1
|
Hossain MS, Alam MM, Huang Z, Mousazadeh F, Sarangi R, de Jong E, Kolamunna KC, Adhya AL, Hougland JL, Acharya A, Mozhdehi D. Scalable One-Pot Production of Geranylgeranylated Proteins in Engineered Prokaryotes. Bioconjug Chem 2025; 36:415-423. [PMID: 40029010 PMCID: PMC11926785 DOI: 10.1021/acs.bioconjchem.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025]
Abstract
Geranylgeranylation is a critical post-translational modification essential for various cellular functions. However, current methods for synthesizing geranylgeranylated proteins are complex and costly, which hinders access to these proteins for both biophysical and biomaterials applications. Here, we present a method for the one-pot production of geranylgeranylated proteins in Escherichia coli. We engineered E. coli to express geranylgeranyl pyrophosphate synthase (GGS), an enzyme that catalyzes the production of geranylgeranyl pyrophosphate. By coexpressing GGS with a geranylgeranyltransferase, we achieved efficient geranylgeranylation of model protein substrates, including intrinsically disordered elastin-like polypeptides (ELPs) and globular proteins such as mCherry and the small GTPases RhoA and Rap1B. We examined the biophysical behavior of the resulting geranylgeranylated proteins and observed that this modification affects the phase-separation and nanoassembly of ELPs and lipid bilayer engagement of mCherry. Taken together, our method offers a scalable, versatile, and cost-effective strategy for producing geranylgeranylated proteins, paving the way for advances in biochemical research, therapeutic development, and biomaterial engineering.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Md Mahbubul Alam
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Zhiwei Huang
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Faeze Mousazadeh
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ronit Sarangi
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ebbing de Jong
- Upstate
Medical University, Proteomics and Mass
Spectrometry, Weiskotten
Hall 4307 WHA, 766 Irving Avenue, Syracuse, New York 13210, United States
| | - Kavindu C. Kolamunna
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Albert L. Adhya
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Acosta S, Rodríguez‐Alonso P, Chaskovska V, Fernández‐Fernández J, Rodríguez‐Cabello JC. Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70003. [PMID: 39950263 PMCID: PMC11826379 DOI: 10.1002/wnan.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that, despite lacking a defined 3D structure, are capable of adopting dynamic conformations. This structural adaptability allows them to play not only essential roles in crucial cellular processes, such as subcellular organization or transcriptional control, but also in coordinating the assembly of macromolecules during different stages of development. Thus, in order to artificially replicate the complex processes of morphogenesis and their dynamics, it is crucial to have materials that recapitulate the structural plasticity of IDPs. In this regard, intrinsically disordered protein polymers (IDPPs) emerge as promising materials for engineering synthetic condensates and creating hierarchically self-assembled materials. IDPPs exhibit remarkable properties for their use in biofabrication, such as functional versatility, tunable sequence order-disorder, and the ability to undergo liquid-liquid phase separation (LLPS). Recent research has focused on harnessing the intrinsic disorder of IDPPs to design complex protein architectures with tailored properties. Taking advantage of their stimuli-responsiveness and degree of disorder, researchers have developed innovative strategies to control the self-assembly of IDPPs, resulting in the creation of hierarchically organized structures and intricate morphologies. In this review, we aim to provide an overview of the latest advances in the design and application of IDPP-based materials, shedding light on the fundamental principles that control their supramolecular assembly, and discussing their application in the biomedical and nanobiotechnological fields.
Collapse
Affiliation(s)
- Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - Pablo Rodríguez‐Alonso
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
- Technical Proteins Nanobiotechnology S.L.ValladolidSpain
| | - Viktoriya Chaskovska
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - Julio Fernández‐Fernández
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - José Carlos Rodríguez‐Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| |
Collapse
|
6
|
Zhang M, Chen Y, Chung A, Yang S, Choi CH, Zhang S, Han Y, Xiao H. Harnessing Nature-Inspired Catechol Amino Acid to Engineer Sticky Proteins and Bacteria. SMALL METHODS 2024; 8:e2400230. [PMID: 39285836 DOI: 10.1002/smtd.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/06/2024] [Indexed: 10/22/2024]
Abstract
3,4-Dihydroxy-L-phenylalanine (DOPA) serves as a post-translational modification amino acid present in mussel foot proteins. Mussels exploit the exceptional adhesive properties of DOPA to adhere to a wide range of surfaces. This study presents the development of sticky proteins and bacteria through the site-specific incorporation of DOPA using Genetic Code Expansion Technology. Through the optimization of the DOPA incorporation system, proteins containing DOPA demonstrate significantly improved binding abilities to various organic and metallic materials. The material-binding capabilities of DOPA to combat different types of biofoulings are harnessed by integrating it into intrinsically disordered proteins. Beyond the creation of adhesive proteins for anti-biofouling purposes, this highly efficient DOPA incorporation system is also applied to engineer adhesive bacteria, resulting in a remarkable increase in their binding capability to diverse materials including 400 folds of improvement to polyethylene terephthalate (PET). This substantial enhancement in PET binding of these bacteria has allowed to develop a unique approach for PET degradation, showcasing the innovative application of Genetic Code Expansion in cell engineering.
