1
|
Şenkesen Ö, Ispir EB, Göksel EO, Akdeniz Y. Dosimetric comparison of advanced radiotherapy planning techniques for hippocampal sparing whole brain radiotherapy. Cancer Radiother 2025; 29:104643. [PMID: 40398377 DOI: 10.1016/j.canrad.2025.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Hippocampal-sparing whole-brain radiotherapy aims to reduce neurocognitive decline in patients receiving cranial irradiation. Advances in radiotherapy planning systems offer improved sparing of organs at risk while maintaining target coverage. This study compared the dosimetric performance of five planning techniques for hippocampal-sparing whole-brain radiotherapy: Radixact with 1cm and 2.5cm field widths, Ethos, HyperArc, and volumetric modulated arctherapy using advanced optimization algorithms. MATERIALS AND METHODS Eleven patients who underwent whole brain irradiation were included in this retrospective planning study. The prescribed dose was 30Gy in 12 fractions, with hippocampus dose constraints of D98 %≤9Gy and D2 %≤17Gy. Radixact plans were created using the VOLO™ Ultra optimizer with normal tissue objective parameters for dose fall-off control. Ethos plans were generated using an intelligent optimization engine with automated planning. HyperArc employed four non-coplanar arcs with SRS normal tissue objective optimization, while volumetric modulated arctherapy utilized six arcs. Dosimetric parameters, including planning target volume coverage, hippocampal doses, and organs at risk constraints, were analyzed using one-way ANOVA. RESULTS Radixact with 1cm field width achieved the lowest hippocampal doses, whereas HyperArc and volumetric modulated arctherapy provided superior planning target volume coverage. Ethos resulted in the lowest doses to organs at risk, while HyperArc had the shortest treatment duration. Statistically significant differences (P<0.05) were observed across techniques for hippocampal D98 %, D2 %, and sparing of organs at risk. CONCLUSION Advanced planning techniques offer distinct dosimetric advantages for hippocampal-sparing whole-brain radiotherapy. Radixact with 1cm field width optimally spares the hippocampus, while HyperArc and volumetric modulated arctherapy balance sparing of organs at risk with shorter treatment times. Selection of an optimal planning approach should consider both dosimetric outcomes and clinical workflow efficiency.
Collapse
Affiliation(s)
- Öznur Şenkesen
- Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey; Department of Radiation Oncology, Acıbadem Ataşehir Hospital, Istanbul, Turkey.
| | - Emine Burçin Ispir
- Department of Radiation Oncology, Acıbadem Ataşehir Hospital, Istanbul, Turkey
| | - Evren Ozan Göksel
- Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey; Department of Radiation Oncology, Acıbadem Altunizade Hospital, Istanbul, Turkey
| | - Yücel Akdeniz
- Department of Radiation Oncology, Acıbadem Adana Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Mesny E, Jacob J, Noël G, Bernier MO, Ricard D. Specific radiosensitivity of brain structures (areas or regions) and cognitive impairment after focal or whole brain radiotherapy: A review. Cancer Radiother 2025; 29:104625. [PMID: 40378621 DOI: 10.1016/j.canrad.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/19/2025]
Abstract
Delayed neurocognitive impairment is observed following encephalic radiotherapy, including brain parts (areas), leading to a substantial deterioration of the quality of life. These delayed radiotherapy side effects are variable in terms of intensity of symptoms and time of occurrence, characterized by minor-to-severe cognitive deficits, such as attention or memory disorders and/or dysexecutive syndrome. However, the precise mechanisms leading to these cognitive disorders remain mostly unknown. Various tissue alterations have been reported after brain radiotherapy, in specific brain structures as the hippocampus, the cerebral white matter or the cerebral cortex. Sparing these structures during brain radiotherapy may be a potential approach to limit the development of late cognitive impairment; however, few dose constraints have been published regarding brain areas (regions) involved in cognitive functions. The main purposes of this literature review are to report the pathophysiological process leading to the radiation-induced cognitive impairment, to describe the tolerance and radiological modifications induced by radiation of specific healthy cerebral tissues, to better understand their radiosensitivity and to describe potential improvements.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Université Paris Saclay, université Paris Cité, ENS Paris Saclay, CNRS, SSA, Inserm, centre Borelli, 91190 Gif-sur-Yvette, France; Radiation Oncology department, Hospices civils de Lyon, centre hospitalier Lyon Sud, Oullins-Pierre-Bénite, France.
| | - Julian Jacob
- Sorbonne Université, hôpital de La Pitié-Salpêtrière, Department of Radiation Oncology, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Georges Noël
- Radiotherapy Department, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France; Faculté de médecine, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Europe (ICANS), Radiobiology Laboratory, Unicancer, 67000 Strasbourg, France; Université de Strasbourg, ICube, imagerie multimodale intégrative en santé (Imis), 300, boulevard Sébastien-Brant, 67400 Illkirch-Graffenstaden, France
| | - Marie-Odile Bernier
- Institut de radioprotection et de sûreté nucléaire, Fontenay-aux-Roses, France
| | - Damien Ricard
- Université Paris Saclay, université Paris Cité, ENS Paris Saclay, CNRS, SSA, Inserm, centre Borelli, 91190 Gif-sur-Yvette, France; Service de neurologie, Service de santé des armées, hôpital d'instruction des armées Percy, 92140 Clamart, France; Service de santé des armées, École du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
3
|
Reese M, Wright MC, Roberts KC, Browndyke JN, Bennett M, Acker L, Devinney MJ, Reekes TH, Waligorska T, Shaw LM, Blennow K, Zetterberg H, Cohen HJ, Mathew JP, Whitson HE, Westover MB, Woldorff MG, Berger M. Associations between anaesthetic dose-adjusted intraoperative EEG alpha power, processing speed, and postoperative delirium: analysis of data from three prospective studies. Br J Anaesth 2025:S0007-0912(25)00090-X. [PMID: 40221315 DOI: 10.1016/j.bja.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND We previously have shown that low intraoperative EEG alpha power is associated with impaired preoperative cognition, a delirium risk factor, and that intraoperative anaesthetic-dose-adjusted EEG bispectral index values were associated with a four-fold increased risk of postoperative delirium (POD). Yet, associations between intraoperative anaesthetic-dose-adjusted alpha power and delirium or delirium risk factors have yet to be quantified. METHODS We examined cerebrospinal fluid (CSF) Alzheimer's disease (AD)-related biomarkers, cognitive scores, EEG recordings, and delirium data from 82 noncardiac, non-neurologic surgical patients ≥60 yr in age. Based on prior work, each participant's intraoperative frontoparietal EEG alpha power was anaesthetic dose-adjusted by dividing it by (2.5 minus the age-adjusted end-tidal minimum alveolar concentration), and then analysed for its association with POD and delirium risk factors, preoperative CSF AD-related biomarkers, and preoperative cognition. RESULTS Lower anaesthetic-dose-adjusted frontoparietal alpha power was associated with increased odds of POD (odds ratio [95% confidence interval (CI)]: 1.44 [1.09, 1.89], P=0.009) and moderate-to-severe delirium (odds ratio [95% CI]: 1.44 [1.04, 2.00], P=0.030). Anaesthetic-dose-adjusted frontoparietal alpha power was not associated with pathologic concentrations of CSF pTau-181, Aβ1-42, or pTau-181/Aβ1-42 (P>0.05). In multivariable cognitive models, anaesthetic-dose-adjusted frontoparietal alpha power was associated with preoperative timed processing speed/executive function performance (β [95% CI]: 0.27 [0.06, 0.49], P=0.014), but not with untimed attention/memory performance (β [95% CI]: 0.12 [-0.13, 0.37], P=0.349). CONCLUSIONS Lower intraoperative anaesthetic-dose-adjusted frontoparietal alpha power was associated with delirium and delirium-predisposing factors (impaired preoperative processing speed/executive function in timed attention tasks). Larger studies are warranted to confirm these associations after further adjustment for covariates.
