1
|
Mugundhan SL, Mohan M. Hyaluronic acid-coated capecitabine nanostructures for CD44 receptor-mediated targeting in breast cancer therapy. RSC Adv 2025; 15:12653-12670. [PMID: 40264886 PMCID: PMC12012621 DOI: 10.1039/d5ra01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Hyaluronic acid-coated capecitabine-loaded nanomicelles (HA-CAP-M) are synthesized to overcome the challenges associated with capecitabine (CAP) conventional delivery such as low permeability and systemic toxicity. Nanomicelles containing saponin, glycerol, and vitamin-E TPGS formulation of capecitabine were further encapsulated with hyaluronic acid (HA) for CD44 receptor-mediated targeting. Optimization of the formulation was carried out using a Box-Behnken design resulting in 17.8 nm particle size, 89.3% entrapment efficiency and a biphasic drug release profile. Characterization studies validated stability, spherical structure, and desirable encapsulation characteristics of the nanomicelles. Lowered critical micelle concentration (CMC) and acceptable drug release kinetics revealed improved thermodynamic stability and controlled drug release, as predicted by the Hixson-Crowell model. HA-CAP-M showed much higher permeability and cytotoxicity than the free CAP, with an IC50 of 2.964 μg mL-1 in in vitro experiments. AO/PI staining also demonstrated dose-dependent apoptosis in MCF-7 breast cancer cells and validated the highly effective active targeting of HA. In addition, the formulation demonstrated good stability during storage and dilution conditions, confirming its stability as a drug delivery platform. In conclusion, HA-functionalized nanomicelles provide a biocompatible and efficient system for the targeted breast cancer therapy, enhancing the therapeutic efficacy of capecitabine.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 Chengalpattu Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 Chengalpattu Tamil Nadu India
| |
Collapse
|
2
|
Zhang L, Fan Y, Yang Z, Wong CY, Yang M. A novel reactive oxygen species nano-amplifier for tumor-targeted photoacoustic imaging and synergistic therapy. J Colloid Interface Sci 2025; 681:331-343. [PMID: 39612665 DOI: 10.1016/j.jcis.2024.11.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Intracellular redox homeostasis and the type of exogenous Fenton reagent play crucial roles in determining the efficacy of chemodynamic therapy (CDT). Herein, we succeeded for the first time in preparing ultrasmall copper sulfide (CuS) nanodots (1-2 nm)-embedded hollow mesoporous organosilica nanoparticle (HMON), which served as an ideal nanocarrier to load both 3-amino-1,2,4-triazole (3-AT) and disulfiram (DSF) after folate-polyethylene glycol-silane (FA-PEG-Silane) modification. The as-prepared nanoplatform (3-AT/DSF@CuS/HMON-FA, denoted as ADCuSi-FA) was found to regulate intracellular redox homeostasis once internalized by 4T1 cells, showing rapid glutathione (GSH)-responsive 3-AT, DSF and Cu+ ions release. Specifically, 3-AT restrained the endogenous hydrogen peroxide (H2O2) consumption by suppressing catalase (CAT) activity, thereby augmenting hydroxyl radical (OH) generation via Cu+-based Fenton-like reaction. DSF, upon complexation with Cu2+, exhibited enhanced chemotherapeutic efficacy, while the by-product Cu+ ions further boosted the efficacy of CDT. Additionally, CuS nanodots enabled near-infrared-II (NIR-II) photothermal therapy (PTT) and facilitated photoacoustic (PA) imaging, with the ensuing hyperthermia expediting the CDT process. As expected, the tumor growth was dramatically inhibited with PTT/chemotherapy co-synergized CDT. This work offers an innovative paradigm for cooperative cancer treatment as well as new insights into the fabrication of biodegradable inorganic/organic hybrid materials.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
3
|
Liu Z, Liu Y, Kang X, Li L, Xiang Y. Subcellular Organelle Targeting as a Novel Approach to Combat Tumor Metastasis. Pharmaceutics 2025; 17:198. [PMID: 40006565 PMCID: PMC11859411 DOI: 10.3390/pharmaceutics17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor metastasis, the spread of cancer cells from the primary site to distant organs, remains a formidable challenge in oncology. Central to this process is the involvement of subcellular organelles, which undergo significant functional and structural changes during metastasis. Targeting these specific organelles offers a promising avenue for enhanced drug delivery and metastasis therapeutic efficacy. This precision increases the potency and reduces potential off-target effects. Moreover, by understanding the role of each organelle in metastasis, treatments can be designed to disrupt the metastatic process at multiple stages, from cell migration to the establishment of secondary tumors. This review delves deeply into tumor metastasis processes and their connection with subcellular organelles. In order to target these organelles, biomembranes, cell-penetrating peptides, localization signal peptides, aptamers, specific small molecules, and various other strategies have been developed. In this review, we will elucidate targeting delivery strategies for each subcellular organelle and look forward to prospects in this domain.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Yang Liu
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Xin Kang
- Department of General Surgery, First People‘s Hospital of Shuangliu District (West China Airport Hospital of Sichuan University), Chengdu 610200, China; (Z.L.); (Y.L.)
