1
|
Venn-Watson S, Jensen ED. Aging-Associated Amyloid-β Plaques and Neuroinflammation in Bottlenose Dolphins ( Tursiops truncatus) and Novel Cognitive Health-Supporting Roles of Pentadecanoic Acid (C15:0). Int J Mol Sci 2025; 26:3746. [PMID: 40332352 PMCID: PMC12027839 DOI: 10.3390/ijms26083746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
There is an urgent need to identify interventions that broadly target aging-related cognitive decline and progression to Alzheimer's disease (AD). Bottlenose dolphins (Tursiops truncatus) have histologic changes similar to AD in humans, and they also develop shared age-associated co-morbidities identified as risk factors for AD in humans, including type 2 diabetes, ferroptosis, and iron overload, which can be driven by nutritional C15:0 deficiency. We hypothesized that (1) dolphins would have amyloid beta (Aβ) plaques and neuroinflammation that paralleled that of humans in relation to age-related progression, quantitative concentration, and brain region; and (2) C15:0 would have dose-dependent activities relevant to protecting cognitive health. Quantitative immunohistochemistry staining was used to assess 68 tissues from archived brains of 19 Navy dolphins to evaluate associations among amyloid beta (Aβ) plaques and neuroinflammation by brain region, sex, and age group. Further, dose-dependent C15:0 activities, using a third-party panel intended to screen for potential AD therapeutics, were evaluated. Similar to humans, dolphins had the highest Aβ plaque density variation in the hippocampus (90th percentile of 4.95 plaques/mm2), where plaque density increased with age (p = 0.05). All measured markers of neuroinflammation were detected, including the highest concentrations of activated microglia (CD68+) in the hippocampus (0.46 ± 0.38 cells/mm2). C15:0 was a dose-dependent inhibitor of two targets, fatty acid amide hydrolase (FAAH) (IC50 2.5 µM, 89% maximum inhibition at 50 µM relative to URB597) and monoamine oxidase B (MAO-B) (IC50 19.4 µM, 70% maximum inhibition at 50 µM relative to R(-)-Deprenyl). These activities have demonstrated efficacy against Aβ formation and neuroinflammation, including protection of cognitive function in the hippocampus. These findings suggest that, in addition to protecting against AD co-morbidities, C15:0 may play a distinct role in supporting cognitive health, especially at higher concentrations.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Epitracker, Inc., San Diego, CA 92106, USA
- Seraphina Therapeutics, Inc., San Diego, CA 92106, USA
| | - Eric D. Jensen
- U.S. Navy Marine Mammal Program, San Diego, CA 92152, USA
| |
Collapse
|
2
|
Meybodi SM, Rezazadeh Khabaz MJ, Vojdani A, Nasiri Z, Mazhari SA, Tabar FA, Javazm SA, Owrang M, Noori Z, Pishva MS, Badameh P, Maleki MH, Nadimi E. Bifidobacterium adolescentis prevents diabetes-induced liver injury via pyroptosis attenuation. Exp Cell Res 2025; 447:114518. [PMID: 40097086 DOI: 10.1016/j.yexcr.2025.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), along with non-alcoholic steatohepatitis (NASH), lacks definitive therapy and typically remains asymptomatic until reaching advanced stages. Lipid metabolism and inflammation management using probiotics such as Bifidobacterium adolescentis is suggested to alleviate or suppress NAFLD development. Hence, this study aims to investigate the effects of Bifidobacterium adolescentis treatment on mitigating pyroptosis, an inflammatory cell death pathway, in the liver of rats with NAFLD induced by high-fat diet (HFD) and streptozotocin (STZ) administration. METHODS Forty 8-week adult male Sprague Dawley rats were divided into four groups. Bifidobacterium adolescentis was administered for 8 and 16 weeks at 4 × 1010 CFU/day to rats fed a high-fat diet (HFD). Subsequently, the mRNA expression levels of pyroptotic-related genes including Cas1, Cas3, Cas11, NLRP3, GSDMD, IL-1β, and NF-κB were quantified in liver tissue using quantitative polymerase chain reaction (qPCR). Histopathological alterations and stereological changes in liver structure, as well as lipid profile (FBG, TG, TC, HDL, LDL), and liver indices (ALT, AST, ALP, LDH), were also evaluated across the different groups. RESULTS Bifidobacterium adolescentis administration significantly reduced the expression levels of NF-κB and pyroptotic-related genes. Additionally, this probiotic effectively reversed the adverse effects of the high-fat diet (HFD) on liver volume, Kupffer cell numbers, and hepatocyte nuclei. Furthermore, it improved the lipid profile and liver indices of rats fed with the HFD. CONCLUSION This study demonstrates that B. adolescentis supplementation prevents diabetes-induced liver injury by attenuating pyroptosis. These findings suggest that Bifidobacterium adolescentis may be a promising therapeutic approach for managing NAFLD and its associated complications, primarily by modulating key genes associated with pyroptosis and inflammation in rats fed with a high-fat diet.