Collapse
Affiliation(s)
- Melody Reese
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mary Cooter Wright
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ken C Roberts
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Jeffrey N Browndyke
- Department of Psychiatry and Behavioural Medicine, Division of Behavioural Medicine & Neurosciences, Duke University Medical Center, Durham, NC, USA
| | - Micheal Bennett
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Leah Acker
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael J Devinney
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Tyler H Reekes
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Teresa Waligorska
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Harvey J Cohen
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Heather E Whitson
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA; Geriatric Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - M Brandon Westover
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioural Medicine, Division of Behavioural Medicine & Neurosciences, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Miles Berger
- Department of Anaesthesiology, Duke University Medical Center, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Duke University/University of North Carolina - Chapel Hill Alzheimer's Disease Research Center, Durham, NC, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Connor M, Salans M, Karunamuni R, Unnikrishnan S, Huynh-Le MP, Tibbs M, Qian A, Reyes A, Stasenko A, McDonald C, Moiseenko V, El-Naqa I, Hattangadi-Gluth JA. Fine Motor Skill Decline After Brain Radiation Therapy-A Multivariate Normal Tissue Complication Probability Study of a Prospective Trial. Int J Radiat Oncol Biol Phys 2023; 117:581-593. [PMID: 37150258 PMCID: PMC10911396 DOI: 10.1016/j.ijrobp.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE Brain radiation therapy can impair fine motor skills (FMS). Fine motor skills are essential for activities of daily living, enabling hand-eye coordination for manipulative movements. We developed normal tissue complication probability (NTCP) models for the decline in FMS after fractionated brain radiation therapy (RT). METHODS AND MATERIALS On a prospective trial, 44 patients with primary brain tumors received fractioned RT; underwent high-resolution volumetric magnetic resonance imaging, diffusion tensor imaging, and comprehensive FMS assessments (Delis-Kaplan Executive Function System Trail Making Test Motor Speed [DKEFS-MS]; and Grooved Pegboard dominant/nondominant hands) at baseline and 6 months postRT. Regions of interest subserving motor function (including cortex, superficial white matter, thalamus, basal ganglia, cerebellum, and white matter tracts) were autosegmented using validated methods and manually verified. Dosimetric and clinical variables were included in multivariate NTCP models using automated bootstrapped logistic regression, least absolute shrinkage and selection operator logistic regression, and random forests with nested cross-validation. RESULTS Half of the patients showed a decline on grooved pegboard test of nondominant hands, 17 of 42 (40.4%) on grooved pegboard test of -dominant hands, and 11 of 44 (25%) on DKEFS-MS. Automated bootstrapped logistic regression selected a 1-term model including maximum dose to dominant postcentral white matter. The least absolute shrinkage and selection operator logistic regression selected this term and steroid use. The top 5 variables in the random forest were all dosimetric: maximum dose to dominant thalamus, mean dose to dominant caudate, mean and maximum dose to the dominant corticospinal tract, and maximum dose to dominant postcentral white matter. This technique performed best with an area under the curve of 0.69 (95% CI, 0.68-0.70) on nested cross-validation. CONCLUSIONS We present the first NTCP models for FMS impairment after brain RT. Dose to several supratentorial motor-associated regions of interest correlated with a decline in dominant-hand fine motor dexterity in patients with primary brain tumors in multivariate models, outperforming clinical variables. These data can guide prospective fine motor-sparing strategies for brain RT.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Alexander Qian
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Issam El-Naqa
- Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California.
| |
Collapse
|
5
|
Voon NS, Manan HA, Yahya N. Remote assessment of cognition and quality of life following radiotherapy for glioma: deep-learning-based predictive models and MRI correlates. J Neurooncol 2023; 162:407-415. [PMID: 37014593 PMCID: PMC10071464 DOI: 10.1007/s11060-023-04303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Glioma irradiation often unavoidably damages the brain volume and affects cognition. This study aims to evaluate the relationship of remote cognitive assessments in determining cognitive impairment of irradiated glioma patients in relation to the quality of life and MRI changes. METHODS Thirty patients (16-76 aged) with two imaging (pre- and post-RT) and completed cognitive assessments were recruited. Cerebellum, right and left temporal lobes, corpus callosum, amygdala and spinal cord were delineated and their dosimetry parameters were collected. Cognitive assessments were given post-RT via telephone (Telephone Interview Cognitive Status (TICS), Telephone Montreal Cognitive Assessment (T-MoCA), Telephone Mini Addenbrooke's Cognitive Examination (Tele-MACE)). Regression models and deep neural network (DNN) were used to evaluate the relationship between brain volume, cognition and treatment dose in patients. RESULTS Cognitive assessments were highly inter-correlated (r > 0.9) and impairment was shown between pre- and post-RT findings. Brain volume atrophy was shown post-RT, and cognitive impairments were correlated with radiotherapy-associated volume atrophy and dose-dependent in the left temporal lobe, corpus callosum, cerebellum and amygdala. DNN showed a good area under the curve for cognitive prediction; TICS (0.952), T-MoCA (0.909) and Tele-MACE (0.822). CONCLUSIONS Cognition can be evaluated remotely in which radiotherapy-related brain injury is dose-dependent and volume-dependent. Prediction models can assist in the early identification of patients at risk for neurocognitive decline following RT for glioma, thus facilitating potential treatment interventions.
