1
|
Singh D, Singh R, Akindele AJ. Therapeutic potential of nicorandil beyond anti-anginal drug: A review on current and future perspectives. Heliyon 2024; 10:e28922. [PMID: 38617945 PMCID: PMC11015415 DOI: 10.1016/j.heliyon.2024.e28922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Nicorandil (NIC) is a well-known anti-anginal agent, which has been recommended as one of the second-line treatments for chronic stable angina as justified by the European guidelines. It shows an efficacy equivalent to that of classic anti-anginal agents. NIC has also been used clinically in various cardiovascular diseases such as variant or unstable angina and reperfusion-induced damage following coronary angioplasty or thrombolysis. Different mechanisms have been involved in the protective effects of nicorandil in various diseases, including opening of adenosine triphosphate-sensitive potassium (KATP) channel and donation of nitric oxide (NO). In recent years, NIC has been found to show numerous pharmacological activities such as neuroprotective, nephroprotective, hepatoprotective, cardioprotective, and testicular protective effects, among other beneficial effects on the body. The present review dwells on the pharmacological potentials of NIC beyond its anti-anginal action.
Collapse
Affiliation(s)
- Dhirendra Singh
- M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India
| | - Randhir Singh
- Departments of Pharmacology, Central University of Punjab, Bhatinda, Punjab, India
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
2
|
Osorio-Llanes E, Castellar-López J, Rosales W, Montoya Y, Bustamante J, Zalaquett R, Bravo-Sagua R, Riquelme JA, Sánchez G, Chiong M, Lavandero S, Mendoza-Torres E. Novel Strategies to Improve the Cardioprotective Effects of Cardioplegia. Curr Cardiol Rev 2024; 20:CCR-EPUB-137763. [PMID: 38275069 PMCID: PMC11071679 DOI: 10.2174/011573403x263956231129064455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024] Open
Abstract
The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Jairo Castellar-López
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - John Bustamante
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Ricardo Zalaquett
- Department of Cardiovascular Diseases, Faculty of Medicine, Universidad Finis Terrae - Clínica Las Condes, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratorio OMEGA, INTA, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| |
Collapse
|
3
|
Zhao J, Liang D, Xie T, Qiang J, Sun Q, Yang L, Wang W. Nicorandil Exerts Anticonvulsant Effects in Pentylenetetrazol-Induced Seizures and Maximal-Electroshock-Induced Seizures by Downregulating Excitability in Hippocampal Pyramidal Neurons. Neurochem Res 2023:10.1007/s11064-023-03932-w. [PMID: 37076745 DOI: 10.1007/s11064-023-03932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
N-(2-hydroxyethyl) nicotinamide nitrate (nicorandil), a nitrate that activates adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, is generally used in the treatment of angina and offers long-term cardioprotective effects. It has been reported that several KATP channel openers can effectively alleviate the symptoms of seizure. The purpose of this study was to investigate the improvement in seizures induced by nicorandil. In this study, seizure tests were used to evaluate the effect of different doses of nicorandil by analysing seizure incidence, including minimal clonic seizure and generalised tonic-clonic seizure. We used a maximal electroshock seizure (MES) model, a metrazol maximal seizure (MMS) model and a chronic pentylenetetrazol (PTZ)-induced seizure model to evaluate the effect of nicorandil in improving seizures. Each mouse in the MES model was given an electric shock, while those in the nicorandil group received 0.5, 1, 2, 3 and 6 mg/kg of nicorandil by intraperitoneal injection, respectively. In the MMS model, the mice in the PTZ group and the nicorandil group were injected subcutaneously with PTZ (90 mg/kg), and the mice in the nicorandil group were injected intraperitoneally with 1, 3 and 5 mg/kg nicorandil, respectively. In the chronic PTZ-induced seizure model, the mice in the PTZ group and the nicorandil group were injected intraperitoneally with PTZ (40 mg/kg), and the mice in the nicorandil group were each given 1 and 3 mg/kg of PTZ at a volume of 200 nL. Brain slices containing the hippocampus were prepared, and cell-attached recording was used to record the spontaneous firing of pyramidal neurons in the hippocampal CA1 region. Nicorandil (i.p.) significantly increased both the maximum electroconvulsive protection rate in the MES model and the seizure latency in the MMS model. Nicorandil infused directly onto the hippocampal CA1 region via an implanted cannula relieved symptoms in chronic PTZ-induced seizures. The excitability of pyramidal neurons in the hippocampal CA1 region of the mice was significantly increased after both the acute and chronic administration of PTZ. To a certain extent, nicorandil reversed the increase in both firing frequency and proportion of burst spikes caused by PTZ (P < 0.05). Our results suggest that nicorandil functions by downregulating the excitability of pyramidal neurons in the hippocampal CA1 region of mice and is a potential candidate for the treatment of seizures.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Dan Liang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Tao Xie
