1
|
Wang J, Hu J, Qin D, Han D, Hu J. A multi-omics Mendelian randomization identifies putatively causal genes and DNA methylation sites for asthma. World Allergy Organ J 2024; 17:101008. [PMID: 39720783 PMCID: PMC11667005 DOI: 10.1016/j.waojou.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/02/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
Background Asthma is a global chronic respiratory disease with complex pathogenesis. While current therapies offer some relief, they often fall short in effectively managing symptoms and preventing exacerbations for numerous patients. Thus, understanding its mechanisms and discovering new drug targets remains a pressing need for better treatment. Methods Using the GEO dataset, we screened differentially expressed genes (DEGs) in asthma patients' blood. Employing Summary Data-based Mendelian Randomization (SMR) and Two-Sample Mendelian Randomization (TSMR), we pinpointed asthma causal genes, causal DNA methylation sites, and methylation sites affecting gene expression, cross validated with at least 2 large-scale GWAS from each source. We utilized colocalization for genetic associations, meta-analysis for data integration, two-step MR for methylation-gene-asthma mediation mechanism. Druggability was evaluated using Open Target, virtual screening, and docking. Results Among the 954 DEGs found in asthma patients' blood, increased expression of CEP95 (discovery, OR_SMR = 0.94, 95% CI: 0.91-0.97), RBM6 (discovery, OR_SMR = 0.97, 95% CI: 0.95-0.99), and ITPKB (discovery, OR_SMR = 0.82, 95% CI: 0.74-0.92) in the blood decreased the risk of asthma, higher levels of HOXB-AS1 (discovery, OR_SMR = 1.05, 95% CI: 1.03-1.07), ETS1 (discovery, OR_SMR = 1.62, 95% CI: 1.29-2.04), and JAK2 (discovery, OR_SMR = 1.13, 95% CI: 1.06-1.21) in the blood increased the risk of asthma. Additionally, a total of 8 methylation sites on ITPKB, ETS1, and JAK2 were identified to influence asthma. An increase in methylation at site cg16265553 raised the risk of asthma partially by suppressing ITPKB expression. Similarly, increased methylation at cg13661497 reduced the asthma risk totally by suppressing JAK2 expression. The impact of CEP95, HOXB-AS1, and RBM6 expressions on asthma was further confirmed in lung tissues. Except for HOXB-AS1, all the other genes were potential druggable targets. Conclusion Our study highlighted that specific gene expressions and methylation sites significantly influence asthma risk and revealed a potential methylation-to-gene-to-asthma mechanism. This provided pivotal evidence for future targeted functional studies and the development of preventive and treatment strategies.
Collapse
Affiliation(s)
- Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinxin Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Qin
- Research Center of Traditional Chinese Medicine Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Han
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Xin JW, Chai ZX, Jiang H, Cao HW, Chen XY, Zhang CF, Zhu Y, Zhang Q, Ji QM. Genome-wide comparison of DNA methylation patterns between yak and three cattle strains and their potential association with mRNA transcription. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:316-328. [PMID: 36148637 DOI: 10.1002/jez.b.23174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 05/11/2023]
Abstract
Yak has evolved specific adaptative mechanisms to high-altitude environment. Up to date, only a few studies reported the DNA methylation in yak. In the present study, genome-wide DNA methylome and transcriptome profiles in lung, mammary, and biceps brachii muscle tissues were compared between yak and three cattle breeds (Tibetan cattle, Sanjiang cattle, and Holstein cattle). The association between differentially expressed genes (DEGs) and differentially methylated regions (DMRs) was analyzed, and the biological functions of DEGs potentially driven by DMRs were explored by KEGG enrichment analysis. Finally, we found that yak-specific DMRs-driven DEGs were mainly involved in neuromodulation, respiration, lung development, blood pressure regulation, cardiovascular protection, energy metabolism, DNA repair, and immune functions. The higher levels of the key genes associated with these functions were observed in yak than in cattle, suggesting that DNA methylation might regulate these genes. Overall, the present study contributes basic data at the DNA methylation level to further understand the physiological metabolism in yak.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Qiu-Mei Ji
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| |
Collapse
|
3
|
