1
|
Li JY, Jiang RY, Wang J, Wang XJ. Advances in mRNA vaccine therapy for breast cancer research. Discov Oncol 2025; 16:673. [PMID: 40327249 PMCID: PMC12055746 DOI: 10.1007/s12672-025-02542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025] Open
Abstract
Breast cancer represents the most prevalent cancer among women globally, constituting approximately 30% of newly diagnosed female malignancies and serving as the second leading cause of cancer-related mortality, accounting for 11.6% of deaths. Despite notable advancements in survival rates and quality of life for breast cancer patients over recent decades-achieved through interventions such as surgery, chemotherapy, radiotherapy, and endocrine therapy-there remains an urgent need for novel therapeutic strategies. This necessity arises from challenges associated with recurrence, metastasis, and drug resistance. The COVID-19 pandemic has accelerated the development of Messenger RNA (mRNA) vaccines at an unprecedented pace, and as a novel form of precision immunotherapy, mRNA vaccines are increasingly being recognized for their potential in cancer treatment. mRNA vaccines efficiently produce antigens within the cytoplasm, specifically activating the immune system to target tumor cells while minimizing the risk of T-cell tolerance. Therefore, mRNA vaccines have emerged as a promising approach in cancer immunotherapy. This review systematically examines the principles, mechanisms, advantages, key targets, and recent progress in mRNA vaccine therapy for breast cancer. Furthermore, it discusses current challenges and suggests potential directions for future research.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Graduate Student, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Rui-Yuan Jiang
- Department of Graduate Student, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
| | - Jia Wang
- Department of Graduate Student, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Xiao-Jia Wang
- Department of Graduate Student, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Department of Medical Oncology(Breast), Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Afrashteh F, Seyedpour S, Rezaei N. The therapeutic effect of mRNA vaccines in glioma: a comprehensive review. Expert Rev Clin Immunol 2025:1-13. [PMID: 40249391 DOI: 10.1080/1744666x.2025.2494656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor, with glioblastoma being the most lethal type due to its heterogeneous and invasive nature of the cancer. Current therapies have low curative success and are limited to surgery, radiotherapy, and chemotherapy. More than 50% of patients become resistant to chemotherapy, and tumor recurrence occurs in most patients following an initial course of therapy. Therefore, developing novel, effective strategies for glioma treatment is essential. Cancer vaccines are novel therapies that demonstrate advantages over conventional methods and, therefore, may be promising options for treating glioma. AREAS COVERED This article provided a critical review of pre-clinical and clinical studies that explored appropriate tumor antigen candidates for developing mRNA vaccines and discussed their clinical application in glioma patients. Medline database, PubMed, and ClinicalTrials.gov were searched for glioma vaccine studies published before 2025 using related keywords. EXPERT OPINION mRNA vaccines are promising strategies for treating glioma because they are efficient, cost-beneficial, and have lower side effects than other types such as peptide or DNA-based vaccines.
Collapse
Affiliation(s)
- Fatemeh Afrashteh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Strika Z, Petković K, Likić R. Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma. J Pers Med 2024; 14:993. [PMID: 39338247 PMCID: PMC11433450 DOI: 10.3390/jpm14090993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma (GBM) is the most common and most malignant primary brain tumor, presenting significant treatment challenges due to its heterogeneity, invasiveness, and resistance to conventional therapies. Despite aggressive treatment protocols, the prognosis remains poor, with a median survival time of approximately 15 months. Recent advancements in mRNA vaccine technology, particularly the development of lipid nanoparticles (LNPs), have revitalized interest in mRNA-based therapies. These vaccines offer unique advantages, including rapid production, personalization based on tumor-specific mutations, and a strong induction of both humoral and cellular immune responses. mRNA vaccines have demonstrated potential in preclinical models, showing significant tumor regression and improved survival rates. Early-phase clinical trials have indicated that mRNA vaccines are safe and can induce robust immune responses in GBM patients. Combining mRNA vaccines with other immunotherapeutic approaches, such as checkpoint inhibitors, has shown synergistic effects, further enhancing their efficacy. However, challenges such as optimizing delivery systems and overcoming the immunosuppressive tumor microenvironment remain. Future research should focus on addressing these challenges and exploring combination therapies to maximize therapeutic benefits. Large-scale, randomized clinical trials are essential to validate the efficacy and safety of mRNA vaccines in GBM therapy. The potential to reshape the tumor microenvironment and establish long-term immunological memory underscores the transformative potential of mRNA vaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Zdeslav Strika
