1
|
Ye YT, Xia HY, Li J, Wang SB, Chen AZ, Kankala RK. Nanoarchitecting intelligently encapsulated designs for improved cancer therapy. Front Bioeng Biotechnol 2025; 13:1587178. [PMID: 40375976 PMCID: PMC12078215 DOI: 10.3389/fbioe.2025.1587178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Despite the success in exploring various aspects of origination and therapeutic strategies, cancer has remained one of the most dreadful metabolic disorders due to failure to eradicate tumors comprehensively and frequent recurrence because of acquired resistance to the drugs. Recently, several advancements have been evidenced in the fabrication of various smart nanocarriers encapsulated with multiple components. Several reasons for smart nanoencapsulation include the enhancement of the bioavailability of drugs, precise targetability to reduce adverse effects on normal cells, and the ability to enable controlled drug release rates at the tumor sites. In addition, these smart nanocarriers protect encapsulated therapeutic cargo from deactivation, responsively delivering it based on the physiological or pathological characteristics of tumors. In this review, we present various smart approaches for cancer therapy, including organic materials, inorganic components, and their composites, as well as biomembrane-based nanoencapsulation strategies. These nanoencapsulation strategies, along with practical applications and their potential in cancer treatment, are discussed in depth, highlighting advantages and disadvantages, as well as aiming to reveal the ultimate prospects of nanoencapsulation in enhancing drug delivery efficiency and targeted cancer therapy.
Collapse
Affiliation(s)
- Ying-Tong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
| | - Jie Li
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, China
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, China
| |
Collapse
|
2
|
Cheng Q, Huang Y, Duan W, Liu L. A pillar[5]arene-based hyaluronic acid-decorated amorphous bimetallic metal-organic framework for multimodal synergistic cancer therapy. Int J Biol Macromol 2025; 309:142994. [PMID: 40210065 DOI: 10.1016/j.ijbiomac.2025.142994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Current antitumor monotherapies have many limitations, and developing novel synergistic anticancer strategies with low side effects and high antitumor efficiency remains a significant challenge. Herein, we developed a pH and GSH dual-responsive pillar[5]arene-based amorphous bimetallic metal-organic framework (DOX@Fe/CuP5H) for synergistic antitumor therapy involving ferroptosis, cuproptosis and apoptosis. The hydrazide-functionalized pillar[5]arene derivatives were coordinated with Cu2+ to form irregular nanoparticles, which were subsequently etched and surface-coordinated using Fe3+. Finally, doxorubicin (DOX) was loaded onto the structures, followed by surface decoration with hyaluronic acid (HA) to yield the multifunctional DOX@Fe/CuP5H. The porous structure and amorphous nature of Fe/CuP5, and the specific binding of HA to CD44 overexpressed in cancer cells endowed the DOX@Fe/CuP5H with a high drug-loading capacity and effective targeting ability, while simultaneously reducing its toxicity to normal cells. DOX@Fe/CuP5H can dissociate in the tumor microenvironment, rapidly releasing DOX to induce apoptosis. Excess Fe3+ and Cu2+ deplete intracellular GSH, leading to a redox imbalance. The accumulation of Fe2+ further promotes the production of reactive oxygen species (ROS) and lipid peroxide (LPO), triggering ferroptosis. Additionally, FDX1 regulates cellular protein lipoylation, while Cu+ binds to lipoylated proteins, causing acute proteotoxic stress and inducing cellular cuproptosis. Therefore, the rationally designed pillar[5]arene-based amorphous bimetallic metal-organic framework provides a safe and high-performance platform for enhancing the efficacy of multimodal synergistic anticancer therapies.
Collapse
Affiliation(s)
- Qi Cheng
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China
| | - Yan Huang
- Guang xi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guang xi Institute of Chinese Traditional Medical & Pharmaceutical Science, Nanning, China.
| | - Wengui Duan
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China
| | - Luzhi Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guang xi University, Nanning 530004, China.
| |
Collapse
|
3
|
Hou J, Xue Z, Chen Y, Li J, Yue X, Zhang Y, Gao J, Hao Y, Shen J. Development of Stimuli-Responsive Polymeric Nanomedicines in Hypoxic Tumors and Their Therapeutic Promise in Oral Cancer. Polymers (Basel) 2025; 17:1010. [PMID: 40284275 PMCID: PMC12030766 DOI: 10.3390/polym17081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Hypoxic tumors pose considerable obstacles to cancer treatment, as diminished oxygen levels can impair drug effectiveness and heighten therapeutic resistance. Oral cancer, a prevalent malignancy, encounters specific challenges owing to its intricate anatomical structure and the technical difficulties in achieving complete resection, thereby often restricting treatment efficacy. The impact of hypoxia is particularly critical in influencing both the treatment response and prognosis of oral cancers. This article summarizes and examines the potential of polymer nanomedicines to address these challenges. By engineering nanomedicines that specifically react to the hypoxic tumor microenvironment, these pharmaceuticals can markedly enhance targeting precision and therapeutic effectiveness. Polymer nanomedicines enhance therapeutic efficacy while reducing side effects by hypoxia-targeted accumulation. The article emphasizes that these nanomedicines can overcome the drug resistance frequently observed in hypoxic tumors by improving the delivery and bioavailability of anticancer agents. Furthermore, this review elucidates the design and application of polymer nanomedicines for treating hypoxic tumors, highlighting their transformative potential in cancer therapy. Finally, this article gives an outlook on stimuli-responsive polymeric nanomedicines in the treatment of oral cancer.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Zhijun Xue
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yao Chen
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China; (J.H.); (Z.X.)
