1
|
Dietmair B, Humphries J, Mercer TR, Thurecht KJ, Howard CB, Cheetham SW. Targeted mRNA delivery with bispecific antibodies that tether LNPs to cell surface markers. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102520. [PMID: 40235853 PMCID: PMC11999258 DOI: 10.1016/j.omtn.2025.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/16/2025] [Indexed: 04/17/2025]
Abstract
Efficient delivery of mRNA-lipid nanoparticles (LNPs) to specific cell types remains a major challenge for mRNA therapeutics. Conventional targeting approaches involve modifying the lipid composition or functionalizing the surface of LNPs, which complicates manufacturing and alters nanoparticle size, charge, and stealth, impacting their delivery and immunogenicity. Here, we present a generalizable method for targeted mRNA-LNP delivery that uses bispecific antibodies (BsAbs) to form a bridge between LNPs and cell surface markers. BsAbs can be combined with LNPs or administered first, binding to surface proteins on target cells and later retaining unmodified LNPs in affected tissues. We demonstrate the efficient and cell-type-specific delivery of mRNA-LNPs beyond the liver, targeting epidermal growth factor receptor (EGFR)- and folate hydrolase 1 (PSMA)-positive cells in vitro and in vivo. The flexibility of this technology, achieved by substituting the cell-targeting region of the BsAbs, enables the rapid development of next-generation targeted mRNA drugs.
Collapse
Affiliation(s)
- Bettina Dietmair
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- BASE Facility, The University of Queensland, Brisbane, QLD, Australia
| | - James Humphries
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy R. Mercer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- BASE Facility, The University of Queensland, Brisbane, QLD, Australia
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Seth W. Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- BASE Facility, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Coleborn E, Ghebosu R, Wolfram J, Souza-Fonseca-Guimaraes F. Cancer-derived extracellular vesicles in natural killer cell immune evasion: Molecular mechanisms and therapeutic insights. Mol Ther 2025:S1525-0016(25)00405-8. [PMID: 40452185 DOI: 10.1016/j.ymthe.2025.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/21/2025] [Accepted: 05/28/2025] [Indexed: 06/19/2025] Open
Abstract
Natural killer cells are innate lymphocytes equipped with the ability to rapidly identify and eliminate cancer cells. However, cancer cells release nanosized extracellular vesicles that can induce an immunosuppressive tumor microenvironment, subsequently hindering natural killer cell immunosurveillance. Studies have reported that extracellular vesicles derived from different cancers, such as acute myeloid leukemia, melanoma, mesothelioma, head and neck squamous carcinoma, lung carcinoma, breast cancer, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma, can induce natural killer cell dysfunction by suppressing cytolytic proteins and downregulating expression of receptors involved in the recognition of oncogenic cells. Additionally, cancer-derived extracellular vesicles can interfere with natural killer cell survival, proliferation, cell migration, and metabolic functions. Therefore, extracellular vesicle-induced natural killer cell suppression has emerged as a key target for research and new therapeutic approaches to recover and enhance the tumoricidal potential of these immune cells. Here, we summarize the current knowledge regarding cancer-derived extracellular vesicles and natural killer cell interactions, their role in immunosuppression, implications for developing efficient cellular immunotherapies and outstanding questions in this field.