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Karlo Petković
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Robert Likić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Division of Clinical Pharmacology and Therapeutics, Department of Internal Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Latzer P, Zelba H, Battke F, Reinhardt A, Shao B, Bartsch O, Rabsteyn A, Harter J, Schulze M, Okech T, Golf A, Kyzirakos-Feger C, Kayser S, Pieper N, Feldhahn M, Wünsche J, Seitz C, Hadaschik D, Garbe C, Hauser TK, la Fougère C, Biskup D, Brooke D, Parker D, Martens UM, Illerhaus G, Blumenthal DT, Merrell R, Lorenzo LS, Hidvégi M, de Robles P, Kebir S, Li WW, Li VW, Williams M, Miller AM, Kesari S, Castro M, Desjardins A, Ashley DM, Friedman HS, Wen PY, Neil EC, Iwamoto FM, Sipos B, Geletneky K, Zender L, Glas M, Reardon DA, Biskup S. A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. Nat Commun 2024; 15:6870. [PMID: 39127809 PMCID: PMC11316744 DOI: 10.1038/s41467-024-51315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Current treatment outcome of patients with glioblastoma (GBM) remains poor. Following standard therapy, recurrence is universal with limited survival. Tumors from 173 GBM patients are analysed for somatic mutations to generate a personalized peptide vaccine targeting tumor-specific neoantigens. All patients were treated within the scope of an individual healing attempt. Among all vaccinated patients, including 70 treated prior to progression (primary) and 103 treated after progression (recurrent), the median overall survival from first diagnosis is 31.9 months (95% CI: 25.0-36.5). Adverse events are infrequent and are predominantly grade 1 or 2. A vaccine-induced immune response to at least one of the vaccinated peptides is detected in blood samples of 87 of 97 (90%) monitored patients. Vaccine-specific T-cell responses are durable in most patients. Significantly prolonged survival is observed for patients with multiple vaccine-induced T-cell responses (53 months) compared to those with no/low induced responses (27 months; P = 0.03). Altogether, our results highlight that the application of personalized neoantigen-targeting peptide vaccine is feasible and represents a promising potential treatment option for GBM patients.
Collapse
Affiliation(s)
| | - Henning Zelba
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | | | | | - Borong Shao
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | | | | | | | | | - Thomas Okech
- MVZ Zentrum für ambulante Onkologie GmbH, Tübingen, Germany
| | - Alexander Golf
- MVZ Zentrum für ambulante Onkologie GmbH, Tübingen, Germany
| | | | - Simone Kayser
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
| | | | | | - Julian Wünsche
- Zentrum für Humangenetik Tübingen, Tübingen, Germany
- MVZ Zentrum für ambulante Onkologie GmbH, Tübingen, Germany
| | - Christian Seitz
- Universitätsklinikum Heidelberg, KiTZ, Hopp Children's Cancer Center, Heidelberg, Germany
| | | | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Christian la Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Dawn Brooke
- Provenance Precision Medicine Foundation, Wilmette, IL, USA
| | | | - Uwe M Martens
- Department of Hematology and Oncology, Cancer Center Heilbronn-Franken, SLK Kliniken GmbH, Heilbronn, Germany
| | | | | | - Ryan Merrell
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Máté Hidvégi
- Jewish Theological Seminary-University of Jewish Studies (OR-ZSE), Budapest, Hungary
| | - Paula de Robles
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sied Kebir
- Universitätsklinikum Essen, Essen, Germany
| | | | - Vincent W Li
- Angiogenesis Foundation, Cambridge, MA, USA
- Harvard Medical School Dermatology, Boston, MA, USA
| | | | - Alexandra M Miller
- Brain and Spine Tumor Center, NYU Langone Health's Perlmutter Cancer Center, New York, NY, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Michael Castro
- Cellworks Group Inc, South San Francisco, CA, USA
- Personalized Cancer Medicine, PLLC, Santa Monica, CA, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Preston Robert Tisch Brain Tumor Centre, Duke University, Durham, NC, USA
| | - Henry S Friedman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisabeth C Neil
- Department of Neurology, University of Minnesota Health, Minneapolis, MN, USA
| | | | - Bence Sipos
- BAG für Pathologie und Molekularpathologie Stuttgart, Molekularpathologie Baden-Württemberg GbR, Stuttgart, Germany
| | | | - Lars Zender
- University Hospital Tübingen, Internal Medicine VIII, Tübingen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, Universitätsklinikum Essen Klinik für Neurologie, Essen, Germany
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saskia Biskup
- Zentrum für Humangenetik Tübingen, Tübingen, Germany.