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Jisen Li
- Tianjin Key Laboratory for Disaster Medicine Technology, Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China;
| | - Xin Yue
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Ying Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yonghong Hao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- The Second Clinical Division, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| |
Collapse
|
4
|
Lv N, Yang ZR, Fan JW, Ma T, Du K, Qin H, Jiang H, Zhu J. Tumor Receptor-Mediated Morphological Transformation and In Situ Polymerization of Diacetylene-Containing Lipidated Peptide Amphiphile on Cell Membranes for Tumor Suppression. Biomacromolecules 2025; 26:825-834. [PMID: 39465951 DOI: 10.1021/acs.biomac.4c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In situ polymerization on cell membranes can decrease cell mobility, which may inhibit tumor growth and invasion. However, the initiation of radical polymerization traditionally requires exogenous catalysts or free radical initiators, which might cause side effects in normal tissues. Herein, we synthesized a Y-type diacetylene-containing lipidated peptide amphiphile (TCDA-KFFFFK(GRGDS)-YIGSR, Y-DLPA) targeting integrins and laminin receptors on murine mammary carcinoma 4T1 cells, which underwent nanoparticle-to-nanofiber morphological transformation and in situ polymerization on cell membranes. Specifically, the polymerized Y-DLPA induced 4T1 cell apoptosis and disturbed the substance exchange and metabolism. In vitro assays demonstrated that the polymerized Y-DLPA nanofibers decreased the migration capacity of 4T1 cells, potentially suppressing tumor invasion and metastasis. When administered locally to 4T1 tumor-bearing mice, the Y-DLPA nanoparticles formed a biomimetic extracellular matrix that effectively suppressed tumor growth. This study provides an in situ polymerization strategy that can serve as an effective drug-free biomaterial with low side effects for antitumor therapy.
Collapse
Affiliation(s)
- Niannian Lv
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jing-Wen Fan
- Department of Radiology, Xijing Hospital, Air Force Medical University (AFMU) (The Forth Military Medical University, FMMU), Xi'an 710032, China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Kehan Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huimin Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
5
|
Galdino FE, Rabelo RS, Scarpa I, Yoneda JS, Consonni SR, Paes Leme AF, Smith AM, Harkiolaki M, Cardoso MB. Internalization and Cellular Fate of Protein Corona-Coated Nanoparticles by Multimodal Multi-Scale Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409065. [PMID: 39648571 DOI: 10.1002/smll.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Upon exposure to biological environments, nanoparticles are rapidly coated with biomolecules, predominantly proteins, which alter their colloidal stability, biodistribution, and cell interactions. Despite extensive efforts to investigate the nanoparticles' fate, only a few studies use high-resolution characterization methods that allow in-depth characterization, and the existing methodologies are unable to differentiate particles internalized at the onset of incubation from those taken up toward the end of an incubation period. In this study, these limitations related to incubation disparities are overcame and precisely monitored the spatiotemporal displacement of colloidally stable protein corona-coated nanoparticles within cells. An unprecedented application of cryogenic X-ray nanotomography, combined with high-resolution, super-resolution, and correlative microscopy techniques, revealed the migration of nanoparticles to the perinuclear region while monitoring the evolution of cellular organelles in fully hydrated cells under near-native conditions, without the need for contrasting agents. Notably, this tracking indicates the progressive fusion of vesicles carrying the nanoparticles intracellularly. This strategy demonstrates the potential for uncovering the temporal aspects of nanoparticle behavior within cells and can be adaptable to a wide range of nanoparticles and cell types, offering a versatile and powerful tool to follow nanoparticles in cellular environments.