Collapse
Affiliation(s)
- Seyed Mohammadmahdi Meybodi
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Andia Vojdani
- Department of Microbiology, School of Biology, University of Tehran, Tehran, Iran.
| | - Zahra Nasiri
- Department of Cellular and Molecular Biology, Faculty of Materials, Najafabad Branch, Islamic Azad University, Isfahan, Iran.
| | | | - Farideh Akhlaghi Tabar
- Department of Genetics, Faculty of Basic Science, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Sara Abdizadeh Javazm
- Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Marzieh Owrang
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Noori
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Sadat Pishva
- University of Tehran, Kish International Campus, School of Biology, Kish Island, Iran.
| | - Parisa Badameh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medical Biotechnology Department, School of Advanced, Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Hawryłkowicz V, Stasiewicz B, Korus S, Krauze W, Rachubińska K, Grochans E, Stachowska E. Associations Between Dietary Patterns and the Occurrence of Hospitalization and Gastrointestinal Disorders-A Retrospective Study of COVID-19 Patients. Nutrients 2025; 17:800. [PMID: 40077670 PMCID: PMC11901568 DOI: 10.3390/nu17050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
During the COVID-19 pandemic, dietary habits in the population changed and sometimes deviated from healthy eating patterns, such as the Mediterranean diet. Based on reports on the quality of the diet of respondents to studies conducted at the beginning of the pandemic, it could be concluded that these new dietary habits are unfavorable for a good prognosis and the course of any disease and its severity of symptoms. This study decided to confront these assumptions with the results of people who had COVID-19. Background/Objectives: This study aimed to assess the associations between dietary patterns and the occurrence of hospitalization and gastrointestinal disorders among patients diagnosed with COVID-19. Methods: This study included 550 respondents who completed a survey up to 8 months after being diagnosed with COVID-19. The survey included 62 items from the FFQ-6®, GSRS, PAC-SYM and FACT-G7 standardized questionnaires. Results: Two dietary patterns (DPs) were identified: 'Processed high fat/sugar/salt/meat/dairy/potatoes' and 'Semi-vegetarian'. Higher adherence to the 'Processed' DP was associated with higher odds of hospitalization due to COVID-19, a more severe course of the disease, and the highest intensity of gastrointestinal symptoms. Higher adherence to the 'Semi-vegetarian' DP was associated with lower odds of hospitalization due to COVID-19, a less severe course of the disease, and the lowest intensity of gastrointestinal symptoms. Conclusions: This study showed a strong harmful effect of high adherence to a processed dietary pattern on an increased incidence of hospitalization and gastrointestinal disorders among northwestern Polish adults during the COVID-19 pandemic, emphasizing the importance of a healthy diet.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (V.H.); (S.K.); (W.K.)
| | - Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland
| | - Sebastian Korus
- Department of Human Nutrition and Metabolomics, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (V.H.); (S.K.); (W.K.)
| | - Wiktoria Krauze
- Department of Human Nutrition and Metabolomics, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (V.H.); (S.K.); (W.K.)
| | - Kamila Rachubińska
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland; (K.R.); (E.G.)
| | - Elżbieta Grochans
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland; (K.R.); (E.G.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (V.H.); (S.K.); (W.K.)