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Yucheng Xiang
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
4
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
6
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
7
|
Muteeb G, Khafaga DS, El-Morsy MT, Farhan M, Aatif M, Hosney M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024; 10:e37217. [PMID: 39309874 PMCID: PMC11415663 DOI: 10.1016/j.heliyon.2024.e37217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor advancement in many ways, such as inducing angiogenesis and the formation of new blood vessels that provide tumors with nourishment and oxygen. TAMs also facilitate tumor invasion and metastasis by secreting enzymes that degrade the extracellular matrix and generating pro-inflammatory cytokines that enhance the migration of tumor cells. TAMs also have a role in inhibiting the immune response against malignancies. To accomplish this, they release immunosuppressive cytokines such as IL-10, and TAMs can hinder the function of T cells and natural killer cells, which play crucial roles in the immune system's ability to combat cancer. The role of TAMs in breast cancer advancement is a complex and dynamic field of research. Therefore, TAMs are a highly favorable focus for innovative breast cancer treatments. This review presents an extensive overview of the correlation between TAMs and breast cancer development as well as its role in the tumor microenvironment (TME) shedding light on their impact on tumor advancement and immune evasion mechanisms. Notably, our study provides an innovative approach to employing nanomedicine approaches for targeted TAM therapy in breast cancer, providing an in-depth overview of recent advances in this emerging field.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Doaa S.R. Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City, 43511, Suez, Egypt
| | - Manar T. El-Morsy
- Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
8
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
9
|
Radicchi MA, Farias GR, Mello da Silva VC, Machado VP, de Souza DG, Figueiró Longo JP, Báo SN. Prevention of chemotherapy-related bone loss with doxorubicin-loaded solid lipid nanoparticles. Nanomedicine (Lond) 2024; 19:1895-1911. [PMID: 39109488 PMCID: PMC11457634 DOI: 10.1080/17435889.2024.2382083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 10/05/2024] Open
Abstract
Aim: Breast cancer and its metastases involve high mortality even with advances in chemotherapy. Solid lipid nanoparticles provide a platform for drug delivery, reducing side effects and treatment-induced bone loss. A solid nanoparticle containing doxorubicin was evaluated for its ability to prevent bone loss in a pre-clinical breast cancer model.Methods: We investigated the effects of SLNDox in an aggressive metastatic stage IV breast cancer model, which has some important features that are interesting for bone loss investigation. This study evaluates bone loss prevention potential from solid lipid nanoparticles containing doxorubicin breast cancer treatment, an evaluation of the attenuation of morphological changes in bone tissue caused by the treatment and the disease and an assessment of bone loss imaging using computed tomography and electron microscopy.Results: Chemotherapy-induced bone loss was also observed in tumor-free animals; a solid lipid nanoparticle containing doxorubicin prevented damage to the growth plate and to compact and cancellous bones in the femur of tumor-bearing and healthy animals.Conclusion: The association of solid lipid nanoparticles with chemotherapeutic drugs with proven efficacy promotes the prevention of serious consequences of chemotherapy, reducing tumor progression, increasing quality of life and improving prognosis and survival.