Collapse
Affiliation(s)
- Elaina Coleborn
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Raluca Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Fernando Souza-Fonseca-Guimaraes
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
3
|
Tao Z, Li Y, Huang Y, Hu L, Wang S, Wan L, She T, Shi Q, Lu S, Wang X, Zhong Y, Su T, Wang X, Long D, Li Y, Zhang J, Wang L, Long T, Zhu H, Lu X, Yang H. Multivalent assembly of nucleolin-targeted F3 peptide potentiates TRAIL's tumor penetration and antitumor effects. J Control Release 2025; 383:113835. [PMID: 40355045 DOI: 10.1016/j.jconrel.2025.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/15/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Tumor-targeting drug delivery holds great promise for cancer treatment but faces significant challenges in penetrating solid tumors to achieve optimal therapeutic efficacy. By harnessing the natural tissue-penetration effect conferred by the CendR motif, we identified that the nucleolin (NCL)-targeted peptide F3 possesses tumor-penetrating capabilities. Co-administration of F3 with doxorubicin and the apoptosis-inducing protein TRAIL enhanced effective tumor penetration and improved antitumor activity. Taking advantage of TRAIL's natural self-trimerization, we developed a novel fusion protein, F3-TRAIL. This design enabled the trivalent assembly of F3 when fused with TRAIL, significantly enhancing its binding to NCL-positive tumor endothelial and parenchymal cells, resulting in deeper tumor penetration and superior antitumor effects compared to TRAIL alone. Mechanistic studies revealed that the multivalent F3-enhanced engagement with tumor cells potentiated TRAIL to trigger death receptor-dependent apoptosis signaling, even in TRAIL-resistant tumor cells. Building on this success, we constructed F3-HexaTR using the SpyCatcher/SpyTag superglue ligation system to generate a hexameric TRAIL, further amplifying cytotoxicity and antitumor efficacy. Combined analysis of data from TCGA and GTEx revealed significantly elevated NCL expression across 18 solid tumor types, underscoring the clinical potential of F3-directed targeted therapy. These findings highlight that F3-mediated NCL targeting is an effective strategy to overcome tumor penetration barriers, particularly for protein drug delivery. This multivalent assembly approach represents an innovative avenue for enhancing the therapeutic efficacy of various agents in the treatment of solid tumors.
Collapse
Affiliation(s)
- Ze Tao
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Li
- Department of Laboratory Medicine, the West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yunchuan Huang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, Chengdu 610041, China
| | - Shisheng Wang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Wan
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianshan She
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sifen Lu
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Wang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Wang
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- SCMPA Key Laboratory for Quality Research and Control of Chemical Medicine, Chengdu Institute for Drug Control, Chengdu 610041, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Tingting Long
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Liu X, To KK, Zeng Q, Fu L. Effect of Extracellular Vesicles Derived From Tumor Cells on Immune Evasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417357. [PMID: 39899680 PMCID: PMC11948033 DOI: 10.1002/advs.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/05/2025]
Abstract
The crosstalk between immunity and cancer in the regulation of tumor growth is considered a hallmark of cancer. Antitumor immunity refers to the innate and adaptive immune responses that regulate cancer development and proliferation. Tumor immune evasion represents a major hindrance to effective anticancer treatment. Extracellular vesicles (EVs) are nano-sized and lipid-bilayer-enclosed particles that are secreted to the extracellular space by all cell types. They are critically involved in numerous biological functions including intercellular communication. Tumor-derived extracellular vesicles (TEVs) can transport a variety of cargo to modulate immune cells in the tumor microenvironment (TME). This review provides the latest update about how tumor cells evade immune surveillance by exploiting TEVs. First, the biogenesis of EVs and the cargo-sorting machinery are discussed. Second, how tumor cells modulate immune cell differentiation, activation, and function via TEVs to evade immune surveillance is illustrated. Last but not least, the novel antitumor strategies that can reverse immune escape are summarized.
Collapse
Affiliation(s)
- Xuanfan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Kenneth K.W. To
- School of PharmacyThe Chinese University of Hong KongHong Kong999077P. R. China
| | - Qinsong Zeng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
- Guangxi Hospital Division of The First Affiliated HospitalSun Yat‐sen UniversityNanning530025P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
5
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
6
|
Ghebosu RE, Hui L, Wolfram J. Increasing the biomolecular relevance of cell culture practice. J Biomed Sci 2025; 32:3. [PMID: 39748368 PMCID: PMC11697962 DOI: 10.1186/s12929-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025] Open
Abstract
The biomolecular relevance of medium supplements is a key challenge affecting cell culture practice. The biomolecular composition of commonly used supplements differs from that of a physiological environment, affecting the validity of conclusions drawn from in vitro studies. This article discusses the advantages and disadvantages of common supplements, including context-dependent considerations for supplement selection to improve biomolecular relevance, especially in nanomedicine and extracellular vesicle research.
Collapse
Affiliation(s)
- Raluca E Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Lawrence Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia.