| |
Collapse
|
4
|
Yan S, Liu Y, Zhang Y, Wang Y, Zheng S, Yao X, Yang Y, Tang Y, Long X, Luo F, Yang F. Integration of Fatty Acid-Targeted Metabolome and Transcriptomics Reveals the Mechanism of Chronic Environmental Microcystin-LR-Induced Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4240-4252. [PMID: 39927675 DOI: 10.1021/acs.jafc.4c07085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Microcystin-LR (MC-LR) is a toxin that causes hepatic steatosis. Our previous study found that exposure to 60 μg/L MC-LR for 9 months resulted in liver lipid accumulation, but the underlying mechanisms remain elusive. Herein, for the first time, fatty acid-targeted metabolome and RNA-seq were combined to probe the effect and mechanism of chronic (12-month) MC-LR treatment on mice lipid metabolism at environmental-related levels (1, 60, and 120 μg/L). It was found that MC-LR dose-dependently raised serum and liver lipid levels. The total cholesterol (TC) levels in the liver were significantly increased following treatment with 1 μg/L MC-LR (equivalent to 0.004 μ/L in human). Treatment with 60 and 120 μg/L MC-LR significantly elevated TC and triglyceride (TG) levels in both serum and liver. Serum fatty acid-targeted metabolome analysis demonstrated that exposure to 1, 60, and 120 μg/L MC-LR caused significant alterations in the fatty acid profile. Chronic 1, 60, and 120 μg/L MC-LR treatment significantly increased serum polyunsaturated fatty acids (PUFAs), including conjugated linoleic acid and eicosapentaenoic acid, which positively correlated with serum or liver TG levels. Chronic exposure to 120 μg/L MC-LR led to a significant decrease in the accumulation of saturated fatty acids, including citramalic acid, pentadecanoic acid, and docosanoic acid, which were negatively correlated with serum or liver lipid levels. These findings suggested that 1 μg/L MC-LR exposure caused mild lipid metabolism disruption, while 60 and 120 μg/L MC-LR treatment resulted in pronounced hepatic steatosis in mice. Transcriptome analysis revealed that chronic environmental MC-LR treatment regulated the expression of genes involved in the phosphatidylinositol 3-kinase (PI3K) complex and fatty acid metabolism. Western blotting and RT-qPCR confirmed that chronic environmental MC-LR exposure activated the PI3K/AKT/mTOR signaling pathway, the downstream of fads3 gene that participates in fatty acid desaturation was upregulated, fatty acid degradation-related genes, including acsl1, acsl4, and ehhadh were inhibited, and lipid transport-related genes, including slc27a4 and apol7a, were promoted. Thus, chronic environmental MC-LR exposure boosts hepatic steatosis. Our work indicated that the limit concentration of 1 μg/L MC-LR in human drinking water for safety needs to be discussed. The study provides the first evidence of the fatty acid profile and gene changes and gains new insights into the mechanisms of chronic environmental MC-LR treatment-induced hepatic steatosis.
Collapse
Affiliation(s)
- Sisi Yan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yaqi Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410083, China
| | - Xueqiong Yao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Department of Laboratory Animal Science, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410083, China
- Nuclear Medicine Department, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Liang M, Xiao X, Chen M, Guo Y, Han W, Min Y, Jiang X, Yu W. Artemisia capillaris Thunb. Water extract alleviates metabolic dysfunction-associated Steatotic liver disease Disease by inhibiting miR-34a-5p to activate Sirt1-mediated hepatic lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119030. [PMID: 39515682 DOI: 10.1016/j.jep.2024.119030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia capillaris Thunb. (ACT) is a plant in the Asteraceae family. Its traditional effects are to clear away dampness and heat, promote gallbladder and reduce jaundice. Traditional Chinese medicine believes that MASLD is a damp-heat syndrome. The group's previous study showed that Artemisia capillaris Thunb. Water Extract (ACTE) has an improved effect on MASLD. AIM OF THE STUDY AND METHODS In order to further understand its mechanism of action, this study established a mouse MASLD model and a HepG2 cell lipid droplet model, combined small RNA sequencing and miRNA transfection experiments, to explore the mechanism of ACTE to improve MASLD by modulating miRNA-targeted mRNA. Non-targeted metabolomics method was used to detect and analyze ACTE. RESULTS This study screened miR-34a-5p and confirmed its target mRNA-Sirtuin 1 (Sirt1). MASLD induced high expression of miR-34a-5p and low expression of Sirt1, and ACE reversed these changes. When overexpressing miR-34a-5p or knocking down Sirt1, the effect of ACE in reducing PO (palmitic acid and oleic acid complex)-induced lipid accumulation in HepG2 cells was attenuated. ACTE reduces the expression of FASN, SCD1, ACC, and SREBP-1c, promotes the expression of CPT-1 and HSL, thereby reducing lipid accumulation. CONCLUSIONS ACTE activates Sirt1 by inhibiting the expression of miR-34a-5p, thereby reducing liver lipid accumulation and improving HFD-induced MASLD. These findings highlight the potential of ACTE in reducing weight, controlling obesity, and improving lipid metabolism disorders.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Miao Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Weiting Han
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yahong Min
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory of Animal Pathogenesis and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
6
|