Collapse
Affiliation(s)
- Marina Arantes Radicchi
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Victor Carlos Mello da Silva
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Victória Paz Machado
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Danielle Galdino de Souza
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Sônia Nair Báo
- Laboratory of Microscopy & Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
10
|
Fan QQ, Tian H, Cheng JX, Zou JB, Luan F, Qiao JX, Zhang D, Tian Y, Zhai BT, Guo DY. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother 2024; 177:117118. [PMID: 39002440 DOI: 10.1016/j.biopha.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.
Collapse
Affiliation(s)
- Qiang-Qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, 710021, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jia-Xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
11
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Chen MM, Tang X, Li JJ, Chen FY, Jiang ZT, Fu R, Li HB, Hu XY, Geng WC, Guo DS. Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene. J Control Release 2024; 368:691-702. [PMID: 38492860 DOI: 10.1016/j.jconrel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xingchen Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
13
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
14
|
Prasad R, Peng B, Mendes BB, Kilian HI, Gorain M, Zhang H, Kundu GC, Xia J, Lovell JF, Conde J. Biomimetic bright optotheranostics for metastasis monitoring and multimodal image-guided breast cancer therapeutics. J Control Release 2024; 367:300-315. [PMID: 38281670 DOI: 10.1016/j.jconrel.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nanoparticle formulations blending optical imaging contrast agents and therapeutics have been a cornerstone of preclinical theranostic applications. However, nanoparticle-based theranostics clinical translation faces challenges on reproducibility, brightness, photostability, biocompatibility, and selective tumor targeting and penetration. In this study, we integrate multimodal imaging and therapeutics within cancer cell-derived nanovesicles, leading to biomimetic bright optotheranostics for monitoring cancer metastasis. Upon NIR light irradiation, the engineered optotheranostics enables deep visualization and precise localization of metastatic lung, liver, and solid breast tumors along with solid tumor ablation. Metastatic cell-derived nanovesicles (∼80 ± 5 nm) are engineered to encapsulate imaging (emissive organic dye and gold nanoparticles) and therapeutic agents (anticancer drug doxorubicin and photothermally active organic indocyanine green dye). Systemic administration of biomimetic bright optotheranostic nanoparticles shows escape from mononuclear phagocytic clearance with (i) rapid tumor accumulation (3 h) and retention (up to 168 h), (ii) real-time monitoring of metastatic lung, liver, and solid breast tumors and (iii) 3-fold image-guided solid tumor reduction. These findings are supported by an improvement of X-ray, fluorescence, and photoacoustic signals while demonstrating a tumor reduction (201 mm3) in comparison with single therapies that includes chemotherapy (134 mm3), photodynamic therapy (72 mm3), and photothermal therapy (88mm3). The proposed innovative platform opens new avenues to improve cancer diagnosis and treatment outcomes by allowing the monitorization of cancer metastasis, allowing the precise cancer imaging, and delivering synergistic therapeutic agents at the solid tumor site.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India; Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Berney Peng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hailey I Kilian
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India
| | - Huijuan Zhang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411007, India; School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo 14260, NY, USA
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
15
|
Wang K, Lin X, Zhang M, Yang M, Shi X, Xie M, Luo Y. ACEK Biosensor for the Minute-Scale Quantification of Breast Cancer ctDNA. SENSORS (BASEL, SWITZERLAND) 2024; 24:547. [PMID: 38257640 PMCID: PMC10818266 DOI: 10.3390/s24020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Circulating tumor DNA (ctDNA) appears as a valuable liquid biopsy biomarker in the early diagnosis, treatment, and prognosis of cancer. Here, a biosensing method derived from the AC electrokinetics (ACEK) effect was constructed in this study for the simple, efficient, and rapid method of detection of ctDNA. In the proof-of-concept experiment, ctDNA from the PIK3CA E542K mutant in breast cancer was quantified by detecting a normalized capacitance change rate using a forked-finger gold electrode as the sensing electrode in combination with the ACEK effect. We compared two formats for the construction of the approach by employing varied immobilization strategies; one is to immobilize the DNA capture probe on the electrode surface by Au-S bonding, while the