Differential CpG DNA methylation of peripheral B cells, CD4 + T cells, and salivary gland tissues in IgG4-related disease. Arthritis Res Ther 2023; 25:4. [PMID: 36609529 PMCID: PMC9824958 DOI: 10.1186/s13075-022-02978-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Immunoglobulin-G4-related disease (IgG4-RD) is a distinct systemic autoimmune-mediated disease manifesting as chronic inflammation and tissue fibrosis. Since the role of DNA methylation in the pathogenesis of IgG4-RD is still unclear, we conduct this study to investigate epigenetic modifications in IgG4-RD. METHODS A genome-wide DNA methylation study was conducted with B cells, CD4+ T cells, and salivary gland tissues from IgG4-RD patients and matched controls by using the Illumina HumanMethylation 850K BeadChip. We further performed pyrosequencing and immunohistochemistry assays to validate the methylation status of some targets of interest. RESULTS We identified differentially methylated CpG sites including 44 hypomethylated and 166 hypermethylated differentially methylated probes (DMPs) in B cells and 260 hypomethylated and 112 hypermethylated DMPs in CD4+ T cells from 10 IgG4-RD patients compared with 10 healthy controls. We also identified 36945 hypomethylated and 78380 hypermethylated DMPs in salivary gland tissues of 4 IgG4-RD patients compared with 4 controls. DPM2 (cg21181453), IQCK (cg10266221), and ABCC13 (cg05699681, cg04985582) were hypermethylated and MBP (cg18455083) was hypomethylated in B cells, CD4+ T cells, and salivary gland tissues of IgG4-RD patients. We also observed the hypomethylated HLA-DQB2 in CD4+ T cells from IgG4-RD patients. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DMPs in salivary gland tissues of IgG4-RD patients revealed enrichment of pathways involved in the regulation of immune cell responses and fibrosis. CONCLUSION This is the first DNA methylation study in peripheral B cells, CD4+ T cells, and salivary gland tissues from IgG4-RD patients. Our findings highlighted the role of epigenetic modification of DNA methylation and identified several genes and pathways possibly involved in IgG4-RD pathogenesis.
Collapse
|
4
|
Wang F, Xu J, Xu SJ, Guo JJ, Wang F, Wang QW. Analysis and Identification Genetic Effect of SARS-CoV-2 Infections to Alzheimer's Disease Patients by Integrated Bioinformatics. J Alzheimers Dis 2021; 85:729-744. [PMID: 34776447 DOI: 10.3233/jad-215086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological sequelae, such as Alzheimer's disease (AD). OBJECTIVE We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention. METHODS The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions, TF-miRNA coregulatory network, and Protein-chemical Interactions. RESULTS Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified (ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds is displayed, respectively. CONCLUSION COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects can be used as adjuvant therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Fang Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Pharmaceutical College, Ningbo, China
| | - Jia Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shu-Jun Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Zhejiang, China
| | - Feiming Wang
- Cixi Institute of BioMedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Small RNA-Seq Analysis Reveals miRNA Expression of Short Distance Transportation Stress in Beef Cattle Blood. Animals (Basel) 2021; 11:ani11102850. [PMID: 34679870 PMCID: PMC8532779 DOI: 10.3390/ani11102850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In this study, three miRNA modules were identified in a cattle short-distance transportation stress model, and the turquoise module showed key miRNA sets according to their correlation with hub genes. Further, hub miRNAs were identified based on their targeting relationship with hub genes in our previous study. This finding provides the potential utility for predicting and treatment of short-distance transportation stress in beef cattle. Abstract Transportation is a crucial phase in the beef cattle industry, and the annual losses caused by beef cattle transport stress are substantial. Because of its huge economic losses, such as lower growth rate and even death, long-distance transportation stress has attracted more attention from beef production practitioners because of its huge economic losses. Compared with the long-distance transportation stress, the short-distance transportation stress was ignored for the reason of no obvious symptoms in cattle. Our previous study showed that the disorder of B cell function could be a potential health risk after short-distance transportation. However, the transcriptome details of the changes in the cattle blood after short-distance transportation and the molecular mechanisms for the regulation of the developmental process are not clearly known. In this study, a total of 10 Qinchuan cattle were used to compare the molecular characteristics of blood before and after short-distance transportation. The miRNA-seq showed that 114 differentially expressed miRNAs (DEMs) were found (40 upregulated and 74 downregulated) between two groups before and after transportation. Furthermore, more than 90% of the miRNAs with counts of more than 10 were used to construct a co-expression network by weighted correlation network analysis (WGCNA), and four independent modules were identified. According to their relationship with 30 hub genes, the turquoise module was the key module in this study. The regulator network of hub genes and miRNAs in the turquoise module was constructed by miRNAs targeting genes predicting, and the miRNAs had targeting sites within hub genes that could be identified as hub-miRNAs. Further, it showed that CD40 and ITPKB had the same targeting miRNAs (miR-339a/b), and the newly discovered hub miRNAs filled the gaps in our previous study about the relationship between hub genes in short-distance transportation stress and provided the potential utility for predicting and treatment of short-distance transportation stress in beef cattle.