- CeGaT GmbH, Tübingen, Germany.
| |
Collapse
|
5
|
Hameedat F, Mendes BB, Conniot J, Di Filippo LD, Chorilli M, Schroeder A, Conde J, Sousa F. Engineering nanomaterials for glioblastoma nanovaccination. NATURE REVIEWS MATERIALS 2024; 9:628-642. [DOI: 10.1038/s41578-024-00684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 01/03/2025]
|
6
|
Gambichler T, Schrama D, Käpynen R, Weyer-Fahlbusch SS, Becker JC, Susok L, Kreppel F, Abu Rached N. Current Progress in Vaccines against Merkel Cell Carcinoma: A Narrative Review and Update. Vaccines (Basel) 2024; 12:533. [PMID: 38793784 PMCID: PMC11125734 DOI: 10.3390/vaccines12050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Merkel cell carcinoma is a rare, aggressive skin cancer that mainly occurs in elderly and immunocompromised patients. Due to the success of immune checkpoint inhibition in MCC, the importance of immunotherapy and vaccines in MCC has increased in recent years. In this article, we aim to present the current progress and perspectives in the development of vaccines for this disease. Here, we summarize and discuss the current literature and ongoing clinical trials investigating vaccines against MCC. We identified 10 articles through a PubMed search investigating a vaccine against MCC. From the international clinical trial database Clinical.Trials.gov, we identified nine studies on vaccines for the management of MCC, of which seven are actively recruiting. Most of the identified studies investigating a vaccine against MCC are preclinical or phase 1/2 trials. The vaccine principles mainly included DNA- and (synthetic) peptide-based vaccines, but RNA-based vaccines, oncolytic viruses, and the combination of vaccines and immunotherapy are also under investigation for the treatment of MCC. Although the management of MCC is changing, when compared to times before the approval of immune checkpoint inhibitors, it will still take some time before the first MCC vaccine is ready for approval.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
- Department of Dermatology and Phlebology, Christian Hospital Unna, 59423 Unna, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Riina Käpynen
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
| | - Sera S. Weyer-Fahlbusch
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Department of Dermatology, University Duisburg-Essen, 45122 Essen, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Laura Susok
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten-Herdecke University, 44122 Dortmund, Germany; (S.S.W.-F.); (L.S.)
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany;
| | - Nessr Abu Rached
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany; (R.K.); (N.A.R.)
| |
Collapse
|
7
|
Wang AF, Hsueh B, Choi BD, Gerstner ER, Dunn GP. Immunotherapy for Brain Tumors: Where We Have Been, and Where Do We Go From Here? Curr Treat Options Oncol 2024; 25:628-643. [PMID: 38649630 DOI: 10.1007/s11864-024-01200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
OPINION STATEMENT Immunotherapy for glioblastoma (GBM) remains an intensive area of investigation. Given the seismic impact of cancer immunotherapy across a range of malignancies, there is optimism that harnessing the power of immunity will influence GBM as well. However, despite several phase 3 studies, there are still no FDA-approved immunotherapies for GBM. Importantly, the field has learned a great deal from the randomized studies to date. Today, we are continuing to better understand the disease-specific features of the microenvironment in GBM-as well as the exploitable antigenic characteristic of the tumor cells themselves-that are informing the next generation of immune-based therapeutic strategies. The coming phase of next-generation immunotherapies is thus poised to bring us closer to treatments that will improve the lives of patients with GBM.
Collapse
Affiliation(s)
- Alexander F Wang
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Brian Hsueh
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
9
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
11
|
Nibeyro G, Baronetto V, Folco JI, Pastore P, Girotti MR, Prato L, Morón G, Luján HD, Fernández EA. Unraveling tumor specific neoantigen immunogenicity prediction: a comprehensive analysis. Front Immunol 2023; 14:1094236. [PMID: 37564650 PMCID: PMC10411733 DOI: 10.3389/fimmu.2023.1094236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Identification of tumor specific neoantigen (TSN) immunogenicity is crucial to develop peptide/mRNA based anti-tumoral vaccines and/or adoptive T-cell immunotherapies; thus, accurate in-silico classification/prioritization proves critical for cost-effective clinical applications. Several methods were proposed as TSNs immunogenicity predictors; however, comprehensive performance comparison is still lacking due to the absence of well documented and adequate TSN databases. Methods Here, by developing a new curated database having 199 TSNs with experimentally-validated MHC-I presentation and positive/negative immune response (ITSNdb), sixteen metrics were evaluated as immunogenicity predictors. In addition, by using a dataset emulating patient derived TSNs and immunotherapy cohorts containing predicted TSNs for tumor neoantigen burden (TNB) with outcome association, the metrics were evaluated as TSNs prioritizers and as immunotherapy response biomarkers. Results Our results show high performance variability among methods, highlighting the need for substantial improvement. Deep learning predictors were top ranked on ITSNdb but show discrepancy on validation databases. In overall, current predicted TNB did not outperform existing biomarkers. Conclusion Recommendations for their clinical application and the ITSNdb are presented to promote development and comparison of computational TSNs immunogenicity predictors.