other immobilizes the probe on a self-assembled membrane on the electrode surface by amide bonding. Both formats demonstrated ultrafast detection speed by completing the ctDNA quantification within 1 min and a linear range of 10 fM-10 pM was observed. Meanwhile, the immobilization via the self-assembled membrane yielded improved stability, sensitivity, and specificity than its Au-S bonding counterpart. A detection limit of 1.94 fM was eventually achieved using the optimized approach. This research provides a label-free and minute-scale universal method for the detection of various malignant tumors. The ctDNA biosensors based on the ACEK effect improved according to the probe type or electrode structure and have potential applications in tumor drug efficacy prediction, drug resistance monitoring, screening of high-risk groups, differential diagnosis, monitoring of tiny residual lesions, and prognosis determination.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Maoxiao Zhang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Mengjie Yang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Xiang Shi
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China; (K.W.); (M.Z.); (M.Y.); (X.S.); (M.X.)
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
18
|
Kawasaki R, Oshige A, Yamana K, Hirano H, Nishimura K, Miura Y, Yorioka R, Sanada Y, Bando K, Tabata A, Yasuhara K, Miyazaki Y, Shinoda W, Nishimura T, Azuma H, Takata T, Sakurai Y, Tanaka H, Suzuki M, Nagasaki T, Ikeda A. HER-2-Targeted Boron Neutron Capture Therapy with Carborane-integrated Immunoliposomes Prepared via an Exchanging Reaction. Chemistry 2023; 29:e202302486. [PMID: 37792507 DOI: 10.1002/chem.202302486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.
Collapse
Affiliation(s)
- Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Ayano Oshige
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Hidetoshi Hirano
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Kotaro Nishimura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yamato Miura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Ryuji Yorioka
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Kaori Bando
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka city, 558-8585, Japan
| | - Anri Tabata
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka city, 558-8585, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology and Center for Digital Green-Innovation, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushuma-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushuma-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Hideki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka city, 558-8585, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka city, 558-8585, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| |
Collapse
|
19
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
20
|
Sun S, Wang YH, Gao X, Wang HY, Zhang L, Wang N, Li CM, Xiong SQ. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front Bioeng Biotechnol 2023; 11:1253048. [PMID: 37771575 PMCID: PMC10523396 DOI: 10.3389/fbioe.2023.1253048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The treatment of breast cancer (BC) is a serious challenge due to its heterogeneous nature, multidrug resistance (MDR), and limited therapeutic options. Nanoparticle-based drug delivery systems (NDDSs) represent a promising tool for overcoming toxicity and chemotherapy drug resistance in BC treatment. No bibliometric studies have yet been published on the research landscape of NDDS-based treatment of BC. In this review, we extracted data from 1,752 articles on NDDS-based treatment of BC published between 2012 and 2022 from the Web of Science Core Collection (WOSCC) database. VOSviewer, CiteSpace, and some online platforms were used for bibliometric analysis and visualization. Publication trends were initially observed: in terms of geographical distribution, China and the United States had the most papers on this subject. The highest contributing institution was Sichuan University. In terms of authorship and co-cited authorship, the most prolific author was Yu Zhang. Furthermore, Qiang Zhang and co-workers have made tremendous achievements in the field of NDDS-based BC treatment. The article titled "Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications" had the most citations. The Journal of Controlled Release was one of the most active publishers in the field. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries" was the most cited reference. We also analysed "hot" and cutting-edge research for NDDSs in BC treatment. There were nine topic clusters: "tumour microenvironment," "nanoparticles (drug delivery)," "breast cancer/triple-negative breast cancer," "combination therapy," "drug release (pathway)," "multidrug resistance," "recent advance," "targeted drug delivery", and "cancer nanomedicine." We also reviewed the core themes of research. In summary, this article reviewed the application of NDDSs in the treatment of BC.
