, solvent properties, and diffusion characteristics when using porous carriers for protein delivery. Understanding these factors allows for the development of more effective oral protein-based therapeutics by enhancing loading efficiency. This, in turn, will lead to advances in targeted drug delivery and improved patient outcomes.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Kyprianos Michaelides
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Smith Somasekharan Nair
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Shouq AlShatti
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
5
|
Zupan N, Yous I, Danede F, Verin J, Kouach M, Foulon C, Dudognon E, Florin Muschert S. Impact of Hot-Melt Extrusion on Glibenclamide's Physical and Chemical States and Dissolution Behavior: Case Studies with Three Polymer Blend Matrices. Pharmaceutics 2024; 16:1071. [PMID: 39204416 PMCID: PMC11360095 DOI: 10.3390/pharmaceutics16081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR and Affinisol HPMC HME 4M. Glibenclamide solid dispersions are characterized using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry), X-ray diffraction and scanning electron microscopy. This study reveals the transformation of glibenclamide into impurity A during the HME process using mass spectrometry and TGA. Thus, it enables the quantification of the extent of degradation. Furthermore, this work shows how polymer-polymer blend matrices exert an impact on process parameters, the active pharmaceutical ingredient's physical state, and drug release behavior. In vitro dissolution studies show that the polymeric matrices investigated provide extended drug release (over 24 h), mainly dictated by the polymer's chemical nature. This paper highlights how glibenclamide is degraded during HME and how polymer selection crucially affects the sustained release dynamics.
Collapse
Affiliation(s)
- Nina Zupan
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | - Ines Yous
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
| | - Florence Danede
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | - Jeremy Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, ULR 7365-GRITA, F-59000 Lille, France
| | | | - Emeline Dudognon
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | | |
Collapse
|
6
|
Li Y, Zhang Q, Yu N, Peng L, Gao Q, Li L, Zhao J, Yang J. Characterization and Dissolution Mechanism of Low-Molecular-Weight Organic Acids or Inorganic Mesoporous Particle-Based Piperine Amorphous Solid Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14941-14952. [PMID: 38980061 DOI: 10.1021/acs.langmuir.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The objective of the current study is to prepare amorphous solid dispersions (ASDs) containing piperine (PIP) by utilizing organic acid glycyrrhizic acid (GA) and inorganic disordered mesoporous silica 244FP (MSN/244FP) as carriers and to investigate their dissolution mechanism. The physicochemical properties of ASDs were characterized with scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) and one-dimensional proton nuclear magnetic resonance (1H NMR) studies collectively proved that strong hydrogen-bonding interactions formed between PIP and the carriers in ASDs. Additionally, molecular dynamic (MD) simulation was conducted to simulate and predict the physical stability and dissolution mechanisms of the ASDs. Interestingly, it revealed a significant increase in the dissolution of amorphous PIP in ASDs in in vitro dissolution studies. Rapid dissolution of GA in pH 6.8 medium resulted in the immediate release of PIP drugs into a supersaturated state, acting as a dissolution-control mechanism. This exhibited a high degree of fitting with the pseudo-second-order dynamic model, with an R2 value of 0.9996. Conversely, the silanol groups on the outer surface of the MSN and its porous nanostructures enabled PIP to display a unique two-step drug release curve, indicating a diffusion-controlled mechanism. This curve conformed to the Ritger-Peppas model, with an R2 > 0.9. The results obtained provide a clear evidence of the proposed transition of dissolution mechanism within the same ASD system, induced by changes in the properties of carriers in a solution medium of varying pH levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
- Shaanxi Chinese Medicine Institute (Shaanxi Pharmaceutical Information Center), No.16 Biyuan West Road, Xianyang 712000, P. R. China
| | - Qian Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Na Yu
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street ,Yinchuan 750004, P. R. China
| | - Liting Peng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Qi Gao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Jianjun Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan 750004, P. R. China
| |
Collapse
|
7
|