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Li Y, Wang X, Gao Y, Zhang Z, Liu T, Zhang Z, Wang Y, Chang F, Yang M. Hyaluronic acid-coated polypeptide nanogel enhances specific distribution and therapy of tacrolimus in rheumatoid arthritis. J Nanobiotechnology 2024; 22:547. [PMID: 39238027 PMCID: PMC11378632 DOI: 10.1186/s12951-024-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Rheumatoid arthritis (RA) involves chronic inflammation, oxidative stress, and complex immune cell interactions, leading to joint destruction. Traditional treatments are often limited by off-target effects and systemic toxicity. This study introduces a novel therapeutic approach using hyaluronic acid (HA)-conjugated, redox-responsive polyamino acid nanogels (HA-NG) to deliver tacrolimus (TAC) specifically to inflamed joints. The nanogels' disulfide bonds enable controlled TAC release in response to high intracellular glutathione (GSH) levels in activated macrophages, prevalent in RA-affected tissues. In vitro results demonstrated that HA-NG/TAC significantly reduced TAC toxicity to normal macrophages and showed high biocompatibility. In vivo, HA-NG/TAC accumulated more in inflamed joints compared to non-targeted NG/TAC, enhancing therapeutic efficacy and minimizing side effects. Therapeutic evaluation in collagen-induced arthritis (CIA) mice revealed HA-NG/TAC substantially reduced paw swelling, arthritis scores, synovial inflammation, and bone erosion while suppressing pro-inflammatory cytokine levels. These findings suggest that HA-NG/TAC represents a promising targeted drug delivery system for RA, offering potential for more effective and safer clinical applications.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xin Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| |
Collapse
|
8
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
9
|
Soroudi S, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J Control Release 2024; 372:113-140. [PMID: 38876358 DOI: 10.1016/j.jconrel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality among non-communicable diseases. Current cardiac regeneration treatments have limitations and may lead to adverse reactions. Hence, innovative technologies are needed to address these shortcomings. Messenger RNA (mRNA) emerges as a promising therapeutic agent due to its versatility in encoding therapeutic proteins and targeting "undruggable" conditions. It offers low toxicity, high transfection efficiency, and controlled protein production without genome insertion or mutagenesis risk. However, mRNA faces challenges such as immunogenicity, instability, and difficulty in cellular entry and endosomal escape, hindering its clinical application. To overcome these hurdles, lipid nanoparticles (LNPs), notably used in COVID-19 vaccines, have a great potential to deliver mRNA therapeutics for CVDs. This review highlights recent progress in mRNA-LNP therapies for CVDs, including Myocardial Infarction (MI), Heart Failure (HF), and hypercholesterolemia. In addition, LNP-mediated mRNA delivery for CAR T-cell therapy and CRISPR/Cas genome editing in CVDs and the related clinical trials are explored. To enhance the efficiency, safety, and clinical translation of mRNA-LNPs, advanced technologies like artificial intelligence (AGILE platform) in RNA structure design, and optimization of LNP formulation could be integrated. We conclude that the strategies to facilitate the extra-hepatic delivery and targeted organ tropism of mRNA-LNPs (SORT, ASSET, SMRT, and barcoded LNPs) hold great prospects to accelerate the development and translation of mRNA-LNPs in CVD treatment.
Collapse
Affiliation(s)
- Setareh Soroudi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
He W, Gao H, Wu W. Nanomedicine biointeractions during body trafficking. Adv Drug Deliv Rev 2024; 209:115324. [PMID: 38663551 DOI: 10.1016/j.addr.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Wu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
11
|
Iannotta D, A A, Lai A, Nair S, Koifman N, Lappas M, Salomon C, Wolfram J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307240. [PMID: 38100284 DOI: 10.1002/smll.202307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Na'ama Koifman
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martha Lappas
- University of Melbourne, Department of Obstetrics and Gynaecology, Australia, and Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Ranasinghe R, Mathai M, Abdullah Alshawsh M, Zulli A. Nanocarrier-mediated cancer therapy with cisplatin: A meta-analysis with a promising new paradigm. Heliyon 2024; 10:e28171. [PMID: 39839154 PMCID: PMC11747978 DOI: 10.1016/j.heliyon.2024.e28171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 01/23/2025] Open
Abstract