Collapse
Affiliation(s)
- Sheng Sun
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye-hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He-yong Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Wang
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Chun-mei Li
- Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Shao-quan Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Yellapu NK, Pei D, Nissen E, Thompson JA, Koestler DC. Comprehensive exploration of JQ1 and GSK2801 targets in breast cancer using network pharmacology and molecular modeling approaches. Comput Struct Biotechnol J 2023; 21:3224-3233. [PMID: 38213901 PMCID: PMC10781883 DOI: 10.1016/j.csbj.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 01/13/2024] Open
Abstract
JQ1 and GSK2801 are bromo domain inhibitors (BDI) known to exhibit enhanced anti-cancer activity when combined with other agents. However, the underlying molecular mechanisms behind such enhanced activity remain unclear. We used network-pharmacology approaches to understand the shared molecular mechanisms behind the enhanced activity of JQ1 and GSK2801 when used together to treat breast cancer (BC). The gene targets of JQ1 and GSK2801 were intersected with known BC-targets and their putative targets against BC were derived. The key genes were explored through gene-ontology-enrichment, Protein-Protein-Interaction (PPI) networking, survival analysis, and molecular modeling simulations. The genes, CTSB, MAPK14, MET, PSEN2 and STAT3, were found to be common targets for both drugs. In total, 49 biological processes, five molecular functions and 61 metabolic pathways were similarly enriched for JQ1 and GSK2801 BC targets among which several terms are related to cancer: IL-17, TNF and JAK-STAT signaling pathways. Survival analyses revealed that all five putative synergistic targets are significantly associated with survival in BC (log-rank p < 0.05). Molecular modeling studies showed stable binding of JQ1 and GSK2801 against their targets. In conclusion, this study explored and illuminated the possible molecular mechanisms behind the enhanced activity of JQ1 and GSK2801 against BC and suggests synergistic action through their similar BC-targets and gene-ontologies.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Jeffrey A. Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
23
|
Nejati-Koshki K, Roberts CT, Babaei G, Rastegar M. The Epigenetic Reader Methyl-CpG-Binding Protein 2 (MeCP2) Is an Emerging Oncogene in Cancer Biology. Cancers (Basel) 2023; 15:2683. [PMID: 37345019 PMCID: PMC10216337 DOI: 10.3390/cancers15102683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic mechanisms are gene regulatory processes that control gene expression and cellular identity. Epigenetic factors include the "writers", "readers", and "erasers" of epigenetic modifications such as DNA methylation. Accordingly, the nuclear protein Methyl-CpG-Binding Protein 2 (MeCP2) is a reader of DNA methylation with key roles in cellular identity and function. Research studies have linked altered DNA methylation, deregulation of MeCP2 levels, or MECP2 gene mutations to different types of human disease. Due to the high expression level of MeCP2 in the brain, many studies have focused on its role in neurological and neurodevelopmental disorders. However, it is becoming increasingly apparent that MeCP2 also participates in the tumorigenesis of different types of human cancer, with potential oncogenic properties. It is well documented that aberrant epigenetic regulation such as altered DNA methylation may lead to cancer and the process of tumorigenesis. However, direct involvement of MeCP2 with that of human cancer was not fully investigated until lately. In recent years, a multitude of research studies from independent groups have explored the molecular mechanisms involving MeCP2 in a vast array of human cancers that focus on the oncogenic characteristics of MeCP2. Here, we provide an overview of the proposed role of MeCP2 as an emerging oncogene in different types of human cancer.