Collapse
Affiliation(s)
- Noor Shatirah Voon
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur, 50300, Malaysia
- National Cancer Institute, Ministry of Health, Jalan P7, Presint 7, 62250, Putrajaya, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur, 50300, Malaysia.
| |
Collapse
|
6
|
Pilarska A, Pieczyńska A, Hojan K. Neuropsychological monitoring of cognitive function and ICF-based mental components in patients with malignant brain tumours. Front Psychol 2023; 14:1033185. [PMID: 37063555 PMCID: PMC10102367 DOI: 10.3389/fpsyg.2023.1033185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Cognitive deficits are one of the important clinical features of patients with brain tumours, which can affect up to 30-90% of patients before treatment. The consequence is a significant and rapid degradation of the patient's intellectual functioning, seizures, paralysis and other symptoms that prevent independent functioning. This results in a reduced quality of life and a psychological crisis not only for the patient but also for their relatives. Maintaining the patient's function at the highest level for as long as possible is particularly important, given that long-term remission or a cure is unlikely or accompanied by significant disability. PURPOSE This paper aims to provide a narrative review to the neuropsychological procedure for monitoring cognitive function in patients with brain tumours, which may be helpful in developing adequate clinical practice and appropriate management procedures. METHODS A narrative review was applied to search broadly across disciplines, retrieving literature from several databases (PubMed, Web of Science, and EBSCOhost). RESULTS (1) discussing the methodological aspects of neuropsychological tools for monitoring cognitive function in brain tumour patients, (2) identifying the most commonly used tools and (3) their practical applicability according to the cognitive function components of the International Classification of Functioning, Disability and Health (ICF). CONCLUSION This article points to the need to systematise research tools or develop new ones, adapted to diagnostic needs with high psychometric characteristics, with particular attention to memory processes and learning effect. Rehabilitation of patients is also an important issue, which requires the use of adequate tools to assess functional disability. The International Classification of Functioning, Disability and Health (ICF) seems to be useful in this respect. The ICF has the advantage of targeting actions to improve the condition of the individual and to keep them as long as possible in a state of well-being that allows them to function effectively in society or to return to work. This is particularly important in view of the ageing population and the increasing number of diagnoses related to brain tumours.
Collapse
Affiliation(s)
- Agnieszka Pilarska
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
| | - Anna Pieczyńska
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Hojan
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Guevara B, Cullison K, Maziero D, Azzam GA, De La Fuente MI, Brown K, Valderrama A, Meshman J, Breto A, Ford JC, Mellon EA. Simulated Adaptive Radiotherapy for Shrinking Glioblastoma Resection Cavities on a Hybrid MRI-Linear Accelerator. Cancers (Basel) 2023; 15:1555. [PMID: 36900346 PMCID: PMC10000839 DOI: 10.3390/cancers15051555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
During radiation therapy (RT) of glioblastoma, daily MRI with combination MRI-linear accelerator (MRI-Linac) systems has demonstrated significant anatomic changes, including evolving post-surgical cavity shrinkage. Cognitive function RT for brain tumors is correlated with radiation doses to healthy brain structures, especially the hippocampi. Therefore, this study investigates whether adaptive planning to the shrinking target could reduce normal brain RT dose with the goal of improving post-RT function. We evaluated 10 glioblastoma patients previously treated on a 0.35T MRI-Linac with a prescription of 60 Gy delivered in 30 fractions over six weeks without adaptation ("static plan") with concurrent temozolomide chemotherapy. Six weekly plans were created per patient. Reductions in the radiation dose to uninvolved hippocampi (maximum and mean) and brain (mean) were observed for weekly adaptive plans. The dose (Gy) to the hippocampi for static vs. weekly adaptive plans were, respectively: max 21 ± 13.7 vs. 15.2 ± 8.2 (p = 0.003) and mean 12.5 ± 6.7 vs. 8.4 ± 4.0 (p = 0.036). The mean brain dose was 20.6 ± 6.0 for static planning vs. 18.7 ± 6.8 for weekly adaptive planning (p = 0.005). Weekly adaptive re-planning has the potential to spare the brain and hippocampi from high-dose radiation, possibly reducing the neurocognitive side effects of RT for eligible patients.
Collapse
Affiliation(s)
- Beatriz Guevara
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Kaylie Cullison
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Danilo Maziero
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Radiation Medicine & Applied Sciences, UC San Diego Health, La Jolla, CA 92093, USA
| | - Gregory A. Azzam
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Macarena I. De La Fuente
- Department of Neurology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karen Brown
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessandro Valderrama
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jessica Meshman
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adrian Breto
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John Chetley Ford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
8
|
Hardy SJ, Finkelstein AJ, Tivarus M, Culakova E, Mohile N, Weber M, Lin E, Zhong J, Usuki K, Schifitto G, Milano M, Janelsins-Benton MC. Cognitive and neuroimaging outcomes in individuals with benign and low-grade brain tumours receiving radiotherapy: a protocol for a prospective cohort study. BMJ Open 2023; 13:e066458. [PMID: 36792323 PMCID: PMC9933762 DOI: 10.1136/bmjopen-2022-066458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Radiation-induced cognitive decline (RICD) occurs in 50%-90% of adult patients 6 months post-treatment. In patients with low-grade and benign tumours with long expected survival, this is of paramount importance. Despite advances in radiation therapy (RT) treatment delivery, better understanding of structures important for RICD is necessary to improve cognitive outcomes. We hypothesise that RT may affect network topology and microstructural integrity on MRI prior to any gross anatomical or apparent cognitive changes. In this longitudinal cohort study, we aim to determine the effects of RT on brain structural and functional integrity and cognition. METHODS AND ANALYSIS This study will enroll patients with benign and low-grade brain tumours receiving partial brain radiotherapy. Patients will receive either hypofractionated (>2 Gy/fraction) or conventionally fractionated (1.8-2 Gy/fraction) RT. All participants will be followed for 12 months, with MRIs conducted pre-RT and 6-month and 12 month post-RT, along with a battery of neurocognitive tests and questionnaires. The study was initiated in late 2018 and will continue enrolling through 2024 with final follow-ups completing in 2025. The neurocognitive battery assesses visual and verbal memory, attention, executive function, processing speed and emotional cognition. MRI protocols incorporate diffusion tensor imaging and resting state fMRI to assess structural connectivity and functional connectivity, respectively. We will estimate the association between radiation dose, imaging metrics and cognitive outcomes. ETHICS AND DISSEMINATION This study has been approved by the Research Subjects Review Board at the University of Rochester (STUDY00001512: Cognitive changes in patients receiving partial brain radiation). All results will be published in peer-reviewed journals and at scientific conferences. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT04390906.