Collapse
Affiliation(s)
- Flávia E Galdino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Renata S Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Isabella Scarpa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- "Gleb Wataghin" Institute of Physics, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Juliana S Yoneda
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sílvio R Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Adriana F Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Andrew M Smith
- Department of Bioengineering and Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Mateus B Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
- "Gleb Wataghin" Institute of Physics, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
6
|
Li X, Lai Y, Wan G, Zou J, He W, Yang P. Approved natural products-derived nanomedicines for disease treatment. Chin J Nat Med 2024; 22:1100-1116. [PMID: 39725511 DOI: 10.1016/s1875-5364(24)60726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/28/2024]
Abstract
In recent years, there has been an increasing emphasis on exploring innovative drug delivery approaches due to the limitations of conventional therapeutic strategies, such as inadequate drug targeting, insufficient therapeutic efficacy, and significant adverse effects. Nanomedicines have emerged as a promising solution with notable advantages, including extended drug circulation, targeted delivery, and improved bioavailability, potentially enhancing the clinical treatment of various diseases. Natural products/materials-derived nanomedicines, characterized by their natural therapeutic efficacy, superior biocompatibility, and safety profile, play a crucial role in nanomedicine-based treatments. This review provides a comprehensive overview of currently approved natural products-derived nanomedicines, emphasizing the essential properties of natural products-derived drug carriers, their applications in clinical diagnosis and treatment, and the current therapeutic potential and challenges. The aim is to offer guidance for the application and further development of these innovative therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaoyao Lai
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Guanghan Wan
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
7
|
Prasad R, Kumari R, Chaudhari R, Kumar R, Kundu GC, Kumari S, Roy G, Gorain M, Chandra P. Emissive Lipid Nanoparticles as Biophotonic Contrast Agent for Site-Selective Solid Tumor Imaging in Pre-Clinical Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53393-53404. [PMID: 39324588 DOI: 10.1021/acsami.4c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Small organic dye-based fluorescent agents are highly potent in solid tumor imaging but face challenges such as poor photostability, nonspecific distribution, low circulation, and weak tumor binding. Nanocarriers overcome these issues with better physicochemical and biological performance, particularly in cancer imaging. Among the various nanosized carriers, lipid formulations are clinically approved but yet to be designed as bright nanocontrast agents for solid tumor diagnosis without affecting surrounding tissues. Herein, indocyanine green (ICG) encapsulated targetable lipid nanoparticles (698 ICG/LNPs) as safe contrast agents (∼200 nm) have been developed and tested for solid tumor imaging and biodistribution. Our findings reveal that nanoprecipitation produces ICG-LNPs with a unique assembly, which contributes to their high brightness with improved quantum yield (3.5%) in aqueous media. The bright, optically stable (30 days) biophotonic agents demonstrate rapid accumulation (within 1 h) and prolonged retention (for up to 168 h) at the primary tumor site, with better signal intensity following a one-time dose administration (17.7 × 109 LNP per dose). Incorporated folic acid (735 folic acid/LNPs) helps in selective tumor binding and the specific biodistribution of intravenously injected nanoparticles without affecting healthy tissues. Designed targetable ICG-LNP (634 MESF) demonstrates high-contrast fluorescence and resolution from the tumor area as compared to the targetable ICG-liposomal nanoparticles (532 MESF). Various in vitro and in vivo findings reveal that the cancer diagnostic efficacy elicited by designed bright lipid nanoparticles are comparable to reported clinically accepted imaging agents. Thus, such LNPs hold translational potential for cancer diagnosis at an early stage.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411008, India
- School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Simpy Kumari
- Sahu Bio-Tech Services, Utsav Society, Nandoshi Road, Kirkatwadi, Pune, Maharashtra 411024, India
| | - Gaurab Roy
- Sahu Bio-Tech Services, Utsav Society, Nandoshi Road, Kirkatwadi, Pune, Maharashtra 411024, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411008, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
8
|
He W, Gao H, Wu W. Nanomedicine biointeractions during body trafficking. Adv Drug Deliv Rev 2024; 209:115324. [PMID: 38663551 DOI: 10.1016/j.addr.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Affiliation(s)
- Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Wu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
9
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
10
|
Huang Y, Zheng Y, Lu X, Zhao Y, Zhou D, Zhang Y, Liu G. Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine. Bioengineering (Basel) 2023; 10:1404. [PMID: 38135995 PMCID: PMC10741229 DOI: 10.3390/bioengineering10121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, nanomedicines prepared using supercritical technology have garnered widespread research attention due to their inherent attributes, including structural stability, high bioavailability, and commendable safety profiles. The preparation of these nanomedicines relies upon drug solubility and mixing efficiency within supercritical fluids (SCFs). Solubility is closely intertwined with operational parameters such as temperature and pressure while mixing efficiency is influenced not only by operational conditions but also by the shape and dimensions of the nozzle. Due to the special conditions of supercriticality, these parameters are difficult to measure directly, thus presenting significant challenges for the preparation and optimization of nanomedicines. Mathematical models can, to a certain extent, prognosticate solubility, while simulation models can visualize mixing efficiency during experimental procedures, offering novel avenues for advancing supercritical nanomedicines. Consequently, within the framework of this endeavor, we embark on an extensive review encompassing the application of mathematical models, artificial intelligence (AI) methodologies, and computational fluid dynamics (CFD) techniques within the medical domain of supercritical technology. We undertake the synthesis and discourse of methodologies for calculating drug solubility in SCFs, as well as the influence of operational conditions and experimental apparatus upon the outcomes of nanomedicine preparation using supercritical technology. Through this comprehensive review, we elucidate the implementation procedures and commonly employed models of diverse methodologies, juxtaposing the merits and demerits of these models. Furthermore, we assert the dependability of employing models to compute drug solubility in SCFs and simulate the experimental processes, with the capability to serve as valuable tools for aiding and optimizing experiments, as well as providing guidance in the selection of appropriate operational conditions. This, in turn, fosters innovative avenues for the development of supercritical pharmaceuticals.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Xiaowei Lu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361002, China;
| | - Yang Zhao
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China;
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| |
Collapse
|