Collapse
|
6
|
Li G, Petkova TD, Laritsky E, Kessler N, Baker MS, Zhu S, Waterland RA. Early postnatal overnutrition accelerates aging-associated epigenetic drift in pancreatic islets. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz015. [PMID: 31528363 PMCID: PMC6735752 DOI: 10.1093/eep/dvz015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 05/02/2023]
Abstract
Pancreatic islets of type 2 diabetes patients have altered DNA methylation, contributing to islet dysfunction and the onset of type 2 diabetes. The cause of these epigenetic alterations is largely unknown. We set out to test whether (i) islet DNA methylation would change with aging and (ii) early postnatal overnutrition would persistently alter DNA methylation. We performed genome-scale DNA methylation profiling in islets from postnatally over-nourished (suckled in a small litter) and control male mice at both postnatal day 21 and postnatal day 180. DNA methylation differences were validated using quantitative bisulfite pyrosequencing, and associations with expression were assessed by RT-PCR. We discovered that genomic regions that are hypermethylated in exocrine relative to endocrine pancreas tend to gain methylation in islets during aging (R 2 = 0.33, P < 0.0001). These methylation differences were inversely correlated with mRNA expression of genes relevant to β cell function [including Rab3b (Ras-related protein Rab-3B), Cacnb3 (voltage-dependent L-type calcium channel subunit 3), Atp2a3 (sarcoplasmic/endoplasmic reticulum calcium ATPase 3) and Ins2 (insulin 2)]. Relative to control, small litter islets showed DNA methylation differences directly after weaning and in adulthood, but few of these were present at both ages. Surprisingly, we found substantial overlap of methylated loci caused by aging and small litter feeding, suggesting that the age-associated gain of DNA methylation happened much earlier in small litter islets than control islets. Our results provide the novel insights that aging-associated DNA methylation increases reflect an epigenetic drift toward the exocrine pancreas epigenome, and that early postnatal overnutrition may accelerate this process.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Tihomira D Petkova
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Eleonora Laritsky
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Noah Kessler
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Maria S Baker
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Shaoyu Zhu
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
| | - Robert A Waterland
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Correspondence address. Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, 1100 Bates Street, Ste. 5080, Houston, TX 77030, USA. Tel: +1-713-798-0304; E-mail:
| |
Collapse
|
7
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
8
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is frequently over-expressed and functions as an oncogene in several tumor types. Biochem Pharmacol 2017; 137:1-9. [PMID: 28377279 DOI: 10.1016/j.bcp.2017.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023]
Abstract
At present targeted tumor therapy is based on inhibition of proteins or protein mutants that are up-regulated in tumor but not in corresponding normal cells. The actin bundling Inositol-trisphosphate 3-kinase A (ITPKA) belongs to such molecular targets. ITPKA is expressed in a broad range of tumor types but shows limited expression in normal cells. In lung and breast cancer expression of ITPKA is stimulated by gene body methylation which increases with increasing malignancy of these tumors but is not detectable in the corresponding normal tissues. Since ITPKA gene body methylation occurs early in tumor development, it could serve as biomarker for early detection of lung cancer. Detailed mechanistic studies revealed that down-regulation of ITPKA in lung adenocarcinoma cancers reduced both, tumor growth and metastasis. It is assumed that tumor growth is stimulated by the InsP3Kinase activity of ITPKA and metastasis by its actin bundling activity. A selective inhibitor against the InsP3Kinase activity of ITPKA has been identified but compounds inhibiting the actin bundling activity are not available yet. Since no curative therapy option for metastatic lung or breast tumors exist, therapies that block activities of ITPKA may offer new options for patients with these tumors. Thus, efforts should be made to develop clinical drugs that selectively target InsP3Kinase activity as well as actin bundling activity of ITPKA.
Collapse
|
10
|
Scoumanne A, Molina-Ortiz P, Monteyne D, Perez-Morga D, Erneux C, Schurmans S. Specific expression and function of inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) in wild type and knock-out mice. Adv Biol Regul 2016; 62:1-10. [PMID: 27036498 DOI: 10.1016/j.jbior.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
Abstract
Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is the last identified member of the inositol 1,4,5-trisphosphate 3-kinases family which phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate. Although expression and function of the two other family members ITPKA and ITPKB are rather well characterized, similar information is lacking for ITPKC. Here, we first defined the expression of Itpkc mRNA and protein in mouse tissues and cells using in situ hybridization and new antibodies. Surprisingly, we found that cells positive for ITPKC in the studied tissues express either a multicilium (tracheal and bronchial epithelia, brain ependymal cells), microvilli forming a brush border (small and large intestine, and kidney proximal tubule cells) or a flagellum (spermatozoa), suggesting a role for ITPKC either in the development or the function of these specialized cellular structures. Given this surprising expression, we then analyzed ITPKC function in multiciliated tracheal epithelial cells and sperm cells using our Itpkc knock-out mouse model. Unfortunately, no significant difference was observed between control and mutant mice for any of the parameters tested, leaving the exact in vivo function of this third Ins(1,4,5)P3 3-kinase still open.