Collapse
Affiliation(s)
- Sara J Hardy
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Alan J Finkelstein
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Madalina Tivarus
- Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Eva Culakova
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nimish Mohile
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Miriam Weber
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Edward Lin
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Center for Advanced Brain Imaging and Neurophysiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kenneth Usuki
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Giovanni Schifitto
- Department of Neurology, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - M C Janelsins-Benton
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Hopper A, Salans M, Karunamuni R, Hattangadi-Gluth JA. Neurocognitive considerations in the treatment of meningioma with radiation therapy: applications for quantitative neuroimaging and precision radiation medicine. J Neurooncol 2023; 161:277-286. [PMID: 36572802 DOI: 10.1007/s11060-022-04175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
This article focuses on the role of radiotherapy in the management of meningioma, in the definitive and adjuvant setting and across the spectrum of meningioma grade. Treatment paradigms, informed by clinical evidence, are discussed. Notably, we focus on the impact of radiotherapy on normal brain tissues and neurocognitive function, particularly the dose-dependent changes in white matter and cerebral cortex thickness. Novel imaging techniques have allowed the identification of microstructural changes to eloquent white matter, cortex, and subcortical regions as biomarkers for understanding RT-induced changes in cognitive functioning. Deficits in multiple domains including attention, memory, language and executive function can become more pronounced following radiation. Longitudinal assessment with imaging and neurocognitive testing pre- and post-radiation have allowed correlation between dose to specific regions of the brain and decline in associated domains of neurocognitive function. These findings suggest incorporation of areas at higher risk for neurocognitive sequelae into precision radiation planning. Volumetric arc therapy, advanced planning with cortical sparing, proton therapy and stereotactic radiosurgery are reviewed as options for delivering therapeutic dose to target volumes while minimizing risk to adjacent sensitive regions. The treatment of meningioma is an evolving area, with improving outcomes for higher grade disease in modern trials, where care must be taken to maximize both disease control as well as quality of life for patients.
Collapse
Affiliation(s)
- Austin Hopper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA
| | - Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA.
| |
Collapse
|
10
|
Dinkel JG, Lahmer G, Mennecke A, Hock SW, Richter-Schmidinger T, Fietkau R, Distel L, Putz F, Dörfler A, Schmidt MA. Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure-A Diffusion Tensor Imaging Analysis. Brain Sci 2022; 12:brainsci12070879. [PMID: 35884686 PMCID: PMC9312994 DOI: 10.3390/brainsci12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hippocampal-sparing radiotherapy (HSR) is a promising approach to alleviate cognitive side effects following cranial radiotherapy. Microstructural brain changes after irradiation have been demonstrated using Diffusion Tensor Imaging (DTI). However, evidence is conflicting for certain parameters and anatomic structures. This study examines the effects of radiation on white matter and hippocampal microstructure using DTI and evaluates whether these may be mitigated using HSR. A total of 35 tumor patients undergoing a prospective randomized controlled trial receiving either conventional or HSR underwent DTI before as well as 6, 12, 18, 24, and 30 (±3) months after radiotherapy. Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) were measured in the hippocampus (CA), temporal, and frontal lobe white matter (TL, FL), and corpus callosum (CC). Longitudinal analysis was performed using linear mixed models. Analysis of the entire patient collective demonstrated an overall FACC decrease and RDCC increase compared to baseline in all follow-ups; ADCC decreased after 6 months, and MDCC increased after 12 months (p ≤ 0.001, 0.001, 0.007, 0.018). ADTL decreased after 24 and 30 months (p ≤ 0.004, 0.009). Hippocampal FA increased after 6 and 12 months, driven by a distinct increase in ADCA and MDCA, with RDCA not increasing until 30 months after radiotherapy (p ≤ 0.011, 0.039, 0.005, 0.040, 0.019). Mean radiation dose correlated positively with hippocampal FA (p < 0.001). These findings may indicate complex pathophysiological changes in cerebral microstructures after radiation, insufficiently explained by conventional DTI models. Hippocampal microstructure differed between patients undergoing HSR and conventional cranial radiotherapy after 6 months with a higher ADCA in the HSR subgroup (p ≤ 0.034).
Collapse
Affiliation(s)
- Johannes G. Dinkel
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Godehard Lahmer
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Angelika Mennecke
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Stefan W. Hock
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Tanja Richter-Schmidinger
- Psychiatrische und Psychotherapeutische Klinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Luitpold Distel
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Florian Putz
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Arnd Dörfler
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Manuel A. Schmidt
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
- Correspondence:
| |
Collapse
|
11
|
de Ruiter MB, Groot PFC, Deprez S, Pullens P, Sunaert S, de Ruysscher D, Schagen SB, Belderbos J. Hippocampal avoidance prophylactic cranial irradiation (HA-PCI) for small cell lung cancer reduces hippocampal atrophy compared to conventional PCI. Neuro Oncol 2022; 25:167-176. [PMID: 35640975 PMCID: PMC9825336 DOI: 10.1093/neuonc/noac148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reducing radiation dose to the hippocampus with hippocampal avoidance prophylactic cranial irradiation (HA-PCI) is proposed to prevent cognitive decline. It has, however, not been investigated whether hippocampal atrophy is actually mitigated by this approach. Here, we determined whether HA-PCI reduces hippocampal atrophy. Additionally, we evaluated neurotoxicity of (HA-)PCI to other brain regions. Finally, we evaluated associations of hippocampal atrophy and brain neurotoxicity with memory decline. METHODS High-quality research MRI scans were acquired in the multicenter, randomized phase 3 trial NCT01780675. Hippocampal atrophy was evaluated for 4 months (57 HA-PCI patients and 46 PCI patients) and 12 months (28 HA-PCI patients and 27 PCI patients) after (HA-)PCI. We additionally studied multimodal indices of brain injury. Memory was assessed with the Hopkins Verbal Learning Test-Revised (HVLT-R). RESULTS HA-PCI reduced hippocampal atrophy at 4 months (1.8% for HA-PCI and 3.0% for PCI) and at 12 months (3.0% for HA-PCI and 5.8% for PCI). Both HA-PCI and PCI were associated with considerable reductions in gray matter and normal-appearing white matter, increases in white matter hyperintensities, and brain aging. There were no significant associations between hippocampal atrophy and memory. CONCLUSIONS HA-PCI reduces hippocampal atrophy at 4 and 12 months compared to regular PCI. Both types of radiotherapy are associated with considerable brain injury. We did not find evidence for excessive brain injury after HA-PCI relative to PCI. Hippocampal atrophy was not associated with memory decline in this population as measured with HVLT-R. The usefulness of HA-PCI is still subject to debate.