Collapse
Affiliation(s)
- Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil 85991-56189, Iran;
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 57157-89400, Iran;
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
24
|
Liang J, Sun Y, Wang K, Zhang Y, Guo L, Bao Z, Wang D, Xu H, Zheng J, Yuan Y. Prussian Blue-Derived Nanoplatform for In Situ Amplified Photothermal/Chemodynamic/Starvation Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18191-18204. [PMID: 36975190 DOI: 10.1021/acsami.2c22448] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging tumor treatment; however, it is hindered by insufficient endogenous hydrogen peroxide (H2O2) and high glutathione (GSH) concentrations in the tumor microenvironment (TME). Furthermore, CDT has limited therapeutic efficacy as a monotherapy. To overcome these limitations, in this study, a nanoplatform is designed and constructed from Cu-doped mesoporous Prussian blue (CMPB)-encapsulated glucose oxidase (GOx) with a coating of hyaluronic acid (HA) modified with a nitric oxide donor (HN). In the proposed GOx@CMPB-HN nanoparticles, the dopant Cu2+ ions are crucial to combining and mutually promoting multiple therapeutic approaches, namely, CDT, photothermal therapy (PTT), and starvation therapy. The dopant Cu2+ ions in CMPB protect against reactive oxygen species to deplete the intracellular GSH in the TME. Additionally, the byproduct Cu+ ions act as a substrate for a Fenton-like reaction that activates CDT. Moreover, H2O2, which is another important substrate, is produced in large quantities through intracellular glucose depletion caused by the nanoparticle-loaded GOx, and the gluconic acid produced in this reaction further enhances the TME acidity and creates a better catalytic environment for CDT. In addition, Cu2+ doping greatly improves the mesoporous Prussian blue (MPB) photothermal conversion performance, and the resultant increase in temperature accelerates CDT catalysis. Finally, the HN coating enables the nanoparticles to actively target CD44 receptors in cancer cells and also enhances vascular permeability. Therefore, this coating has multiple effects, such as facilitating enhanced permeability and retention and deep laser penetration. In vitro and in vivo experiments demonstrate that the proposed GOx@CMPB-HN nanoplatform significantly inhibits tumor growth with the help of in situ enhanced synergistic therapies based on the properties of the TME. The developed nanoplatform has the potential to be applied to cancer treatment and introduces new avenues for tumor treatment research.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yaning Sun
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Kaili Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yawen Zhang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Linqing Guo
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Zhihong Bao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Dun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Haiyan Xu
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jiani Zheng
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
25
|
Advanced Drug Delivery Systems for Renal Disorders. Gels 2023; 9:gels9020115. [PMID: 36826285 PMCID: PMC9956928 DOI: 10.3390/gels9020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Kidney disease management and treatment are currently causing a substantial global burden. The kidneys are the most important organs in the human urinary system, selectively filtering blood and metabolic waste into urine via the renal glomerulus. Based on charge and/or molecule size, the glomerular filtration apparatus acts as a barrier to therapeutic substances. Therefore, drug distribution to the kidneys is challenging, resulting in therapy failure in a variety of renal illnesses. Hence, different approaches to improve drug delivery across the glomerulus filtration barrier are being investigated. Nanotechnology in medicine has the potential to have a significant impact on human health, from illness prevention to diagnosis and treatment. Nanomaterials with various physicochemical properties, including size, charge, surface and shape, with unique biological attributes, such as low cytotoxicity, high cellular internalization and controllable biodistribution and pharmacokinetics, have demonstrated promising potential in renal therapy. Different types of nanosystems have been employed to deliver drugs to the kidneys. This review highlights the features of the nanomaterials, including the nanoparticles and corresponding hydrogels, in overcoming various barriers of drug delivery to the kidneys. The most common delivery sites and strategies of kidney-targeted drug delivery systems are also discussed.