Jiang J, Lu A, Ma X, Ouyang D, Williams RO. The applications of machine learning to predict the forming of chemically stable amorphous solid dispersions prepared by hot-melt extrusion. Int J Pharm X 2023; 5:100164. [PMID: 36798832 PMCID: PMC9925947 DOI: 10.1016/j.ijpx.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most important strategies to improve the solubility and dissolution rate of poorly water-soluble drugs. As a widely used technique to prepare ASDs, hot-melt extrusion (HME) provides various benefits, including a solvent-free process, continuous manufacturing, and efficient mixing compared to solvent-based methods, such as spray drying. Energy input, consisting of thermal and specific mechanical energy, should be carefully controlled during the HME process to prevent chemical degradation and residual crystallinity. However, a conventional ASD development process uses a trial-and-error approach, which is laborious and time-consuming. In this study, we have successfully built multiple machine learning (ML) models to predict the amorphization of crystalline drug formulations and the chemical stability of subsequent ASDs prepared by the HME process. We utilized 760 formulations containing 49 active pharmaceutical ingredients (APIs) and multiple types of excipients. By evaluating the built ML models, we found that ECFP-LightGBM was the best model to predict amorphization with an accuracy of 92.8%. Furthermore, ECFP-XGBoost was the best in estimating chemical stability with an accuracy of 96.0%. In addition, the feature importance analyses based on SHapley Additive exPlanations (SHAP) and information gain (IG) revealed that several processing parameters and material attributes (i.e., drug loading, polymer ratio, drug's Extended-connectivity fingerprints (ECFP) fingerprints, and polymer's properties) are critical for achieving accurate predictions for the selected models. Moreover, important API's substructures related to amorphization and chemical stability were determined, and the results are largely consistent with the literature. In conclusion, we established the ML models to predict formation of chemically stable ASDs and identify the critical attributes during HME processing. Importantly, the developed ML methodology has the potential to facilitate the product development of ASDs manufactured by HME with a much reduced human workload.
Collapse
Affiliation(s)
- Junhuang Jiang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiangyu Ma
- Global Investment Research, Goldman Sachs, NY 10282, USA
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, 999078, Macau
| | - Robert O. Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
9
|
Han J, Tang M, Yang Y, Sun W, Yue Z, Zhang Y, Zhu Y, Liu X, Wang J. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion. Int J Pharm 2023; 646:123490. [PMID: 37805146 DOI: 10.1016/j.ijpharm.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Solid dispersion (SD) system has been used as an effective formulation strategy to increase in vitro and in vivo performances of poorly water-soluble drugs, such as solubility/dissolution, stability and bioavailability. This review provides a comprehensive SD classification and identifies the most popular amorphous solid dispersions (ASDs). Meanwhile, this review further puts forward the systematic design strategy of satisfactory ASDs in terms of drug properties, carrier selection, preparation methods and stabilization mechanisms. In addition, hot melt extrusion (HME) as the continuous manufacturing technique is described including the principle and structure of HME instrument, key process parameters and production application, in order to guide the scale-up of ASDs and develop more ASD products to the market in pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
10
|
Bao Z, Bufton J, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Revolutionizing drug formulation development: The increasing impact of machine learning. Adv Drug Deliv Rev 2023; 202:115108. [PMID: 37774977 DOI: 10.1016/j.addr.2023.115108] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Over the past few years, the adoption of machine learning (ML) techniques has rapidly expanded across many fields of research including formulation science. At the same time, the use of lipid nanoparticles to enable the successful delivery of mRNA vaccines in the recent COVID-19 pandemic demonstrated the impact of formulation science. Yet, the design of advanced pharmaceutical formulations is non-trivial and primarily relies on costly and time-consuming wet-lab experimentation. In 2021, our group published a review article focused on the use of ML as a means to accelerate drug formulation development. Since then, the field has witnessed significant growth and progress, reflected by an increasing number of studies published in this area. This updated review summarizes the current state of ML directed drug formulation development, introduces advanced ML techniques that have been implemented in formulation design and shares the progress on making self-driving laboratories a reality. Furthermore, this review highlights several future applications of ML yet to be fully exploited to advance drug formulation research and development.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jack Bufton