Collapse
Affiliation(s)
- Guadalupe Nibeyro
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Veronica Baronetto
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Juan I. Folco
- Facultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Pablo Pastore
- Facultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Maria Romina Girotti
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Buenos Aires, Argentina
| | - Laura Prato
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Villa María, Córdoba, Argentina
| | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Hugo D. Luján
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Elmer A. Fernández
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC) & Fundación para el Progreso de la Medicina, Córdoba, Argentina
- Facultad de Ingeniería, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
12
|
Bhargav AG, Domino JS, Alvarado AM, Tuchek CA, Akhavan D, Camarata PJ. Advances in computational and translational approaches for malignant glioma. Front Physiol 2023; 14:1219291. [PMID: 37405133 PMCID: PMC10315500 DOI: 10.3389/fphys.2023.1219291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults and carry a dismal prognosis for patients. Current standard-of-care for gliomas is comprised of maximal safe surgical resection following by a combination of chemotherapy and radiation therapy depending on the grade and type of tumor. Despite decades of research efforts directed towards identifying effective therapies, curative treatments have been largely elusive in the majority of cases. The development and refinement of novel methodologies over recent years that integrate computational techniques with translational paradigms have begun to shed light on features of glioma, previously difficult to study. These methodologies have enabled a number of point-of-care approaches that can provide real-time, patient-specific and tumor-specific diagnostics that may guide the selection and development of therapies including decision-making surrounding surgical resection. Novel methodologies have also demonstrated utility in characterizing glioma-brain network dynamics and in turn early investigations into glioma plasticity and influence on surgical planning at a systems level. Similarly, application of such techniques in the laboratory setting have enhanced the ability to accurately model glioma disease processes and interrogate mechanisms of resistance to therapy. In this review, we highlight representative trends in the integration of computational methodologies including artificial intelligence and modeling with translational approaches in the study and treatment of malignant gliomas both at the point-of-care and outside the operative theater in silico as well as in the laboratory setting.
Collapse
Affiliation(s)
- Adip G. Bhargav
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Joseph S. Domino
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anthony M. Alvarado
- Department of Neurological Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Chad A. Tuchek
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - David Akhavan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Bioengineering Program, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul J. Camarata
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
13
|
Wang T, Zhang H, Han Y, Zheng Q, Liu H, Han M, Li Z. Reversing T Cell Dysfunction to Boost Glioblastoma Immunotherapy by Paroxetine-Mediated GRK2 Inhibition and Blockade of Multiple Checkpoints through Biomimetic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204961. [PMID: 36698265 PMCID: PMC10037995 DOI: 10.1002/advs.202204961] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/02/2022] [Indexed: 05/19/2023]
Abstract
T cell dysfunction-induced tumor immune escape is particularly severe in glioblastoma (GBM), and significantly affects the efficacy of immunotherapy. It is crucial to innovatively reverse the T cell dysfunction for improving GBM immunotherapy. Herein, T cell dysfunction is remarkably reversed and immunotherapy of GBM is boosted by repurposing the U. S. Food and Drug Administration-approved antidepressant paroxetine (PX) with biomimetic nanoparticles (CS-J@CM/6 NPs). The PX is successfully applied to abrogate T cell sequestration in the bone marrow of GBM-bearing mice and increase their infiltration in tumor. The biomimetic NPs are composed of ultrasmall Cu2- x Se NPs, JQ1, and tumor cell membrane modified with CD6, and are efficiently delivered into tumor through the specific interactions between CD6 and activated leukocyte cell adhesion molecule. They ameliorate the T cell dysfunction through the double roles of loaded JQ1, which simultaneously decreases the expression of PD-1 and TIM-3 on T cells, and the expression of PD-L1 on tumor cells. The NP also induces the immunogenic cell death of tumor cells to activate immune response. The synergistic roles of PX and biomimetic CS-J@CM/6 NPs notably enhance the survival of GBM-bearing mice. This work provides new insights into tumor immunotherapy by repurposing "old drugs" with advanced NPs.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Qing Zheng