Collapse
|
26
|
Yang F, He Q, Dai X, Zhang X, Song D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front Pharmacol 2023; 14:1143102. [PMID: 36909177 PMCID: PMC9992554 DOI: 10.3389/fphar.2023.1143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignant tumor among women in the world. BC is the heterogeneous tumor with different subtypes including luminal A-like, luminal B-like (HER2-/HER2+), HER2 enriched, and triple-negative BC. The therapeutic strategies including surgery, chemotherapy, radiotherapy, targeted therapy, and endocrine therapy are well developed and commonly used in the treatment of BC. However, some adverse effects of these conventional treatments limited their wide application in clinical. Therefore, it is necessary to develop more safe and more efficient individualized treatment strategies of the BC. Nanomedicine, as the most promising strategy for controlled and targeted drug delivery, is widely used in multiple aspects of cancer therapy. Importantly, accumulative evidences show that nanomedicine has achieved good outcomes in the treatment of BC and a huge amount of BC patients benefited from the nanomedicine related treatments. In this review, we summarized and discussed the major problems occurred during the administration of conventional treatment strategies for BC and the potential roles of nanomedicine in promoting the treatment efficacy of BC by overcoming obstacles of current treatment of BC.
Collapse
Affiliation(s)
- Fan Yang
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Qingjie He
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Breast Surgery Department of General Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Wei X, Yang M. Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy. Front Pharmacol 2023; 14:1180794. [PMID: 37089933 PMCID: PMC10117787 DOI: 10.3389/fphar.2023.1180794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant tumor, surpassing lung cancer as the most frequent malignancy in women. Drug resistance, metastasis, and immune escape are the major factors affecting patient survival and represent a huge challenge in BC treatment in clinic. The cell- and subcellular organelle-targeting nanoparticles-mediated targeted BC therapy may be an effective modality for immune evasion, metastasis, and drug resistance. Nanocarriers, efficiently delivering small molecules and macromolecules, are used to target subcellular apparatuses with excellent targeting, controlled delivery, and fewer side effects. This study summarizes and critically analyzes the latest organic nanoparticle-mediated subcellular targeted therapeutic based on chemotherapy, gene therapy, immunotherapy, and combination therapy in detail, and discusses the challenges and opportunities of nanoparticle therapy.
Collapse
Affiliation(s)
- Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Ming Yang,
| |
Collapse
|
28
|
Lopes LB, Apolinário AC, Salata GC, Malagó ID, Passos JS. Lipid Nanocarriers for Breast Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Frontiers in Preparations and Promising Applications of Mesoporous Polydopamine for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 15:pharmaceutics15010015. [PMID: 36678644 PMCID: PMC9861962 DOI: 10.3390/pharmaceutics15010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Polydopamine (PDA) is a natural melanin derived from marine mussels that has good biocompatibility, biodegradability, and photothermal conversion ability. As a new coating material, it offers a novel way to modify the surface of various substances. The drug loading capacity and encapsulation efficiency of PDA are greatly improved via the use of mesoporous materials. The abundant pore canals on mesoporous polydopamine (MPDA) exhibit a uniquely large surface area, which provides a structural basis for drug delivery. In this review, we systematically summarized the characteristics and manufacturing process of MPDA, introduced its application in the diagnosis and treatment of cancer, and discussed the existing problems in its development and clinical application. This comprehensive review will facilitate further research on MPDA in the fields of medicine including cancer therapy, materials science, and biology.