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jing Qiang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Qian Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Lan Yang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Peng YW, Major T, Deatrick KB, Mohammed A, Jeakle M, Charpie JR. Nicorandil attenuates ventricular dysfunction and organ injury after cardiopulmonary bypass. Int J Cardiol 2022; 368:62-68. [PMID: 35987313 DOI: 10.1016/j.ijcard.2022.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Nicorandil, an adenosine triphosphate-sensitive potassium channel agonist and nitric oxide donor, is a coronary vasodilator used to treat ischemia-induced chest pain, but it's potential cardioprotective benefits during open heart surgery have not been thoroughly investigated. The study objective was to assess the impact of nicorandil on postoperative ventricular dysfunction and end-organ injury in an established experimental model of open-heart surgery with cardiopulmonary bypass (CPB) and cardioplegic arrest. We hypothesized that nicorandil would attenuate myocardial ischemia-reperfusion (IR) injury, preserve ventricular function, and reduce end-organ injury. METHODS Rabbits were cannulated for CPB, followed by 60 min of aortic cross-clamp (ACC) with cold cardioplegic arrest, and 120 min of recovery after ACC removal. Nicorandil (or normal saline vehicle) was given intravenously 5 min before ACC and continued throughout the recovery period. Left ventricular developed pressure (LVDP), systolic contractility (LV + dP/dt), and diastolic relaxation (LV -dP/dt) were continuously recorded, and blood and tissue samples were collected for measurement of oxidant stress (OS), inflammation, apoptosis, and organ injury. RESULTS Nicorandil significantly attenuated IR-induced LV dysfunction compared to saline control (R-120: LV + dP/dt: 1596 ± 397 vs. 514 ± 269 mmHg/s, p = 0.010; LV -dP/dt: -1524 ± 432 vs. -432 ± 243 mmHg/s, p < 0.001; LVDP: 55 ± 11 vs. 22 ± 5 mmHg, p = 0.046). Furthermore, nicorandil inhibited IR-induced increases in OS, inflammation, apoptosis, and organ injury. CONCLUSIONS Nicorandil exhibits myocardial protection by attenuation of IR-induced LV dysfunction associated with OS, inflammation, apoptosis, and organ injury. Nicorandil should be explored further as a potential therapeutic strategy for limiting global IR injury during open-heart surgery in humans.
Collapse
Affiliation(s)
- Yun-Wen Peng
- Division of Pediatric Cardiology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Terry Major
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Kristopher B Deatrick
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Azmath Mohammed
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mark Jeakle
- Department of Cardiac Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - John R Charpie
- Division of Pediatric Cardiology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
DEMİRHAN İ, BELGE KURUTAŞ E. Kalp İskemi-Reperfüzyonunda Vitaminlerin Rolü. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.38079/igusabder.856218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Beneficial Effects of Ivabradine on Post-Resuscitation Myocardial Dysfunction in a Porcine Model of Cardiac Arrest. Shock 2021; 53:630-636. [PMID: 31274829 PMCID: PMC7161719 DOI: 10.1097/shk.0000000000001403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Ivabradine selectively inhibits the If current, reducing the heart rate and protecting against myocardial ischemia/reperfusion injury. We investigated the effects of ivabradine on post-resuscitation myocardial function in a porcine model of cardiopulmonary resuscitation. Methods and Results: Ventricular fibrillation was induced and untreated for 8 min while defibrillation was attempted after 6 min of cardiopulmonary resuscitation in anesthetized domestic swine. Then the animals were randomized into ivabradine and placebo groups (n = 5 each). Ivabradine and saline were administered at the same volume 5 min after Return of Spontaneous Circulation, followed by continuous intravenous infusion at 0.5 mg/kg for 480 min. Hemodynamic parameters were continuously recorded. Myocardial function was assessed by echocardiography at baseline and at 60, 120, 240, 480 min and 24 h after resuscitation. The serum levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin I (cTnI) were measured by commercial enzyme-linked immunosorbent assay kits. Animals were killed 24 h after resuscitation, and all myocardial tissue was removed for histopathological analysis. The heart rate was significantly reduced from 1 h after resuscitation in the ivabradine group (all P < 0.05). The post-resuscitation mitral E/A and E/e′ velocity ratios and left ventricular ejection fraction were significantly better in the ivabradine than placebo group (P < 0.05). The serum levels of myocardial injury biomarkers (NT-proBNP, cTnI) and the myocardial biopsy scores were significantly lower in the ivabradine than placebo group (P < 0.05). Neurological deficit scores were lower in the IVA group at PR 24 h (P < 0.05). Conclusions: Ivabradine improved post-resuscitation myocardial dysfunction, myocardial injury, and post-resuscitation cerebral function, and also slowed the heart rate in this porcine model.