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada; Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5S 1M1, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada; CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON M5S 1M1, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
11
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Thompson SA, Gala U, Davis DA, Kucera S, Miller D, Williams RO. Can the Oral Bioavailability of the Discontinued Prostate Cancer Drug Galeterone Be Improved by Processing Method? KinetiSol® Outperforms Spray Drying in a Head-to-head Comparison. AAPS PharmSciTech 2023; 24:137. [PMID: 37344629 DOI: 10.1208/s12249-023-02597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Galeterone, a novel prostate cancer candidate treatment, was discontinued after a Phase III clinical trial due to lack of efficacy. Galeterone is weakly basic and exhibits low solubility in biorelevant media (i.e., ~ 2 µg/mL in fasted simulated intestinal fluid). It was formulated as a 50-50 (w/w) galeterone-hypromellose acetate succinate spray-dried dispersion to increase its bioavailability. Despite this increase, the bioavailability of this formulation may have been insufficient and contributed to its clinical failure. We hypothesized that reformulating galeterone as an amorphous solid dispersion by KinetiSol® compounding could increase its bioavailability. In this study, we examined the effects of composition and manufacturing technology (Kinetisol and spray drying) on the performance of galeterone amorphous solid dispersions. KinetiSol compounding was utilized to create galeterone amorphous solid dispersions containing the complexing agent hydroxypropyl-β-cyclodextrin or hypromellose acetate succinate with lower drug loads that both achieved a ~ 6 × increase in dissolution performance versus the 50-50 spray-dried dispersion. When compared to a spray-dried dispersion with an equivalent drug load, the KinetiSol amorphous solid dispersions formulations exhibited ~ 2 × exposure in an in vivo rat study. Acid-base surface energy analysis showed that the equivalent composition of the KinetiSol amorphous solid dispersion formulation better protected the weakly basic galeterone from premature dissolution in acidic media and thereby reduced precipitation, inhibited recrystallization, and extended the extent of supersaturation during transit into neutral intestinal media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Molecular Pharmaceutics and Drug Delivery Division, The University of Texas at Austin College of Pharmacy, 2409 W. University Ave. PHR 4.214, Austin, Texas, 78712, USA.
| | - Urvi Gala
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Daniel A Davis
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Sandra Kucera
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Dave Miller
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, The University of Texas at Austin College of Pharmacy, 2409 W. University Ave. PHR 4.214, Austin, Texas, 78712, USA
| |
Collapse
|
13
|
Thompson SA, Davis DA, Miller DA, Kucera SU, Williams RO. Pre-Processing a Polymer Blend into a Polymer Alloy by KinetiSol Enables Increased Ivacaftor Amorphous Solid Dispersion Drug Loading and Dissolution. Biomedicines 2023; 11:1281. [PMID: 37238952 PMCID: PMC10215938 DOI: 10.3390/biomedicines11051281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study compares the effects of pre-processing multiple polymers together to form a single-phase polymer alloy prior to amorphous solid dispersion formulation. KinetiSol compounding was used to pre-process a 1:1 (w/w) ratio of hypromellose acetate succinate and povidone to form a single-phase polymer alloy with unique properties. Ivacaftor amorphous solid dispersions comprising either a polymer, an unprocessed polymer blend, or the polymer alloy were processed by KinetiSol and examined for amorphicity, dissolution performance, physical stability, and molecular interactions. A polymer alloy ivacaftor solid dispersion with a drug loading of 50% w/w was feasible versus 40% for the other compositions. Dissolution in fasted simulated intestinal fluid revealed that the 40% ivacaftor polymer alloy solid dispersion reached a concentration of 595 µg/mL after 6 h, 33% greater than the equivalent polymer blend dispersion. Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance revealed changes in the ability of the povidone contained in the polymer alloy to hydrogen bond with the ivacaftor phenolic moiety, explaining the differences in the dissolution performance. This work demonstrates that the creation of polymer alloys from polymer blends is a promising technique that provides the ability to tailor properties of a polymer alloy to maximize the drug loading, dissolution performance, and stability of an ASD.