Aims Cisplatin is a frontline chemotherapeutic utilized to attenuate multiple cancers in the clinic. Given its side-effects, a new cisplatin formulation which could prevent cytotoxicity, metabolic deficiencies and metastasis is much needed. This study investigates whether nanocarriers can provide a better mode of drug delivery in preclinical cancer models seeking a potent anticancer therapeutic agent. Materials and methods The PubMed database was searched, and 242 research articles were screened from which 94 articles qualified for selection from those published by December 31, 2023 and the data was synthesized using the Review Manager software. Key findings Cisplatin encapsulated as a nanomedicine confirmed the versatility of nanocarriers in significantly diminishing cancer cell viability, half maximal inhibitory concentration, tumour volume, biodistribution of platinum in tumours and kidney; at p < 0.00001 and a 95% confidence interval. Significance An estimated 19.3 million global cancer incidence is reported with 50% mortality worldwide for which nanocarrier-mediated cisplatin therapy is most promising. Our findings offer new vistas for future cancer treatment when combined with chemo-immunotherapy that utilizes the recently advanced nanozymes.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Mohammed Abdullah Alshawsh
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
14
|
Pendiuk Goncalves J, Cruz Villarreal J, Walker SA, Tan XNS, Borges C, Wolfram J. High-throughput analysis of glycan sorting into extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119641. [PMID: 37996057 DOI: 10.1016/j.bbamcr.2023.119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are cell-released vesicles that mediate intercellular communication by transferring bioactive cargo. Protein and RNA sorting into EVs has been extensively assessed, while selective enrichment of glycans in EVs remains less explored. In this study, a mass spectrometry-based approach, glycan node analysis (GNA), was applied to broadly assess the sorting of glycan features into EVs. Two metastatic variants (lung and bone) generated in mouse modes from the MDA-MB-231 human breast cancer cell line were assessed, as these EVs are known to contain distinct organotropic biomolecules. EVs were isolated from conditioned cell culture medium by tangential flow filtration and authenticated by standard techniques. GNA analysis revealed selective enrichment of several glycan features in EVs compared to the originating cells, particularly those associated with binding to the extracellular matrix, which was also observed in EVs from the parental MDA-MB-231 cell line (human pleural metastases). The bone-tropic variant displayed enrichment of distinct EV glycan features compared to the lung-tropic one. Additionally, the metastatic variants generated in mouse models displayed reduced EV glycan sorting compared to the parental metastatic cell line. This study represents the first comprehensive assessment of differences in glycan features between EVs and originating cells and provides evidence that the diversity of EV glycan sorting is reduced upon generation of variant cell lines in mouse models. Future research is likely to uncover novel mechanisms of EV glycan sorting, shed light on glycan features for EV authentication or biomarker purposes, and assess functional roles of the EV glycocode in (patho)physiology.
Collapse
Affiliation(s)
- Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xuan Ning Sharon Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chad Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85287, USA.
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Abstract
Extracellular vesicles and lipoproteins are lipid-based biological nanoparticles that play important roles in (patho)physiology. Recent evidence suggests that extracellular vesicles and lipoproteins can interact to form functional complexes. Such complexes have been observed in biofluids from healthy human donors and in various in vitro disease models such as breast cancer and hepatitis C infection. Lipoprotein components can also form part of the biomolecular corona that surrounds extracellular vesicles and contributes to biological identity. Potential mechanisms and the functional relevance of extracellular vesicle-lipoprotein complexes remain poorly understood. This Review addresses the current knowledge of the extracellular vesicle-lipoprotein interface while drawing on pre-existing knowledge of liposome interactions with biological nanoparticles. There is an urgent need for further research on the lipoprotein-extracellular vesicle interface, which could return important mechanistic, therapeutic, and diagnostic findings.
Collapse
Affiliation(s)
- Raluca E. Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
16
|
Iannotta D, A A, Kijas AW, Rowan AE, Wolfram J. Entry and exit of extracellular vesicles to and from the blood circulation. NATURE NANOTECHNOLOGY 2024; 19:13-20. [PMID: 38110531 PMCID: PMC10872389 DOI: 10.1038/s41565-023-01522-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/17/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles that promote intercellular communication by delivering bioactive cargo over short and long distances. Short-distance communication takes place in the interstitium, whereas long-distance communication is thought to require transport through the blood circulation to reach distal sites. Extracellular vesicle therapeutics are frequently injected systemically, and diagnostic approaches often rely on the detection of organ-derived EVs in the blood. However, the mechanisms by which EVs enter and exit the circulation are poorly understood. Here, the lymphatic system and transport across the endothelial barrier through paracellular and transcellular routes are discussed as potential pathways for EV entry to and exit from the blood circulatory system.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|