Sa R, Zhang F, Zhang X, Gao W, Zhang Y, Gan J, Hou S, Gui L. Effects of different Lys/Met ratios on the antioxidant capacity, tissue morphology, and fatty acid composition of subcutaneous fat in Tibetan sheep on low-protein diets: a lipidomic analysis. Front Vet Sci 2025; 11:1528331. [PMID: 39949758 PMCID: PMC11824274 DOI: 10.3389/fvets.2024.1528331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction This study employed lipidomics to investigate the effects of varying lysine (Lys)- to-methionine (Met) ratios on the antioxidant capacity, tissue morphology, and fatty acid composition of subcutaneous fat in Tibetan sheep fed a low-protein diet. Methods Ninety healthy male Tibetan sheep of similar body weight were randomly allocated into three groups. These sheep were fed a low-protein diet containing Lys/Met ratios of 1:1, 2:1, and 3:1. Ultra-High Performance Liquid Chromatography-tandem Mass Spectrometry (UHPLC-MS/MS) was employed to explore the changes in various lipid subclasses in subcutaneous adipose tissue. The expression of genes associated with adipogenesis, antioxidant capacity, and fatty acid metabolism was also examined. Results The results indicated that the 1:1 Lys/Met group exhibited significantly higher antioxidant capacity (glutathione peroxidase, GSH-Px), with more orderly adipocyte arrangement, uniform cell size, and a general increase in unsaturated fatty acid levels. Additionally, several lipid molecules associated with the phenotype (Antioxidant index and fatty acid content) were identified, namely, DG(38:3e) + Na, PE(17:1_22:2)-H, PI(17:0_20:3)-H, TG(33:0e) + NH4, Cer(d14:0_17:1) + H, and CL(81:13)-2H. Furthermore, the findings showed that the upregulation of PPARγ, FASN, FAD4, CPT1A, and GPX4 can enhance adipocyte differentiation and lipid accumulation, thereby improving metabolic function in subcutaneous adipose tissue via the regulation of lipid metabolism and oxidative defense mechanisms. Discussion In summary, this study provides a theoretical foundation for optimizing precision feeding strategies for Tibetan sheep, offering crucial data to support enhancements in production efficiency and meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
7
|
Jarmakiewicz-Czaja S, Sokal-Dembowska A, Filip R. Effects of Selected Food Additives on the Gut Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). MEDICINA (KAUNAS, LITHUANIA) 2025; 61:192. [PMID: 40005309 PMCID: PMC11857189 DOI: 10.3390/medicina61020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
The purpose of this article is to present selected food additives as disruptors of normal intestinal homeostasis with a potential impact on the development of metabolic dysfunction-associated steatotic liver disease (MASLD). A comprehensive literature search was conducted in three major electronic databases: PubMed, ScienceDirect, and Google Scholar. MASLD is a prevalent liver condition that is closely related to the global rise in obesity. Its pathogenesis is multifactorial, with genetic, environmental, and metabolic factors playing a key role. The "multiple-hit" hypothesis suggests that a Western-style diet, rich in ultra-processed foods, saturated fats, and food additives, combined with low physical activity, contributes to obesity, which promotes lipid accumulation in the liver. Recent studies underscore the role of impaired intestinal homeostasis in the development of MASLD. Food additives, including preservatives, emulsifiers, and sweeteners, affect gut health and liver function. Selected preservatives inhibit pathogenic microorganisms but disrupt the intestinal microbiota, leading to changes in intestinal permeability and liver dysfunction. Some emulsifiers and thickeners can cause inflammation and alter the gut microbiome, contributing to liver steatosis. Furthermore, the use of sweeteners such as sucralose and aspartame has been linked to changes in liver metabolism and intestinal microbial composition, which in turn promotes metabolic disorders.
Collapse
Affiliation(s)
- Sara Jarmakiewicz-Czaja
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Faculty of Health Sciences and Psychology, University of Rzeszow, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Rafał Filip
- Gastroenterology Clinic, Center for Comprehensive Treatment of Inflammatory, Bowel Disease Regional Hospital No. 2 in Rzeszow, 35-301 Rzeszow, Poland
- Department of Internal Medicine, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Ciesielski V, Legrand P, Blat S, Rioux V. New insights on pentadecanoic acid with special focus on its controversial essentiality: A mini-review. Biochimie 2024; 227:123-129. [PMID: 39395658 DOI: 10.1016/j.biochi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Pentadecanoic acid (C15:0, PDA) is an odd and minor fatty acid that has been neglected in the literature until the last decade. Indeed, as a specific fatty acid of dairy fat, PDA was only used as a biomarker of dairy fat consumption. Lately, PDA was first correlated negatively with the incidence of metabolic syndrome disorder, then its physiological effects have been investigated as a protective fatty acid. PDA supplementation has been demonstrated as negatively correlated with elevated levels of leptin, plasminogen activator inhibitor-1 and insulin, and has been shown to exhibit sensitizing insulin effects with activation of AMPK pathway. PDA also reduced the severity of metabolic dysfunction-associated steatohepatitis (MASH), notably through reduced alanine transaminase and pro-inflammatory cytokines levels. The final effect described for PDA is its ability to display anti-inflammatory properties in several pathology models. Hence, considering these multiple effects, the presence of PDA could be associated with a healthier physiological state, this raises the question of whether the presence of PDA in the body, in adequate quantities, is needed to participate to health maintenance. PDA is not synthesized in sufficient quantities endogenously, so it must be provided by the diet, mainly through dairy fat, although other types of food can also contribute to the dietary intake of PDA. Essential fatty acids are described as not being endogenously synthesized in sufficient and required quantities to maintain physiological health. Thus, PDA might gather both conditions to be described as essential, yet further investigations on both criteria are needed to enhance knowledge on this odd chain fatty acid with promising impact as potential protective supplement nutrient.