Collapse
Affiliation(s)
- Stephen A. Thompson
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 W. University Ave, PHR 4.214, Austin, TX 78712, USA
| | - Daniel A. Davis
- AustinPx, LLC, 111 W Cooperative Way, Suite 300, Georgetown, TX 78626, USA
| | - Dave A. Miller
- AustinPx, LLC, 111 W Cooperative Way, Suite 300, Georgetown, TX 78626, USA
| | - Sandra U. Kucera
- AustinPx, LLC, 111 W Cooperative Way, Suite 300, Georgetown, TX 78626, USA
| | - Robert O. Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 W. University Ave, PHR 4.214, Austin, TX 78712, USA
| |
Collapse
|
14
|
Enhancement of itraconazole solubility and release by hot-melt extrusion with Soluplus®. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Hoyos-Concha JL, Villada-Castillo HS, Roa-Acosta DF, Fernández-Quintero A, Ortega-Toro R. Extrusion parameters and physical transformations of an extrudate for fish: Effect of the addition of hydrolyzed protein flour from by-products of Oncorhynchus mykiss. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1077274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
IntroductionThe food industries play a fundamental role in feeding for the functions of animal metabolism. Fish feed extrusion cooking includes process-independent factors such as temperature (°C), screw speed (RPM), throughput, feed, and moisture content that influence the final product's nutritional value and physical properties. The evidence suggests that the application of hydrolyzed protein flour (HPH) is a crucial step for the techno-functional properties of the product. Therefore, this work aimed to study the effect of hydrolyzed protein meal from silage of trout (Oncorhynchus mykiss) on the parameters of the extrusion system and their physical transformations.MethodsIn this study, the influence of hydrolyzed protein meals ranges between 10 and 30% as a substitute for fish meals. The physical properties of the extrudate were monitored, evaluating the hardness, durability, buoyancy, expansion index, and apparent density.ResultsConsistent with this, parameters such as feed composition, screw speed, moisture content, and extrusion process affected the composition and properties of the final product.DiscussionThe physical properties indicated that the hydrolyzed protein flour presented cohesiveness and decreased the mean retention time in the extruder barrel and the specific mechanical energy (SME). Hydrolyzed protein flour during the extrusion process produces pellets with high durability and low hardness due to the high porosity presented, which allows for obtaining nutritional characteristics in the extruded product.
Collapse
|
16
|
Tailored Supersaturable Immediate Release Behaviors of Hypotensive Supersaturating Drug-Delivery Systems Combined with Hot-Melt Extrusion Technique and Self-Micellizing Polymer. Polymers (Basel) 2022; 14:polym14224800. [PMID: 36432925 PMCID: PMC9693352 DOI: 10.3390/polym14224800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The short-term immediate release of supersaturated drug-delivery systems (SDDSs) presents an interesting process that can be tailored to multi-stage release events including initial release after dosing and dissolution, evolved release over longer dissolution periods for biological absorption, and terminal release following the end of immediate release. However, although comprehensive analysis of these critical release behaviors is often ignored yet essential for understanding the supersaturable immediate-release events for supersaturable solid formations when employing new techniques or polymers matched to a particular API. Hot-melt extrusion (HME) has become a popular continuous thermodynamic disordering technique for amorphization. The self-micellizing polymer Soluplus® is reported to be a potential amorphous and amphiphilic graft copolymer frequently used in many nano/micro supersaturable formulations. Our current work aims to develop hypotensive supersaturating solid dispersion systems (faSDDSHME) containing the BCS II drug, felodipine, when coordinately employing the HME technique and self-micellizing Soluplus®, and to characterize their amorphization as well as immediate release. Other discontinuous techniques were used to prepare control groups (faSDDSSE and faSDDSQC). Tailored initial/evolved/terminal three-stage supersaturable immediate-release behaviors were identified and possible mechanisms controlling the release were explored. HME produced the highest initial release in related faSDDSHME. During the evolved-release period, highly extended "spring-parachute" process was found in HME-induced amorphization owing to its superior supersaturation duration. Due to the enhanced crystallization inhibition effect, faSDDSHME displayed the strongest terminal release as measured by solubility. For release mechanisms associated with HME, molecular interaction is not the likely dominant mechanism responsible for the improved properties induced by faSDDSHME. For release mechanisms involved with the polymer Soluplus® itself, they were found to inhibit drug recrystallization, spontaneously solubilize the drug and lead to improved molecular interactions in all SDDS systems, which were the factors responsible for the improved release. These mechanisms play an important role for the generation of an extended multi-stage immediate release produced via HME or self-micellizing polymer. This study provides a deeper understanding on amorphization and superior multi-stage supersaturable immediate-release behaviors for a particular hypotensive supersaturated delivery system combined with an HME-based continuous manufacturing technique and self-micellizing polymer strategy.