Collapse
Affiliation(s)
- Michiel B de Ruiter
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul F C Groot
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location AMC, University of Amsterdam, The Netherlands
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium,Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Pim Pullens
- Department of Radiology, Ghent University, Ghent, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dirk de Ruysscher
- Radiation Oncology (MAASTRO), School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sanne B Schagen
- Corresponding Author: Sanne B. Schagen, PhD, Brain and Cognition, Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129 B, 1018 WS, Amsterdam, the Netherlands ()
| | | |
Collapse
|
12
|
A review of long-term deficits in memory systems following radiotherapy for pediatric posterior fossa tumor. Radiother Oncol 2022; 174:111-122. [PMID: 35640769 DOI: 10.1016/j.radonc.2022.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION In recent years, progress in pediatric posterior fossa tumor (PFT) treatments has improved survival rates. However, the majority of survivors present neurocognitive sequelae that impact academic achievement. METHODS This review examines the literature from 2000 to 2020 on long-term outcomes in different memory systems for survivors of pediatric PFT, considering the impact of radiotherapy which is a well-known prognostic factor for global neurocognitive function. RESULTS Of the 43 articles selected, 31 explored working memory, 19 episodic memory, 9 semantic memory and 2 procedural memory. Irradiated survivors had scores of < -2 standard deviation (SD) (n = 4 studies/25) or between -2SD and -1SD (n =7 studies/25) for working memory; < -1SD for anterograde memory (n = 11/13), with a progressive decline in these two memory systems; < -1SD (n = 4/7) in semantic memory, and a deficit in perceptual-motor procedural learning (n = 1/1). Reducing craniospinal irradiation dose, limiting tumor bed boosts, and using proton therapy seem to have had a beneficial effect with better preservation of the memory score and a reduction in the decline over time. Non-irradiated survivors had memory systems that were less affected, with preservation of anterograde memory and maintenance of long-term stability. CONCLUSION Memory deficits are a core feature in survivors of pediatric PFT, especially when treatment requires radiotherapy. To limit these effects, dose constraints for specific brain areas involved in memory should be defined. During long-term follow-up, specific attention is essential to identify these deficits in order to limit their impact on the quality of life.
Collapse
|
13
|
Schuermann M, Dzierma Y, Nuesken F, Oertel J, Rübe C, Melchior P. Automatic Radiotherapy Planning for Glioblastoma Radiotherapy With Sparing of the Hippocampus and nTMS-Defined Motor Cortex. Front Neurol 2022; 12:787140. [PMID: 35095732 PMCID: PMC8795623 DOI: 10.3389/fneur.2021.787140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundNavigated transcranial magnetic stimulation (nTMS) of the motor cortex has been successfully implemented into radiotherapy planning by a number of studies. Furthermore, the hippocampus has been identified as a radiation-sensitive structure meriting particular sparing in radiotherapy. This study assesses the joint protection of these two eloquent brain regions for the treatment of glioblastoma (GBM), with particular emphasis on the use of automatic planning.Patients and MethodsPatients with motor-eloquent brain glioblastoma who underwent surgical resection after nTMS mapping of the motor cortex and adjuvant radiotherapy were retrospectively evaluated. The radiotherapy treatment plans were retrieved, and the nTMS-defined motor cortex and hippocampus contours were added. Four additional treatment plans were created for each patient: two manual plans aimed to reduce the dose to the motor cortex and hippocampus by manual inverse planning. The second pair of re-optimized plans was created by the Auto-Planning algorithm. The optimized plans were compared with the “Original” plan regarding plan quality, planning target volume (PTV) coverage, and sparing of organs at risk (OAR).ResultsA total of 50 plans were analyzed. All plans were clinically acceptable with no differences in the PTV coverage and plan quality metrics. The OARs were preserved in all plans; however, overall the sparing was significantly improved by Auto-Planning. Motor cortex protection was feasible and significant, amounting to a reduction in the mean dose by >6 Gy. The dose to the motor cortex outside the PTV was reduced by >12 Gy (mean dose) and >5 Gy (maximum dose). The hippocampi were significantly improved (reduction in mean dose: ipsilateral >6 Gy, contralateral >4.6 Gy; reduction in maximum dose: ipsilateral >5 Gy, contralateral >5 Gy). While the dose reduction using Auto-Planning was generally better than by manual optimization, the radiated total monitor units were significantly increased.ConclusionConsiderable dose sparing of the nTMS-motor cortex and hippocampus could be achieved with no disadvantages in plan quality. Auto-Planning could further contribute to better protection of OAR. Whether the improved dosimetric protection of functional areas can translate into improved quality of life and motor or cognitive performance of the patients can only be decided by future studies.
Collapse
Affiliation(s)
- Michaela Schuermann
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
- *Correspondence: Michaela Schuermann
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Frank Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Joachim Oertel
- Faculty of Medicine, Saarland University, Saarbrücken, Germany
- Department of Neurosurgery, Saarland University Hospital, Homburg, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
14
|
Connor M, Kim MM, Cao Y, Hattangadi-Gluth J. Precision Radiotherapy for Gliomas: Implementing Novel Imaging Biomarkers to Improve Outcomes With Patient-Specific Therapy. Cancer J 2021; 27:353-363. [PMID: 34570449 PMCID: PMC8480523 DOI: 10.1097/ppo.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Gliomas are the most common primary brain cancer, yet are extraordinarily challenging to treat because they can be aggressive and infiltrative, locally recurrent, and resistant to standard treatments. Furthermore, the treatments themselves, including radiation therapy, can affect patients' neurocognitive function and quality of life. Noninvasive imaging is the standard of care for primary brain tumors, including diagnosis, treatment planning, and monitoring for treatment response. This article explores the ways in which advanced imaging has and will continue to transform radiation treatment for patients with gliomas, with a focus on cognitive preservation and novel biomarkers, as well as precision radiotherapy and treatment adaptation. Advances in novel imaging techniques continue to push the field forward, to more precisely guided treatment planning, radiation dose escalation, measurement of therapeutic response, and understanding of radiation-associated injury.