Collapse
Affiliation(s)
- Vincent Ciesielski
- Institut Agro Rennes Angers, Rennes, France; Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Philippe Legrand
- Institut Agro Rennes Angers, Rennes, France; Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Sophie Blat
- Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France
| | - Vincent Rioux
- Institut Agro Rennes Angers, Rennes, France; Institut Numecan, INRAE, INSERM, Univ Rennes, Rennes, France.
| |
Collapse
|
9
|
Wang J, Zheng S, Li Z, Tang Y, Huang Y, Wang J, Li R, Peng J. Pentadecanoic acid (C15:0, PA) induces mild maternal glucose intolerance and promotes the growth of the offspring partly through up-regulating liver PPARα and MAPK signaling pathways. Food Funct 2024; 15:11400-11414. [PMID: 39434548 DOI: 10.1039/d4fo03970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic disturbances during pregnancy, which poses a serious threat to both maternal and offspring health. Pentadecanoic acid (C15:0, PA) is one of the most common odd-chain saturated fatty acids (OCS-FAs). However, its safety and nutritional value are yet to be verified. Herein, we provide a systematic assessment of the effects of PA on maternal and progeny health and insulin sensitivity for the first time. Our results showed that consumption of 1% PA during pregnancy could increase the contents of PA and heptadecanoic acid (C17:0) in maternal plasma, fetal tissue and offspring plasma, but it had no effect on embryonic development. During pregnancy, PA treatment caused mild insulin resistance, while it had little effect on the maternal body composition. During lactation, PA treatment caused mild insulin resistance and oxidative stress. Maternal body fat deposition was also reduced, but the growth rate of the offspring was faster. It is worth noting that PA treatment decreased plasma and liver TG content and increased the antioxidant capacity of the offspring. The effect of PA on the transcription and expression genes in the liver of pregnant mice was investigated using RNA-seq. PPARα and MAPK signaling pathways, both closely related to lipolysis, inflammation, oxidative stress, and insulin resistance were significantly increased. The expression of c-JUN, ERK, JNK and P65 proteins was also significantly up-regulated. In conclusion, our results suggest that 1% PA can induce a mild decrease in the maternal glucose tolerance and lipolysis mainly by activated MAPK and PPARα signaling. Moreover, low concentrations of PA may be an effective nutrient to alleviate the oxidative stress and reduce blood lipid levels of offspring.
Collapse
Affiliation(s)
- Jun Wang
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China.
| | - Shiqi Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Ziying Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yimei Tang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junwen Wang
- Division of AOS & CDC, Faculty of Dentistry, and State Key Lab of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077 China
| | - Rui Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Jie Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| |
Collapse
|
10
|
Maćków M, Dziubyna T, Jamer T, Slivinskyi D, Pytrus T, Neubauer K, Zwolińska-Wcisło M, Stawarski A, Piotrowska E, Nowacki D. The Role of Dietary Ingredients and Herbs in the Prevention of Non-Communicable Chronic Liver Disease. Nutrients 2024; 16:3505. [PMID: 39458499 PMCID: PMC11510335 DOI: 10.3390/nu16203505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Liver diseases are among the most commonly diagnosed conditions, with the main risk factors being inappropriate lifestyles, including poor diet, excessive alcohol consumption, low physical activity and smoking, including electronic cigarettes. Non-communicable chronic liver diseases also often develop as a result of accompanying overweight and obesity, as well as type 2 diabetes. METHODS The literature on risk factors for non-communicable chronic liver diseases, which show a high strong influence on their occurrence, was analysed. RESULTS Measures to prevent non-communicable chronic liver disease include the selection of suitable food ingredients that have proven protective effects on the liver. Such ingredients include dietary fibre, probiotics, herbs, various types of polyphenols and fatty acids (omega-3). CONCLUSIONS Because of their liver-protective effects, nutritionists recommend consuming vegetables, fruits, herbs and spices that provide valuable ingredients with anti-inflammatory and anti-cancer effects. These components should be provided with food and, in the case of probiotics, supplementation appears to be important. As a preventive measure, a diet rich in these nutrients is therefore recommended, as well as one that prevents overweight and other diseases that can result in liver disease.