Collapse
|
17
|
Kayser K, Monschke M, Wagner KG. ASD Formation Prior to Material Characterization as Key Parameter for Accurate Measurements and Subsequent Process Simulation for Hot-Melt Extrusion. AAPS PharmSciTech 2022; 23:176. [PMID: 35750968 DOI: 10.1208/s12249-022-02331-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Process simulation facilitates scale-up of hot-melt extrusion (HME) and enhances proper understanding of the underlying critical process parameters. However, performing numeric simulations requires profound knowledge of the employed materials' properties. For example, an accurate description of the compounds' melt rheology is paramount for proper simulations. Hence, sample preparation needs to be optimized to yield results as predictive as possible. To identify the optimal preparation method for small amplitude oscillatory shear (SAOS) rheological measurements, binary mixtures of hydroxypropylmethylcellulose acetate succinate or methacrylic acid ethyl acrylate copolymer (Eudragit L100-55) together with the model drugs celecoxib and ketoconazole were prepared. The physical powder mixtures were introduced into the SAOS as a compressed tablet or a disk prepared via vacuum compression molding (VCM). Simulations with the derived parameters were conducted and compared to lab-scale extrusion trials. VCM was identified as the ideal preparation method resulting in the highest similarity between simulated and experimental values, while simulation based on conventional powder-based methods insufficiently described the HME process.
Collapse
Affiliation(s)
- Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany.
| |
Collapse
|
18
|
Thompson SA, Davis DA, Moon C, Williams RO. Increasing Drug Loading of Weakly Acidic Telmisartan in Amorphous Solid Dispersions through pH Modification during Hot-Melt Extrusion. Mol Pharm 2022; 19:318-331. [PMID: 34846902 DOI: 10.1021/acs.molpharmaceut.1c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral drug therapy requiring large quantities of active pharmaceutical ingredients (APIs) can cause a substantial pill burden, which can increase nonadherence and worsen healthcare outcomes. Maximizing the drug loading of APIs in oral dosage forms is essential to reduce pill burden. This can be challenging for poorly water-soluble APIs without compromising performance. We show a promising strategy for maximizing the drug loading of pH-dependent APIs in amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) without compromising their dissolution performance. We examine potential increases in the drug loading (w/w) of telmisartan in ASDs by incorporating bases to modify pH during HME. Telmisartan is a weakly acidic, poorly water-soluble API with pH-dependent solubility. It is practically insoluble at physiological pH, but its solubility increases exponentially at pH values above 10. Telmisartan was extruded with the polymer Soluplus and various bases. With no base, the maximum drug loading achieved by extrusion was only 5% before crystalline telmisartan was detected. Including a strong, water-soluble base (NaOH or KOH) increased the maximum amorphous drug loading to 50%. These results indicate that telmisartan has pH-dependent solubility in a molten polymer, similar to that in an aqueous solution. We also examine the stability of Soluplus when extruded with a strong base, using solid-state nuclear magnetic resonance (ssNMR) to determine that NaOH (but not KOH) causes degradation by hydrolysis. Supersaturation was maintained for at least 20 h during dissolution testing of a 50% telmisartan ASD in biorelevant media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Daniel A Davis
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin College of Pharmacy, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Formulating a heat- and shear-labile drug in an amorphous solid dispersion: Balancing drug degradation and crystallinity. Int J Pharm X 2021; 3:100092. [PMID: 34977559 PMCID: PMC8683684 DOI: 10.1016/j.ijpx.2021.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
We seek to further addresss the questions posed by Moseson et al. regarding whether any residual crystal level, size, or characteristic is acceptable in an amorphous solid dispersion (ASD) such that its stability, enhanced dissolution, and increased bioavailability are not compromised. To address this highly relevant question, we study an interesting heat- and shear-labile drug in development, LY3009120. To study the effects of residual crystallinity and degradation in ASDs, we prepared three compositionally identical formulations (57–1, 59–4, and 59–5) using the KinetiSol process under various processing conditions to obtain samples with various levels of crystallinity (2.3%, 0.9%, and 0.1%, respectively) and degradation products (0.74%, 1.97%, and 3.12%, respectively). Samples with less than 1% crystallinity were placed on stability, and we observed no measurable change in the drug's crystallinity, dissolution profile or purity in the 59–4 and 59–5 formulations over four months of storage under closed conditions at 25 °C and 60% humidity. For formulations 57–1, 59–4, and 59–5, bioavailability studies in rats reveal a 44-fold, 55-fold, and 62-fold increase in mean AUC, respectively, compared to the physical mixture. This suggests that the presence of some residual crystals after processing can be acceptable and will not change the properties of the ASD over time.
Collapse
|