Collapse
Affiliation(s)
- Michael Connor
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jona Hattangadi-Gluth
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| |
Collapse
|
15
|
Le Fèvre C, Cheng X, Loit MP, Keller A, Cebula H, Antoni D, Thiery A, Constans JM, Proust F, Noel G. Role of hippocampal location and radiation dose in glioblastoma patients with hippocampal atrophy. Radiat Oncol 2021; 16:112. [PMID: 34158078 PMCID: PMC8220779 DOI: 10.1186/s13014-021-01835-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/06/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma. METHODS All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy. RESULTS Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall. CONCLUSIONS There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Xue Cheng
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France.,Department of Radiation Oncology, Chongqing University Three Gorges Hospital, 165 Xin Cheng Road, Wanzhou District, Chongqing, 404000, China
| | | | | | - Hélène Cebula
- Neurosurgery Service, Hautepierre University Hospital, 1, rue Molière, 67000, Strasbourg, France
| | - Delphine Antoni
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Alicia Thiery
- Statistic Department, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France
| | - Jean-Marc Constans
- Radiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France
| | - François Proust
- Neurosurgery Service, Hautepierre University Hospital, 1, rue Molière, 67000, Strasbourg, France
| | - Georges Noel
- Department of Radiation Oncology, UNICANCER, Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), 17 Rue Albert Calmette, BP 23025, 67033, Strasbourg, France.
| |
Collapse
|
16
|
Dzierma Y, Schuermann M, Melchior P, Nuesken F, Oertel J, Rübe C, Hendrix P. Optimizing Adjuvant Stereotactic Radiotherapy of Motor-Eloquent Brain Metastases: Sparing the nTMS-Defined Motor Cortex and the Hippocampus. Front Oncol 2021; 11:628007. [PMID: 33718201 PMCID: PMC7953904 DOI: 10.3389/fonc.2021.628007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastases can effectively be treated with surgical resection and adjuvant stereotactic radiotherapy (SRT). Navigated transcranial magnetic stimulation (nTMS) has been used to non-invasively map the motor cortex prior to surgery of motor eloquent brain lesions. To date, few studies have reported the integration of such motor maps into radiotherapy planning. The hippocampus has been identified as an additional critical structure of radiation-induced deficits. The aim of this study is to assess the feasibility of selective dose reduction to both the nTMS-based motor cortex and the hippocampi in SRT of motor-eloquent brain metastases. Patients with motor-eloquent brain metastases undergoing surgical resection and adjuvant SRT between 07/2014 and 12/2018 were retrospectively analyzed. The radiotherapy treatment plans were retrieved from the treatment planning system (“original” plan). For each case, two intensity-modulated treatment plans were created: the “motor” plan aimed to reduce the dose to the motor cortex, the “motor & hipp” plan additionally reduce the dose to the hippocampus. The optimized plans were compared with the “original” plan regarding plan quality, planning target volume (PTV) coverage, and sparing of organs at risk (OAR). 69 plans were analyzed, all of which were clinically acceptable with no significant differences for PTV coverage. All OAR were protected according to standard protocols. Sparing of the nTMS motor map was feasible: mean dose 9.66 ± 5.97 Gy (original) to 6.32 ± 3.60 Gy (motor) and 6.49 ± 3.78 Gy (motor & hipp), p<0.001. In the “motor & hipp” plan, dose to the ipsilateral hippocampi could be significantly reduced (max 1.78 ± 1.44 Gy vs 2.49 ± 1.87 Gy in “original”, p = 0.003; mean 1.01 ± 0.92 Gy vs. 1.32 ± 1.07 Gy in “original”, p = 0.007). The study confirms the results from previous studies that inclusion of nTMS motor information into radiotherapy treatment planning is possible with a relatively straightforward workflow and can achieve reduced doses to the nTMS-defined motor area without compromising PTV coverage. Furthermore, we demonstrate the feasibility of selective dose reduction to the hippocampus at the same time. The clinical significance of these optimized plans yet remains to be determined. However, with no apparent disadvantages these optimized plans call for further and broader exploration.
Collapse
Affiliation(s)
- Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Michaela Schuermann
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Frank Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Centre and Saarland University Faculty of Medicine, Homburg, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg, Germany
| | - Philipp Hendrix
- Department of Neurosurgery, Saarland University Medical Centre and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
17
|
Takahashi S, Anada M, Kinoshita T, Nishide T, Kozai S, Shibata T. Feasibility of hippocampal dose-volume parameters associated with memory decline in intensity-modulated radiotherapy for supratentorial tumors. Mol Clin Oncol 2021; 14:53. [PMID: 33604043 DOI: 10.3892/mco.2021.2215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present retrospective study was to evaluate the feasibility of hippocampal dose-volume parameters associated with memory decline for intensity-modulated radiotherapy (IMRT). In total, 18 patients who underwent IMRT for supratentorial tumors were analyzed. Prescribed doses of IMRT in 30 fractions were 60 Gy to planning target volume (PTV) 1 of the local area and 48-51 Gy to PTV2 of the extended local area. Based on previous literature, the present study investigated dose-volume parameters of the bilateral hippocampi: D40% of 13.1 Gy, D50% of 29.6 Gy, and V55Gy of 5.0%. It was evaluated which of the parameters was most achievable, and unfavorable factors that interfere with reaching these parameters were identified. As a result, D40% of 13.1 Gy, D50% of 29.6 Gy and V55Gy of 5.0% were achieved in 17, 67 and 33% of patients, respectively. For D50% of 29.6 Gy, PTV2 ≥500 cc (P=0.004) and tumor in temporal/corpus callosum/basal ganglia (P=0.009) were significant unfavorable factors. In conclusion, D50% of 29.6 Gy was most achievable. In daily clinical practice, it should be primarily attempted to achieve D50% of 29.6 Gy of the bilateral hippocampi.
