1
|
Zhang J, Zhang Q, Li X, Wei Y, Qiu M, Yang H, Sun X. Prominent supramolecular systems for cancer Therapy: From structural design to tailored applications. Eur J Med Chem 2025; 294:117754. [PMID: 40378574 DOI: 10.1016/j.ejmech.2025.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Supramolecular materials represent a powerful class of platforms in cancer diagnosis and therapy, owing to their dynamic architectures, stimuli responsiveness, and high biocompatibility. This review focused on three representative categories-Pillarene-based systems, virus-mimetic nanoparticles (VMNs), and metal-organic frameworks (MOFs)-each offering unique structural and functional properties. Pillarene-based assemblies enable precise host-guest interactions, by being classified into amphiphilic, ionic, and chiral varieties, the robust drug loading and controlled release capabilities of the Pillarene family were emphasized. At the same time, the VMNs, including virus-like particles and virosomes, show power in cancer cell targeting and membrane penetration by emulating natural viral architectures. By discussing the fabrication and application of single-metallic, multi-metallic, and composite MOFs, their potential in multimodal diagnosis and therapy was revealed. In addition, other supramolecular categories, such as cyclodextrin and dendrimers, were introduced as well. We highlighted representative approaches and emerging methods, and comparative perspectives with traditional nanocarriers were included. A critical evaluation of pharmacokinetic behaviors, biosafety concerns, and translational limitations was also proposed, aiming to guide future research in supramolecular cancer nanomedicine. Through an integrative and forward-looking analysis, this review provided a comprehensive framework for understanding and designing supramolecular systems for precision oncology. These emerging nanotechnologies hold promise to reshape cancer medicine by enabling adaptive, targeted, and multifunctional therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zhang
- The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, China; School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Qingya Zhang
- The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, China; School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, China
| | - Min Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, China.
| |
Collapse
|
2
|
Rebolledo LP, Andrade LNS, Bajgelman MC, Banks L, Breakefield XO, Dobrovolskaia MA, Dokholyan NV, Kimura ET, Villa L, Zerbini LF, Zucolotto V, Afonin KA, Strauss BE, Chammas R, de Freitas Saito R. Nucleic acid nanobiosystems for cancer theranostics: an overview of emerging trends and challenges. Nanomedicine (Lond) 2025:1-18. [PMID: 40326805 DOI: 10.1080/17435889.2025.2501919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025] Open
Abstract
Different cancers remain major global health challenges due to their diverse biological behaviors and significant treatment hurdles. The aging of populations and lifestyle factors increase cancer occurrence and place increasing pressure on healthcare systems. Despite continuous advancements, many cancers remain fatal due to late-stage diagnosis, tumor heterogeneity, and drug resistance, thus necessitating urgent development of innovative treatment solutions. Therapeutic nucleic acids, a new class of biological drugs, offer a promising approach to overcoming these challenges. The recent Nucleic Acids and Nanobiosystems in Cancer Theranostics (NANCT) conference brought together internationally recognized experts from 15 countries to discuss cutting-edge research, spanning from oncolytic viruses to anticancer RNA nanoparticles and other emerging nanotechnologies. This review captures key insights and developments, emphasizing the need for interdisciplinary translation of scientific advancements into clinical practice and shaping the future of personalized cancer treatments for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Laura P Rebolledo
- Chemistry and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Luciana N S Andrade
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Medical School, University of Campinas, São Paulo, Brazil
| | - Lawrence Banks
- Tumour Virology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, Frederick Maryland, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Edna T Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luisa Villa
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz F Zerbini
- Department of Cancer Genomics, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Kirill A Afonin
- Chemistry and Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Bryan E Strauss
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| | - Renata de Freitas Saito
- Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Boff MO, Xavier FAC, Diz FM, Gonçalves JB, Ferreira LM, Zambeli J, Pazzin DB, Previato TTR, Erwig HS, Gonçalves JIB, Bruzzo FTK, Marinowic D, da Costa JC, Zanirati G. mTORopathies in Epilepsy and Neurodevelopmental Disorders: The Future of Therapeutics and the Role of Gene Editing. Cells 2025; 14:662. [PMID: 40358185 PMCID: PMC12071303 DOI: 10.3390/cells14090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 05/15/2025] Open
Abstract
mTORopathies represent a group of neurodevelopmental disorders linked to dysregulated mTOR signaling, resulting in conditions such as tuberous sclerosis complex, focal cortical dysplasia, hemimegalencephaly, and Smith-Kingsmore Syndrome. These disorders often manifest with epilepsy, cognitive impairments, and, in some cases, structural brain anomalies. The mTOR pathway, a central regulator of cell growth and metabolism, plays a crucial role in brain development, where its hyperactivation leads to abnormal neuroplasticity, tumor formation, and heightened neuronal excitability. Current treatments primarily rely on mTOR inhibitors, such as rapamycin, which reduce seizure frequency and tumor size but fail to address underlying genetic causes. Advances in gene editing, particularly via CRISPR/Cas9, offer promising avenues for precision therapies targeting the genetic mutations driving mTORopathies. New delivery systems, including viral and non-viral vectors, aim to enhance the specificity and efficacy of these therapies, potentially transforming the management of these disorders. While gene editing holds curative potential, challenges remain concerning delivery, long-term safety, and ethical considerations. Continued research into mTOR mechanisms and innovative gene therapies may pave the way for transformative, personalized treatments for patients affected by these complex neurodevelopmental conditions.