Collapse
Affiliation(s)
- Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Anna Chung
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chi Hun Choi
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Sophie Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- The Awty International Schoo, 6100 Main Street, Houston, TX, 77055, USA
| | - Yimo Han
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- SynthX Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
7
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
8
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Giraldo-Castaño MC, Littlejohn KA, Avecilla ARC, Barrera-Villamizar N, Quiroz FG. Programmability and biomedical utility of intrinsically-disordered protein polymers. Adv Drug Deliv Rev 2024; 212:115418. [PMID: 39094909 PMCID: PMC11389844 DOI: 10.1016/j.addr.2024.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Intrinsically disordered proteins (IDPs) exhibit molecular-level conformational dynamics that are functionally harnessed across a wide range of fascinating biological phenomena. The low sequence complexity of IDPs has led to the design and development of intrinsically-disordered protein polymers (IDPPs), a class of engineered repeat IDPs with stimuli-responsive properties. The perfect repetitive architecture of IDPPs allows for repeat-level encoding of tunable protein functionality. Designer IDPPs can be modeled on endogenous IDPs or engineered de novo as protein polymers with dual biophysical and biological functionality. Their properties can be rationally tailored to access enigmatic IDP biology and to create programmable smart biomaterials. With the goal of inspiring the bioengineering of multifunctional IDP-based materials, here we synthesize recent multidisciplinary progress in programming and exploiting the bio-functionality of IDPPs and IDPP-containing proteins. Collectively, expanding beyond the traditional sequence space of extracellular IDPs, emergent sequence-level control of IDPP functionality is fueling the bioengineering of self-assembling biomaterials, advanced drug delivery systems, tissue scaffolds, and biomolecular condensates -genetically encoded organelle-like structures. Looking forward, we emphasize open challenges and emerging opportunities, arguing that the intracellular behaviors of IDPPs represent a rich space for biomedical discovery and innovation. Combined with the intense focus on IDP biology, the growing landscape of IDPPs and their biomedical applications set the stage for the accelerated engineering of high-value biotechnologies and biomaterials.
Collapse
Affiliation(s)
- Maria Camila Giraldo-Castaño
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kai A Littlejohn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Natalia Barrera-Villamizar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
11
|
Patkar SS, Wang B, Mosquera AM, Kiick KL. Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials. Chemistry 2024; 30:e202400582. [PMID: 38501912 PMCID: PMC11661552 DOI: 10.1002/chem.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Ana Maria Mosquera
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
12
|
Azulay R, Strugach DS, Amiram M. Self-assembly of temperature-responsive di-block polypeptides functionalized with unnatural amino acids. Protein Sci 2024; 33:e4878. [PMID: 38147468 PMCID: PMC10804675 DOI: 10.1002/pro.4878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of unnatural amino acids (uAAs) into protein-based polymers has emerged as a powerful methodology to expand their chemical repertoire. Recently, we demonstrated that incorporating uAAs into two temperature-responsive protein-based polymers-namely resilin- and elastin-like polypeptides (RLPs and ELPs, respectively)-can alter their properties. In this study, we incorporated aromatic uAAs into the protein sequence of RLP-ELP diblocks to yield new and diverse assemblies from a single DNA template. Specifically, we show that incorporating aromatic uAAs can modulate the phase-transition behaviors and self-assembly of the diblocks into various morphologies, including spherical and cylindrical micelles and single- and double-layered vesicles, with some constructs also demonstrating a temperature-responsive shape-shifting behavior. Next, we evaluated the ability of the RLP-ELP assemblies to encapsulate a chemotherapeutic drug, doxorubicin, and show how the identity of the incorporated uAAs and the morphology of the nanostructure affect the encapsulation efficiency. Taken together, our findings demonstrate that the multi-site incorporation of uAAs into temperature-responsive, amphiphilic protein-based diblock copolymers is a promising approach for the functionalization and tuning of self-assembled nanostructures.
Collapse
Affiliation(s)
- Rotem Azulay
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Daniela S. Strugach
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Miriam Amiram
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
13
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
14
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|