Collapse
Affiliation(s)
- Shigeo Takahashi
- Department of Radiation Oncology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Masahide Anada
- Department of Radiation Oncology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Toshifumi Kinoshita
- Department of Radiation Oncology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Takamasa Nishide
- Department of Radiation Oncology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Shohei Kozai
- Department of Radiation Oncology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Toru Shibata
- Department of Radiation Oncology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| |
Collapse
|
18
|
Voshart DC, Wiedemann J, van Luijk P, Barazzuol L. Regional Responses in Radiation-Induced Normal Tissue Damage. Cancers (Basel) 2021; 13:cancers13030367. [PMID: 33498403 PMCID: PMC7864176 DOI: 10.3390/cancers13030367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Normal tissue side effects remain a major concern in radiotherapy. The improved precision of radiation dose delivery of recent technological developments in radiotherapy has the potential to reduce the radiation dose to organ regions that contribute the most to the development of side effects. This review discusses the contribution of regional variation in radiation responses in several organs. In the brain, various regions were found to contribute to radiation-induced neurocognitive dysfunction. In the parotid gland, the region containing the major ducts was found to be critical in hyposalivation. The heart and lung were each found to exhibit regional responses while also mutually affecting each other's response to radiation. Sub-structures critical for the development of side effects were identified in the pancreas and bladder. The presence of these regional responses is based on a non-uniform distribution of target cells or sub-structures critical for organ function. These characteristics are common to most organs in the body and we therefore hypothesize that regional responses in radiation-induced normal tissue damage may be a shared occurrence. Further investigations will offer new opportunities to reduce normal tissue side effects of radiotherapy using modern and high-precision technologies.
Collapse
Affiliation(s)
- Daniëlle C. Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Julia Wiedemann
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (D.C.V.); (J.W.)
- Department of Biomedical Sciences of Cells & Systems–Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Correspondence: (P.v.L.); (L.B.)
| |
Collapse
|
19
|
Gui C, Vannorsdall TD, Kleinberg LR, Assadi R, Moore JA, Hu C, Quiñones-Hinojosa A, Redmond KJ. A Prospective Cohort Study of Neural Progenitor Cell-Sparing Radiation Therapy Plus Temozolomide for Newly Diagnosed Patients With Glioblastoma. Neurosurgery 2020; 87:E31-E40. [PMID: 32497183 DOI: 10.1093/neuros/nyaa107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In treating glioblastoma, irradiation of the neural progenitor cell (NPC) niches is controversial. Lower hippocampal doses may limit neurocognitive toxicity, but higher doses to the subventricular zones (SVZ) may improve survival. OBJECTIVE To prospectively evaluate the impact of limiting radiation dose to the NPC niches on tumor progression, survival, and cognition in patients with glioblastoma. METHODS Patients with glioblastoma received resection followed by standard chemoradiation. Radiation dose to the NPC niches, including the bilateral hippocampi and SVZ, was minimized without compromising tumor coverage. The primary outcome was tumor progression in the spared NPC niches. Follow-up magnetic resonance imaging was obtained bimonthly. Neurocognitive testing was performed before treatment and at 6- and 12-mo follow-up. Cox regression evaluated predictors of overall and progression-free survival. Linear regression evaluated predictors of neurocognitive decline. RESULTS A total of 30 patients enrolled prospectively. The median age was 58 yr. Median mean doses to the hippocampi and SVZ were 49.1 and 41.8 gray (Gy) ipsilaterally, and 16.5 and 19.9 Gy contralaterally. Median times to death and tumor progression were 16.0 and 7.6 mo, and were not significantly different compared to a matched historical control. No patients experienced tumor progression in the spared NPC-containing regions. Overall survival was associated with neurocognitive function (P ≤ .03) but not dose to the NPC niches. Higher doses to the hippocampi and SVZ predicted greater decline in verbal memory (P ≤ .01). CONCLUSION In treating glioblastoma, limiting dose to the NPC niches may reduce cognitive toxicity while maintaining clinical outcomes. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Chengcheng Gui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Tracy D Vannorsdall
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ryan Assadi
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Joseph A Moore
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Chen Hu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | | | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Abstract
Increased life expectancy in brain tumour patients had led to the need for strategies that preserve and improve cognitive functioning, as many patients suffer from cognitive deficits. The tumour itself, as well as antitumor treatment including surgery, radiotherapy and chemotherapy, supportive treatment and individual patient factors are associated with cognitive problems. Here, we review the recent literature on approaches that preserve and improve cognitive functioning, including pharmacological agents and rehabilitation programs.
Collapse
|
21
|
Jaspers J, Mèndez Romero A, Hoogeman MS, van den Bent M, Wiggenraad RGJ, Taphoorn MJB, Eekers DBP, Lagerwaard FJ, Lucas Calduch AM, Baumert BG, Klein M. Evaluation of the Hippocampal Normal Tissue Complication Model in a Prospective Cohort of Low Grade Glioma Patients-An Analysis Within the EORTC 22033 Clinical Trial. Front Oncol 2019; 9:991. [PMID: 31681562 PMCID: PMC6797857 DOI: 10.3389/fonc.2019.00991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: To evaluate the performance of the hippocampal normal tissue complication model that relates dose to the bilateral hippocampus to memory impairment at 18 months post-treatment in a population of low-grade glioma (LGG) patients. Methods: LGG patients treated within the radiotherapy-only arm of the EORTC 22033-26033 trial were analyzed. Hippocampal dose parameters were calculated from the original radiotherapy plans. Difference in Rey Verbal Auditory Learning test delayed recall (AVLT-DR) performance pre-and 18 (±4) months post-treatment was compared to reference data from the Maastricht Aging study. The NTCP model published by Gondi et al. was applied to the dosimetric data and model predictions were compared to actual neurocognitive outcome. Results: A total of 29 patients met inclusion criteria. Mean dose in EQD2 Gy to the bilateral hippocampus was 39.8 Gy (95% CI 34.3–44.4 Gy), the median dose to 40% of the bilateral hippocampus was 47.2 EQD2 Gy. The model predicted a risk of memory impairment exceeding 99% in 22 patients. However, only seven patients were found to have a significant decline in AVLT-dr score. Conclusions: In this dataset of only LGG patients treated with radiotherapy the hippocampus NTCP model did not perform as expected to predict cognitive decline based on dose to 40% of the bilateral hippocampus. Caution should be taken when extrapolating this model outside of the range of dose-volume parameters in which it was developed.