Collapse
Affiliation(s)
- Marina Ottmann Boff
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Fernando Mendonça Diz
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Laura Meireles Ferreira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jean Zambeli
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Medicine, University of the Valley of the Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, RS, Brazil
| | - Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Fernanda Thays Konat Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
- School of Health and Life, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (M.O.B.); (F.A.C.X.); (F.M.D.); (J.B.G.); (L.M.F.); (J.Z.); (D.B.P.); (T.T.R.P.); (H.S.E.); (J.I.B.G.); (F.T.K.B.); (D.M.); (J.C.d.C.)
| |
Collapse
|
4
|
Sivalingam AM, Sureshkumar DD, Pandurangan V. Cerebellar pathology in forensic and clinical neuroscience. Ageing Res Rev 2025; 106:102697. [PMID: 39988260 DOI: 10.1016/j.arr.2025.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Recent research underscores the cerebellum's growing importance in forensic science and neurology, showing its functions extend beyond motor control, especially in identifying causes of death. Critical neuropathological markers including alpha-synuclein and tau protein aggregates, cellular degeneration, inflammation, and vascular changes are vital for identifying neurodegenerative diseases, injuries, and toxic exposures. Advanced forensic methods, such as Magnetic resonance imaging (MRI), immunohistochemistry, and molecular analysis, have greatly improved the accuracy of diagnoses. Promising new therapies, including neuroprotective agents like resveratrol and transcranial magnetic stimulation (TMS), offer potential in treating cerebellar disorders. The cerebellum's vulnerability to toxins, drugs, and traumatic brain injuries (TBIs) highlights its forensic relevance. Moreover, advancements in genetic diagnostics, such as next-generation sequencing and CRISPR-Cas9, are enhancing the understanding and treatment of genetic conditions like Joubert syndrome and Dandy-Walker malformation. These findings emphasize the need for further research into cerebellar function and its broader significance in both forensic science and neurology.
Collapse
Affiliation(s)
- Azhagu Madhavan Sivalingam
- Natural Products & Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai, Tamil Nadu 602 105, India.
| | - Darshitha D Sureshkumar
- Department of Forensic Science, NIMS Institute of Allied Medical Science and Technology, (NIMS University), Jaipur, Rajasthan 303121, India
| | - Vijayalakshmi Pandurangan
- Department of Radiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha University), Thandalam, Chennai-602 105, Tamil Nadu, India
| |
Collapse
|
5
|
Maalouf KE, Frederick DM, Sharma N, Haidar EA, Xiao T, Han JS, Mahamdeh MS, Soberman RJ, Rufino-Ramos D, Kleinstiver BP, Jinnah HA, Vaine CA, Bragg DC, Breyne K. Non-invasive detection of allele-specific CRISPR-SaCas9-KKH disruption of TOR1A DYT1 allele in a xenograft mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102466. [PMID: 40114706 PMCID: PMC11925580 DOI: 10.1016/j.omtn.2025.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
DYT1 dystonia is a neurological movement disorder characterized by a dominant 3-base pair deletion (ΔGAG) in the TOR1A gene. This study demonstrates a gene-editing approach that selectively targets the ΔGAG mutation in the TOR1A DYT1 allele while safeguarding the wild-type (WT) TOR1A allele. We optimized an adeno-associated virus (AAV) vector-compatible variant of the Staphylococcus aureus Cas9 nuclease ortholog (SaCas9-KKH) in DYT1 patient-derived human neuronal progenitor cells (hNPCs). On-target editing of the TOR1A DYT1 allele was confirmed at the genomic level from brain tissue in a xenograft mouse model. To avoid brain biopsy for demonstrating TOR1A DYT1 editing, we developed a non-invasive monitoring method using extracellular RNA (exRNA). TOR1A exRNA was retrieved from the extracellular vesicle (EV) secretions of hNPCs and plasma samples, indicating whether the donor was a TOR1A DYT1 carrier. This technique enabled us to assess AAV-mediated disruption of the TOR1A DYT1 allele in the brains of mice using blood samples.