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear MedicineState Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD‐X)Suzhou Medical College of Soochow UniversityCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhou215123P. R. China
| |
Collapse
|
14
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 185.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
15
|
Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:40. [PMID: 36477638 PMCID: PMC9729511 DOI: 10.1186/s43556-022-00098-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most effective medical interventions to combat newly emerging and re-emerging diseases. Prophylactic vaccines against rabies, measles, etc., have excellent effectiveness in preventing viral infection and associated diseases. However, the host immune response is unable to inhibit virus replication or eradicate established diseases in most infected people. Therapeutic vaccines, expressing specific endogenous or exogenous antigens, mainly induce or boost cell-mediated immunity via provoking cytotoxic T cells or elicit humoral immunity via activating B cells to produce specific antibodies. The ultimate aim of a therapeutic vaccine is to reshape the host immunity for eradicating a disease and establishing lasting memory. Therefore, therapeutic vaccines have been developed for the treatment of some infectious diseases and chronic noncommunicable diseases. Various technological strategies have been implemented for the development of therapeutic vaccines, including molecular-based vaccines (peptide/protein, DNA and mRNA vaccines), vector-based vaccines (bacterial vector vaccines, viral vector vaccines and yeast-based vaccines) and cell-based vaccines (dendritic cell vaccines and genetically modified cell vaccines) as well as combinatorial approaches. This review mainly summarizes therapeutic vaccine-induced immunity and describes the development and status of multiple types of therapeutic vaccines against infectious diseases, such as those caused by HPV, HBV, HIV, HCV, and SARS-CoV-2, and chronic noncommunicable diseases, including cancer, hypertension, Alzheimer's disease, amyotrophic lateral sclerosis, diabetes, and dyslipidemia, that have been evaluated in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, Zigong, Sichuan 643000 The People’s Republic of China ,grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Die Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Yuhua Li
- grid.410749.f0000 0004 0577 6238Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Tiantan Xili, Dongcheng District, Beijing, 100050 The People’s Republic of China
| | - Li Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| |
Collapse
|
16
|
Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Zhao W, Wu Y, Zhao F, Xue Z, Liu W, Cao Z, Zhao Z, Huang B, Han M, Li X. Scoring model based on the signature of non-m6A-related neoantigen-coding lncRNAs assists in immune microenvironment analysis and TCR-neoantigen pair selection in gliomas. J Transl Med 2022; 20:494. [DOI: 10.1186/s12967-022-03713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Small peptides encoded by long non-coding RNAs (lncRNAs) have attracted attention for their various functions. Recent studies indicate that these small peptides participate in immune responses and antigen presentation. However, the significance of RNA modifications remains unclear.
Methods
Thirteen non-m6A-related neoantigen-coding lncRNAs were selected for analysis from the TransLnc database. Next, a neoantigen activation score (NAS) model was established based on the characteristics of the lncRNAs. Machine learning was employed to expand the model to two additional RNA-seq and two single-cell sequencing datasets for further validation. The DLpTCR algorithm was used to predict T cell receptor (TCR)-peptide binding probability.
Results
The non-m6A-related NAS model predicted patients’ overall survival outcomes more precisely than the m6A-related NAS model. Furthermore, the non-m6A-related NAS was positively correlated with tumor cells’ evolutionary level, immune infiltration, and antigen presentation. However, high NAS gliomas also showed more PD-L1 expression and high mutation frequencies of T-cell positive regulators. Interestingly, results of intercellular communication analysis suggest that T cell-high neoplastic cell interaction is weaker in both of the NAS groups which might arise from decreased IFNGR1 expression. Moreover, we identified unique TCR-peptide pairs present in all glioma samples based on peptides encoded by the 13 selected lncRNAs. And increased levels of neoantigen-active TCR patterns were found in high NAS gliomas.
Conclusions
Our work suggests that non-m6A-related neoantigen-coding lncRNAs play an essential role in glioma progression and that screened TCR clonotypes might provide potential avenues for chimeric antigen receptor T cell (CAR-T) therapy for gliomas.
Collapse
|
18
|
Emerging translational approaches for brain cancer therapeutics. Adv Drug Deliv Rev 2022; 189:114522. [PMID: 36030017 DOI: 10.1016/j.addr.2022.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Yu G, He X, Li X, Wu Y. Driving neoantigen-based cancer vaccines for personalized immunotherapy into clinic: A burdensome journey to promising land. Biomed Pharmacother 2022; 153:113464. [DOI: 10.1016/j.biopha.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|