Collapse
Affiliation(s)
- Ariane Scoumanne
- Laboratoire de Génétique Fonctionnelle, GIGA-B34, Université de Liège, avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratoire de Génétique Fonctionnelle, GIGA-B34, Université de Liège, avenue de l'Hôpital 11, 4000 Liège, Belgium
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 8 rue Adrienne Bolland, B-6041 Gosselies, Belgium
| | - Christophe Erneux
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Campus Erasme, Université Libre de Bruxelles, route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Stéphane Schurmans
- Laboratoire de Génétique Fonctionnelle, GIGA-B34, Université de Liège, avenue de l'Hôpital 11, 4000 Liège, Belgium.
| |
Collapse
|
11
|
Common variable immunodeficiency associated with microdeletion of chromosome 1q42.1-q42.3 and inositol 1,4,5-trisphosphate kinase B (ITPKB) deficiency. Clin Transl Immunology 2016; 5:e59. [PMID: 26900472 PMCID: PMC4735063 DOI: 10.1038/cti.2015.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disorder characterized by hypogammaglobulinemia and impaired specific antibody response and increased susceptibility to infections, autoimmunity and malignancies. A number of gene mutations, including ICOS, TACI and BAFF-R, and CD19, CD20, CD21, CD81, MSH5 and LRBA have been described; however, they account for approximately 20–25% of total cases of CVID. In this study, we report a patient with CVID with an intrinsic microdeletion of chromosome 1q42.1-42.3, where gene for inositol 1,3,4, trisphosphate kinase β (ITPKB) is localized. ITPKB has an important role in the development, survival and function of B cells. In this subject, the expression of ITPKB mRNA as well as ITKPB protein was significantly reduced. The sequencing of ITPKB gene revealed three variants, two of them were missense variants and third was a synonymous variant; the significance of each of them in relation to CVID is discussed. This case suggests that a deficiency of ITPKB may have a role in CVID.
Collapse
|
12
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
13
|
Stygelbout V, Leroy K, Pouillon V, Ando K, D’Amico E, Jia Y, Luo HR, Duyckaerts C, Erneux C, Schurmans S, Brion JP. Inositol trisphosphate 3-kinase B is increased in human Alzheimer brain and exacerbates mouse Alzheimer pathology. Brain 2014; 137:537-52. [DOI: 10.1093/brain/awt344] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
14
|
Pouillon V, Maréchal Y, Frippiat C, Erneux C, Schurmans S. Inositol 1,4,5-trisphosphate 3-kinase B (Itpkb) controls survival, proliferation and cytokine production in mouse peripheral T cells. Adv Biol Regul 2013; 53:39-50. [PMID: 22981169 DOI: 10.1016/j.jbior.2012.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Mice genetically-deficient for the B isoform of the inositol 1,4,5-trisphosphate 3-kinase (or Itpkb) have a severe defect in thymocytes differentiation and thus lack peripheral T cells. In order to study the functional role of Itpkb in peripheral T cells, we constructed a new mouse where a transgene encoding mouse Itpkb is specifically and transiently expressed in thymocytes of Itpkb(-)(/)(-) mice. This allows a partial rescue of mature thymocyte/T cell differentiation and thus the functional characterization of peripheral T cells lacking Itpkb. We show here that Itpkb(-)(/)(-) CD4(+) and CD8(+) peripheral T cells present important functional alterations. Indeed, an increased activated/memory phenotype as well as a decreased proliferative capacity and survival were detected in these T cells. These Itpkb-deficient peripheral T cells have also an increased capacity to secrete cytokines upon stimulation. Together, our present results define the important role of Itpkb in peripheral mature T cell fate and function in mouse, suggesting a potential role for Itpkb in autoimmunity.
Collapse
Affiliation(s)
- Valérie Pouillon
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Belgium
| | | | | | | | | |
Collapse
|
15
|
Yeter D, Deth R. ITPKC susceptibility in Kawasaki syndrome as a sensitizing factor for autoimmunity and coronary arterial wall relaxation induced by thimerosal's effects on calcium signaling via IP3. Autoimmun Rev 2012; 11:903-8. [DOI: 10.1016/j.autrev.2012.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
|