Collapse
|
30
|
Ma X, Yang C, Zhang R, Yang J, Zu Y, Shou X, Zhao Y. Doxorubicin loaded hydrogel microparticles from microfluidics for local injection therapy of tumors. Colloids Surf B Biointerfaces 2022; 220:112894. [DOI: 10.1016/j.colsurfb.2022.112894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
31
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
32
|
Wang Y, Huo J, Li S, Huang R, Fan D, Cheng H, Wan B, Du Y, He H, Zhang G. Self-Rectifiable and Hypoxia-Assisted Chemo-Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10092-10101. [PMID: 35170301 DOI: 10.1021/acsami.1c23121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) can eradicate cancer cells under light irradiation, mainly because of reactive singlet oxygen (1O2) being transformed from intratumoral oxygen. Nonetheless, the consumption of oxygen during PDT results in serious hypoxic conditions and an elevated hypoxia-inducing factor-1α (HIF-1α) level that hamper further photodynamic efficacy and induce tumor metastasis. To address this problem, we developed hypoxia-assisted NP-co-encapsulating Ce6 (photosensitizer) and YC-1 (HIF-1α inhibitor) as a self-rectifiable nanoinhibitor for synergistic antitumor treatment. PDT-aggravated intracellular hypoxic stress facilitated NP dissociation to release the drug (YC-1), which achieved tumor killing and HIF-1α inhibition to further enhance the therapeutic effect of PDT and prevent tumor metastasis. Besides, in vivo studies revealed that the HC/PI@YC-1 NPs afforded synergistic anticancer efficacy with minimal toxicity. Therefore, this study provides a prospective approach against PDT drawbacks and combination cancer therapy.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jian Huo
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuang Li
- Department of Pathology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou 450003, China
| | - Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanghang Cheng
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo Wan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongkun Du
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
33
|
das Neves J, Ensign L. Advances in drug delivery for women's health: A matter of gender equity. Adv Drug Deliv Rev 2022; 182:114132. [PMID: 35090956 PMCID: PMC9844536 DOI: 10.1016/j.addr.2022.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal.
| | - Laura Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Chemical & Biomolecular Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Departments of Pharmacology and Molecular Sciences, Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
34
|
Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers (Basel) 2022; 14:cancers14051198. [PMID: 35267507 PMCID: PMC8909490 DOI: 10.3390/cancers14051198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Despite all the efforts and advances made in the treatment of breast cancer, this pathology continues to be one of the main causes of cancer death in women, particularly triple-negative breast cancer (TNBC), and, although to a lesser degree, HER-2 receptor-positive tumors. Chemotherapy is one of the main treatments available. However, it shows numerous limitations due to its lack of selectivity. In this sense, the selective delivery of antineoplastics to cancer cells can reduce their adverse effects and increase their efficacy. The use of active targeted nanomedicine is a good strategy to achieve this selective chemotherapy. In fact, in recent decades, several active targeted nanoformulations have been approved or reached clinical investigation with excellent results. Among all nanomedicines, antibody-drug conjugates are the most promising. Abstract Breast cancer is one of the most frequently diagnosed tumors and the second leading cause of cancer death in women worldwide. The use of nanosystems specifically targeted to tumor cells (active targeting) can be an excellent therapeutic tool to improve and optimize current chemotherapy for this type of neoplasm, since they make it possible to reduce the toxicity and, in some cases, increase the efficacy of antineoplastic drugs. Currently, there are 14 nanomedicines that have reached the clinic for the treatment of breast cancer, 4 of which are already approved (Kadcyla®, Enhertu®, Trodelvy®, and Abraxane®). Most of these nanomedicines are antibody–drug conjugates. In the case of HER-2-positive breast cancer, these conjugates (Kadcyla®, Enhertu®, Trastuzumab-duocarmycin, RC48, and HT19-MMAF) target HER-2 receptors, and incorporate maytansinoid, deruxtecan, duocarmicyn, or auristatins as antineoplastics. In TNBC these conjugates (Trodelvy®, Glembatumumab-Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-pelidotin, and PF-06647263) are directed against various targets, in particular Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter LIV-1, and Ephrin receptor-4, to achieve this selective accumulation, and include campthotecins, calicheamins, or auristatins as drugs. Apart from the antibody–drug conjugates, there are other active targeted nanosystems that have reached the clinic for the treatment of these tumors such as Abraxane® and Nab-rapamicyn (albumin nanoparticles entrapping placlitaxel and rapamycin respectively) and various liposomes (MM-302, C225-ILS-Dox, and MM-310) loaded with doxorubicin or docetaxel and coated with ligands targeted to Ephrin A2, EPGF, or HER-2 receptors. In this work, all these active targeted nanomedicines are discussed, analyzing their advantages and disadvantages over conventional chemotherapy as well as the challenges involved in their lab to clinical translation. In addition, examples of formulations developed and evaluated at the preclinical level are also discussed.
Collapse
|