Collapse
Affiliation(s)
- Jaap Jaspers
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Alejandra Mèndez Romero
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Mischa S Hoogeman
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | | | - Ruud G J Wiggenraad
- Department of Radiation Oncology, Haaglanden Medical Center, Leidschendam, Netherlands
| | | | - Danielle B P Eekers
- Department of Radiotherapy, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Medical Center, VU University Amsterdam, Amsterdam, Netherlands
| | | | - Brigitta G Baumert
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Martin Klein
- Department of Medical Psychology, University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
22
|
Ding X, Zhou J, Li X, Blas K, Liu G, Wang Y, Qin A, Chinnaiyan P, Yan D, Stevens C, Grills I, Kabolizadeh P. Improving dosimetric outcome for hippocampus and cochlea sparing whole brain radiotherapy using spot-scanning proton arc therapy. Acta Oncol 2019; 58:483-490. [PMID: 30632851 DOI: 10.1080/0284186x.2018.1555374] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This feasibility study shows that Spot-scanning Proton Arc therapy (SPArc) is able to significantly reduce the dose to the hippocampus and cochlea compared to both Volumetric Modulated Arc Photon Therapy (VMAT) and the robust optimized Intensity Modulated Proton Therapy (ro-IMPT) plans in whole brain radiotherapy. Furthermore, SPArc not only improves plan robustness but could potentially deliver a treatment as efficient as ro-IMPT when proton system's energy layer switch time is less than 1 s.
Collapse
Affiliation(s)
- Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Jun Zhou
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Kevin Blas
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Gang Liu
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China
| | - Yinan Wang
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health, Proton Beam Therapy Center, Royal Oak, MI, USA
| |
Collapse
|
23
|
Mild cognitive impairment in long-term brain tumor survivors following brain irradiation. J Neurooncol 2018; 141:235-244. [PMID: 30406339 DOI: 10.1007/s11060-018-03032-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION There is no accepted classification of cognitive impairment in cancer survivors. We assess the extent of mild cognitive impairment (MCI) syndrome in brain tumor survivors using criteria adapted from the National Institute on Aging and the Alzheimer's Association (NIA-AA). METHODS We retrospectively reviewed the cognitive data of brain tumor survivors post-radiation therapy (RT) enrolled from 2008 to 2011 in a randomized trial of donepezil versus placebo for cognitive impairment. One hundred and ninety eight adult survivors with primary or metastatic brain tumors who were ≥ 6 months post RT were recruited at 24 sites in the United States. Cognitive function was assessed at baseline, 12 and 24 weeks post-randomization. For this analysis, we used baseline data to identify MCI and possible dementia using adapted NIA-AA criteria. Cases were subtyped into four groups: amnestic MCI-single domain (aMCI-sd), amnestic MCI-multiple domain (aMCI-md), non-amnestic MCI-single domain (naMCI-sd), and non-amnestic MCI-multiple domain (naMCI-md). RESULTS One hundred and thirty one of 197 evaluable patients (66%) met criteria for MCI. Of these, 13% were classified as aMCI-sd, 58% as aMCI-md, 19% as naMCI-sd, and 10% as naMCI-md. Patients with poorer performance status, less education, lower household income and those not working outside the home were more likely to be classified as MCI. CONCLUSION Two-thirds of post-RT brain tumor survivors met NIA-AA criteria for MCI. This taxonomy may be useful when applied to brain tumor survivors because it defines cognitive phenotypes that may be differentially associated with course, treatment response, and risk factor profiles.
Collapse
|
24
|
Martinage G, Hong AM, Fay M, Thachil T, Roos D, Williams N, Lo S, Fogarty G. Quality assurance analysis of hippocampal avoidance in a melanoma whole brain radiotherapy randomized trial shows good compliance. Radiat Oncol 2018; 13:132. [PMID: 30029684 PMCID: PMC6053726 DOI: 10.1186/s13014-018-1077-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) often cause morbidity and mortality for stage IV melanoma patients. An ongoing randomised phase III trial (NCT01503827 - WBRT-Mel) evaluates the role of adjuvant whole brain radiotherapy (WBRT) following local treatment of MBM. Hippocampal avoidance during WBRT (HA-WBRT) has shown memory and neurocognitive function (NCF) preservation in the RTOG-0933 phase II study. This study assessed the quality assurance of HA-WBRT within the WBRT-Mel trial according to RTOG-0933 study criteria. METHODS Hippocampal avoidance was allowed in approved centres with intensity-modulated radiotherapy capability. Patients treated by HA-WBRT were not randomized within the WBRT arm. The RTOG 0933 contouring Atlas was used to contour hippocampi. In the trial co-ordinating centre, patients were treated with volumetric modulated arc therapy using complementary arcs; similar techniques were used at other sites. Dosimetric data were extracted retrospectively and analysed in accordance with RTOG 0933 study constraints criteria. RESULTS Among the 215 patients accrued to the WBRT-Mel study between April 2009 and September 2017, 107 were randomized to the WBRT arm, 22 were treated by HA-WBRT in 4 centers. Eighteen patients were treated in the same centre. The median age was 65 years. The commonest (91%) HA-WBRT schema was 30 Gy in 10 fractions. Prior to HA-WBRT, 10 patients had been treated by surgery alone, six by radiosurgery alone, four by surgery and radiosurgery and two exclusively by simultaneous integrated boost concurrent to HA-WBRT. Twenty patients were treated with intention to spare both hippocampi and two patients had MBM close to one hippocampus and were treated with intention to spare the contralateral hippocampus. According to RTOG-0933 study criteria, 18 patients (82%) were treated within constraints and four patients (18%) had unacceptable deviation in just one hippocampus. CONCLUSIONS This dosimetric quality assurance study shows good compliance (82%) according to RTOG-0933 study dosimetric constraints. Indeed, all patients respected RTOG hippocampal avoidance constraints on at least one hippocampus. In the futureanalysis of the WBRT-Mel trial, the NCF of patients on the observation arm, WBRT arm and with HA-WBRT arm will be compared.
Collapse
Affiliation(s)
- Geoffrey Martinage
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Centre Oscar-Lambret, Lille, France
- Mater Hospital, NSW, North Sydney, Australia
| | - Angela M Hong
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Mater Hospital, NSW, North Sydney, Australia
- GenesisCare, Radiation Oncology, Mater Hospital, NSW, North Sydney, Australia
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Mike Fay
- School of Medicine and Public Health, University of Newcastle, NSW, Callaghan, Australia
- GenesisCare, Radiation Oncology, NSW, Newcastle, Australia
| | - Thanuja Thachil
- Northern Territory Radiation Oncology, Alan Walker Cancer Care Centre, NT, Darwin, Australia
| | - Daniel Roos
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
- University of Adelaide, South Australia, Adelaide, Australia
| | - Narelle Williams
- Australia and New Zealand Melanoma Trials Group, NSW, North Sydney, Australia
| | - Serigne Lo
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Gerald Fogarty
- Melanoma Institute Australia, The University of Sydney, NSW, North Sydney, Australia.
- Mater Hospital, NSW, North Sydney, Australia.
- GenesisCare, Radiation Oncology, Mater Hospital, NSW, North Sydney, Australia.
- Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|