Collapse
Affiliation(s)
- Monika Maćków
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
- Regional Specialist Hospital in Wrocław, Research and Development Center, Kamieńskiego 73A, 51-124 Wroclaw, Poland
| | - Tomasz Dziubyna
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland;
| | - Tatiana Jamer
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Dmytro Slivinskyi
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Tomasz Pytrus
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Katarzyna Neubauer
- Department and Clinic of Gastroenterology and Hepatology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Zwolińska-Wcisło
- Unit of Clinical Dietetics, Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland;
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Jagiellonian University Medical College, M. Jakubowskiego 2, 30-688 Kraków, Poland
| | - Andrzej Stawarski
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Wrocław Medical University, M. Curie-Skłodowskiej 50/52, 50-367 Wrocław, Poland; (T.J.); (T.P.); (A.S.)
| | - Ewa Piotrowska
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
| | - Dorian Nowacki
- Department of Human Nutrition, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (M.M.); (E.P.); (D.N.)
| |
Collapse
|
11
|
Keating SE, Chawla Y, De A, George ES. Lifestyle intervention for metabolic dysfunction-associated fatty liver disease: a 24-h integrated behavior perspective. Hepatol Int 2024; 18:959-976. [PMID: 38717691 PMCID: PMC11450077 DOI: 10.1007/s12072-024-10663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The prevalence, health and socioeconomic burden of metabolic dysfunction-associated fatty liver disease (MAFLD) is growing, increasing the need for novel evidence-based lifestyle approaches. Lifestyle is the cornerstone for MAFLD management and co-existing cardiometabolic dysfunction. The aim of this review was to evaluate the evidence for lifestyle management of MAFLD, with a specific lens on 24-hour integrated behaviour and provide practical recommendations for implementation of the evidence. RESULTS Weight loss ≥ 7-10% is central to lifestyle management; however, liver and cardiometabolic benefits are attainable with improved diet quality and exercise even without weight loss. Lifestyle intervention for MAFLD should consider an integrated '24-h' approach that is cognisant of diet, physical activity/exercise, sedentary behavior, smoking, alcohol intake and sleep. Dietary management emphasises energy deficit and improved diet quality, especially the Mediterranean diet, although sociocultural adaptations to meet preferences should be considered. Increasing physical activity and reducing sedentary behavior can prevent MAFLD, with strongest evidence in MAFLD supporting regular structured moderate-vigorous aerobic exercise for 150-240 min/week. Resistance training in addition to aerobic exercise should be considered and prioritised for those who are losing body mass via diet and/or pharmacological approaches and those with sarcopenia, to minimise bone and lean mass loss. Limited evidence suggests that sleep is important for MAFLD prevention. Emerging novel approaches to diet and exercise may address some of the key barriers to behaviour change (e.g. lack of time, access to resources and social support). FUTURE DIRECTIONS Large-scale multidisciplinary trials in people with MAFLD with long-term follow-up, that can be scaled up into mainstream healthcare, are required. Future management guidelines should consider the heterogeneity of MAFLD and specialised models of care that coordinate the health workforce to manage the increased and growing MAFLD population.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Yogesh Chawla
- Kalinga Institute of Medical Sciences (KIMS), Bhubaneshwar, India
| | - Arka De
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Elena S George
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
12
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
Kwon YJ, Park YH, Lee YJ, Lim LR, Lee JW. Development and Validation of a Questionnaire to Measure Adherence to a Mediterranean-Type Diet in Youth. Nutrients 2024; 16:2754. [PMID: 39203890 PMCID: PMC11356957 DOI: 10.3390/nu16162754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Proper nutrition during childhood is crucial for preventing chronic diseases and ensuring optimal growth. This study aimed to develop and validate the Korean version of the KIDMED (K-KIDMED) questionnaire to accurately measure Mediterranean diet (MD) adherence among Korean children and adolescents. A total of 226 parents, representing their children and adolescents, completed the K-KIDMED, a 112-item food frequency questionnaire (FFQ), and a 24-h dietary recall method through an anonymous online survey. The K-KIDMED comprised 11 questions, with five excluded from the original scoring as they did not apply to the FFQ. Scores were categorized into three levels of adherence to the MD: low (1 or less), average (2-4), and good (5 or more). The agreement between total MD scores from the Korean version of the Mediterranean diet adherence screener and the FFQ was moderate (intraclass correlation coefficient = 0.455, 95% confidence interval: 0.346, 0.553). Among the 226 children and adolescents, 36.7% had low adherence to the KIDMED, 43.3% had intermediate adherence, and 19.9% had good adherence. Higher K-KIDMED scores were correlated with greater intakes of fiber, vitamin K, vitamin B6, and potassium (all p < 0.05). We developed the K-KIDMED as a valid tool to assess MD adherence in Korean children and adolescents.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, College of Medicine, Yonsei University, Yongin 16995, Republic of Korea;