Collapse
Affiliation(s)
- Katia E Maalouf
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Dawn Madison Frederick
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Edwina Abou Haidar
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Tianhe Xiao
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Justin Seungkyu Han
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Mohammed S Mahamdeh
- Division of Cardiology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Mass General Brigham Center of Excellence for Molecular Imaging, Charlestown, MA 02129, USA
| | - Roy J Soberman
- Mass General Brigham Center of Excellence for Molecular Imaging, Charlestown, MA 02129, USA
- Division of Nephrology and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyder A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christine A Vaine
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
6
|
Hsiao PY. Investigating the kinetics of single-chain expansion upon release in theta conditions. Sci Rep 2025; 15:7773. [PMID: 40044715 PMCID: PMC11883026 DOI: 10.1038/s41598-025-90891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
The free expansion of a confined chain in theta solvents following a sudden removal of the confining constraint is investigated using Langevin dynamics simulations in both two- and three-dimensional spaces. The average evolution of the chain size exhibits a sigmoidal transition between the confined and the free states on a logarithmic timescale, indicating a two-stage expansion, each characterized by its own timescale. A kinetic theory is developed by applying Onsager's variational principle, which balances the change in free energy with energy dissipation. Through scaling analysis, the characteristic time τ 1 for the first expansion stage is shown to scale as the cube of the initial chain size, while the chain size increases according to a power law with an exponentα 1 = 1 / 3 , independent of the spatial dimension. In the second stage, the timescale τ 2 is found to be proportional to the square of the chain length, and the evolution of the chain size follows an exponential recovery function powered by an exponentα 2 = 1 / 4 . These results are further validated by a direct analysis of the kinetic equations via simulations. Moreover, the general forms of the free energy for the two expansion stages are established through the integration of the kinetic equations. Finally, physical interpretations are proposed, employing a radial expansion model and a diffusive mechanism to explain the observed scaling behaviors. This work explores a model system under the specific solvent condition, providing foundational theory and enhancing our understanding of the expansion-upon-release phenomenon.
Collapse
Affiliation(s)
- Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C..
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C..
| |
Collapse
|
7
|
Nieland L, Vrijmoet AB, Jetten IW, Rufino-Ramos D, de Reus AJEM, Breyne K, Kleinstiver BP, Maguire CA, Broekman MLD, Breakefield XO, Abels ER. CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice. Mol Ther 2025; 33:133-151. [PMID: 39563028 PMCID: PMC11764731 DOI: 10.1016/j.ymthe.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Glioblastoma (GB), the most aggressive tumor of the central nervous system (CNS), has poor patient outcomes with limited effective treatments available. MicroRNA-21 (miR-21(a)) is a known oncogene, abundantly expressed in many cancer types. miR-21(a) promotes GB progression, and lack of miR-21(a) reduces the tumorigenic potential. Here, we propose a single adeno-associated virus (AAV) vector strategy targeting mmu-miR-21a using the Staphylococcus aureus Cas9 ortholog (SaCas9) guided by a single-guide RNA (sgRNA). Our results demonstrate that AAV8 is a well-suited AAV serotype to express SaCas9-KKH/sgRNA at the tumor site in an orthotopic GB model. The SaCas9-KKH induced a genomic deletion, resulting in lowered mmu-miR-21a levels in the brain, leading to reduced tumor growth and improved overall survival. In this study, we demonstrated that disruption of genomic mmu-miR-21a with a single AAV vector influenced glioma development, resulting in beneficial anti-tumor outcomes in GB-bearing mice.
Collapse
Affiliation(s)
- Lisa Nieland
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Anne B Vrijmoet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Isabelle W Jetten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra J E M de Reus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02116, USA
| | - Marike L D Broekman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands; Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Erik R Abels
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| |
Collapse
|