| | - Young-Hwan Park
- Incheon Grand Internal Medicine Clinic, Incheon 22184, Republic of Korea;
| | - Yae-Ji Lee
- Department of Biostatistics and Computing, Yonsei University, Seoul 03722, Republic of Korea;
| | - Li-Rang Lim
- Department of Family Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Henin G, Loumaye A, Deldicque L, Leclercq IA, Lanthier N. Unlocking liver health: Can tackling myosteatosis spark remission in metabolic dysfunction-associated steatotic liver disease? Liver Int 2024; 44:1781-1796. [PMID: 38623714 DOI: 10.1111/liv.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Myosteatosis is highly prevalent in metabolic dysfunction-associated steatotic liver disease (MASLD) and could reciprocally impact liver function. Decreasing muscle fat could be indirectly hepatoprotective in MASLD. We conducted a review to identify interventions reducing myosteatosis and their impact on liver function. Non-pharmacological interventions included diet (caloric restriction or lipid enrichment), bariatric surgery and physical activity. Caloric restriction in humans achieving a mean weight loss of 3% only reduces muscle fat. Lipid-enriched diet increases liver fat in human with no impact on muscle fat, except sphingomyelin-enriched diet which reduces both lipid contents exclusively in pre-clinical studies. Bariatric surgery, hybrid training (resistance exercise and electric stimulation) or whole-body vibration in human decrease both liver and muscle fat. Physical activity impacts both phenotypes by reducing local and systemic inflammation, enhancing insulin sensitivity and modulating the expression of key mediators of the muscle-liver-adipose tissue axis. The combination of diet and physical activity acts synergistically in liver, muscle and white adipose tissue, and further decrease muscle and liver fat. Several pharmacological interventions (patchouli alcohol, KBP-089, 2,4-dinitrophenol methyl ether, adipoRon and atglistatin) and food supplementation (vitamin D or resveratrol) improve liver and muscle phenotypes in pre-clinical studies by increasing fatty acid oxidation and anti-inflammatory properties. These interventions are effective in reducing myosteatosis in MASLD while addressing the liver disease itself. This review supports that disturbances in inter-organ crosstalk are key pathophysiological mechanisms involved in MASLD and myosteatosis pathogenesis. Focusing on the skeletal muscle might offer new therapeutic strategies to treat MASLD by modulating the interactions between liver and muscles.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d'Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | - Isabelle A Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
15
|
Han F, Xu C, Hangfu X, Liu Y, Zhang Y, Sun B, Chen L. Circulating glutamine/glutamate ratio is closely associated with type 2 diabetes and its associated complications. Front Endocrinol (Lausanne) 2024; 15:1422674. [PMID: 39092282 PMCID: PMC11291334 DOI: 10.3389/fendo.2024.1422674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Objective This study aims to conduct a comprehensive investigation of the serum amino acid profiles of individuals with type 2 diabetes (T2D) and its related complications. Methods Patients with T2D were enrolled in this study. Sixteen kinds of common amino acids in the fasting circulating were assessed through liquid chromatography-mass spectrometry (LC-MS). Subsequently, correlation, regression analyses, and receiver operating characteristic (ROC) curves were conducted to assess the associations between amino acids and clinical indicators. Results Thirteen different kinds of amino acids were identified in diabetic patients, as compared with normal controls. The Glutamine/Glutamate (Gln/Glu) ratio was negatively correlated with BMI, HbA1c, serum uric acid, and the triglyceride-glucose (TyG) index, while it was positively correlated with HDL-C. Logistic regression analyses indicated that Gln/Glu was a consistent protective factor for both T2D (OR = 0.65, 95% CI 0.50-0.86) and obesity (OR = 0.79, 95% CI 0.66-0.96). The ROC curves demonstrated that Gln/Glu, proline, valine, and leucine provided effective predictions for diabetes risk, with Gln/Glu exhibiting the highest AUC [0.767 (0.678-0.856)]. In patients with T2D, Gln was the only amino acid that displayed a negative correlation with HbA1c (r = -0.228, p = 0.017). Furthermore, HOMA-β exhibited a negative correlation with Glu (r = -0.301, p = 0.003) but a positive correlation with Gln/Glu (r = 0.245, p = 0.017). Notably, logistic regression analyses revealed an inverse correlation of Gln/Glu with the risk of diabetic kidney disease (OR = 0.74, 95% CI 0.55-0.98) and a positive association with the risk of diabetic retinopathy (OR = 1.53, 95% CI 1.08-2.15). Conclusion The Gln/Glu ratio exhibited a significant association with diabetes, common metabolic parameters, and diabetic complications. These findings shed light on the pivotal role of Gln metabolism in T2D and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Beygi M, Ahi S, Zolghadri S, Stanek A. Management of Metabolic-Associated Fatty Liver Disease/Metabolic Dysfunction-Associated Steatotic Liver Disease: From Medication Therapy to Nutritional Interventions. Nutrients 2024; 16:2220. [PMID: 39064665 PMCID: PMC11279539 DOI: 10.3390/nu16142220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common long-lasting liver disease that affects millions of people around the world. It is best identified with a hepatic fat build-up that ultimately leads to inflammation and damage. The classification and nomenclature of NAFLD have long been a controversial topic, until 2020 when a group of international experts recommended substituting NAFLD with MAFLD (metabolic dysfunction-associated FLD). MAFLD was then terminologically complemented in 2023 by altering it to MASLD, i.e., metabolic dysfunction-associated steatotic liver disease (MASLD). Both the MAFLD and the MASLD terminologies comprise the metabolic element of the disorder, as they offer diagnostic benchmarks that are embedded in the metabolic risk factors that underlie the disease. MASLD (as a multisystemic disease) provides a comprehensive definition that includes a larger population of patients who are at risk of liver morbidity and mortality, as well as adverse cardiovascular and diabetes outcomes. MASLD highlights metabolic risks in lean or normal weight individuals, a factor that has not been accentuated or discussed in previous guidelines. Novel antihyperglycemic agents, anti-hyperlipidemic drugs, lifestyle modifications, nutritional interventions, and exercise therapies have not been extensively studied in MAFLD and MASLD. Nutrition plays a vital role in managing both conditions, where centralizing on a diet rich in whole vegetables, fruits, foods, healthy fats, lean proteins, and specific nutrients (e.g., omega-3 fatty acids and fibers) can improve insulin resistance and reduce inflammation. Thus, it is essential to understand the role of nutrition in managing these conditions and to work with patients to develop an individualized plan for optimal health. This review discusses prevention strategies for NAFLD/MAFLD/MASLD management, with particular attention to nutrition and lifestyle correction.
Collapse
Affiliation(s)
- Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology (IUT), Isfahan 8415683111, Iran;
| | - Salma Ahi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| |
Collapse
|
17
|
Kobayashi Y, Yatsu K, Haruna A, Kawano R, Ozawa M, Haze T, Komiya S, Suzuki S, Ohki Y, Fujiwara A, Saka S, Hirawa N, Toya Y, Tamura K. ATP2B1 gene polymorphisms associated with resistant hypertension in the Japanese population. J Clin Hypertens (Greenwich) 2024; 26:355-362. [PMID: 38430457 PMCID: PMC11007809 DOI: 10.1111/jch.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/03/2024]
Abstract
Single-nucleotide polymorphisms (SNP) of ATP2B1 gene are associated with essential hypertension but their association with resistant hypertension (RHT) remains unexplored. The authors examined the relationship between ATP2B1 SNPs and RHT by genotyping 12 SNPs in ATP2B1 gene of 1124 Japanese individuals with lifestyle-related diseases. Patients with RHT had inadequate blood pressure (BP) control using three antihypertensive drugs or used ≥4 antihypertensive drugs. Patients with controlled hypertension had BP controlled using ≤3 antihypertensive drugs. The association between each SNP and RHT was analyzed by logistic regression. The final cohort had 888 (79.0%) and 43 (3.8%) patients with controlled hypertension and RHT, respectively. Compared with patients homozygous for the minor allele of each SNP in ATP2B1, a significantly higher number of patients carrying the major allele at 10 SNPs exhibited RHT (most significant at rs1401982: 5.8% vs. 0.8%, p = .014; least significant at rs11105378: 5.7% vs. 0.9%, p = .035; most nonsignificant at rs12817819: 5.1% vs. 10%, p = .413). After multivariate adjustment for age, sex, systolic BP, and other confounders, the association remained significant for rs2681472 and rs1401982 (OR: 7.60, p < .05 and OR: 7.62, p = .049, respectively). Additionally, rs2681472 and rs1401982 were in linkage disequilibrium with rs11105378. This study identified two ATP2B1 SNPs associated with RHT in the Japanese population. rs1401982 was most closely associated with RHT, and major allele carriers of rs1401982 required significantly more antihypertensive medications. Analysis of ATP2B1 SNPs in patients with hypertension can help in early prediction of RHT and identification of high-risk patients who are more likely to require more antihypertensive medications.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Aiko Haruna
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Rina Kawano
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Tatsuya Haze
- Center for Novel and Exploratory Clinical Trials (Y‐NEXT)Yokohama City UniversityYokohamaJapan
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Shiro Komiya
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Shota Suzuki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yuki Ohki
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Akira Fujiwara
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Sanae Saka
- Department of Nephrology and HypertensionSaiseikai Yokohamashi Nanbu HospitalYokohamaJapan
| | - Nobuhito Hirawa
- Department of Nephrology and HypertensionYokohama City University Medical CenterYokohamaJapan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|