Collapse
|
7
|
Adenoviral.βARKct Cardiac Gene Therapy Ameliorates Cardiac Function Following Cardiopulmonary Bypass in A Swine Model. Shock 2019; 54:563-573. [PMID: 31895875 DOI: 10.1097/shk.0000000000001499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Baehr A, Klymiuk N, Kupatt C. Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models. Int J Mol Sci 2019; 20:E4749. [PMID: 31557793 PMCID: PMC6801853 DOI: 10.3390/ijms20194749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low numbers of therapies that become clinically effective. Evidently, pre-clinical research in its present form does not appear informative of the performance of treatments in the clinic and, even more relevant, it appears that there is hardly any consent about how to improve the predictive capacity of pre-clinical experiments. According to the steadily increasing relevance that pig models have gained in biomedical research in the recent past, we anticipate that research in pigs can be highly predictive for ischemia-reperfusion injury (IRI) therapies as well. Thus, we here describe the significance of pig models in IRI, give an overview about recent developments in evaluating such models by clinically relevant methods and present the latest insight into therapies applied to pigs under IRI.
Collapse
Affiliation(s)
- Andrea Baehr
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Nikolai Klymiuk
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Christian Kupatt
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
9
|
Liu B, Zhang Q, Liang Y, Zhang Y, Yuan X, Ling J, Li C. Extracorporeal membrane oxygenation mitigates myocardial injury and improves survival in porcine model of ventricular fibrillation cardiac arrest. Scand J Trauma Resusc Emerg Med 2019; 27:82. [PMID: 31462264 PMCID: PMC6714103 DOI: 10.1186/s13049-019-0653-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Despite decades of improved strategy in conventional cardiopulmonary resuscitation (CCPR), survival rates of favorable neurological outcome after cardiac arrest (CA) remains poor. It is indicated that the survival rate of successful resuscitation of extracorporeal membrane oxygenation (ECMO) is superior to that of CCPR. But the effect of ECMO in heart is unclear. We aimed to investigate whether ECMO produces cardiac protection by ameliorating post-ischemia reperfusion myocardial injury and myocardial apoptosis. METHODS After undergoing 8-min untreated ventricle fibrillation (VF) and 6-min basic life support, 20 male pigs were ultimately used in this study and randomly divided into two groups: CCPR group (n = 10) and extracorporeal CPR (ECPR) group (n = 10). Hemodynamics and blood samples were obtained at baseline and 1, 2, 4, and 6 h during resuscitation. The successfully resuscitated pigs were sacrificed at 6 h after return of spontaneous circulation (ROSC), and the hearts were removed and analyzed under electron microscopy, and immunohistochemistry, quantitative real-time polymerase chain reaction, and immunofluorescence staining assay were performed to evaluate myocardial injury and myocardial apoptosis. RESULTS There were no significant differences at basic hemodynamic status between the two groups. The survival rate of ECPR was significantly higher than CCPR group (10/10 [100%] vs. 4/10 [40%], P = 0.04). Compared to CCPR group, ECPR group exhibited a better outcome in hemodynamic function. Cardiac function was significantly impaired after ROSC in both groups, but left ventricular ejection fraction (LVEF) was significantly elevated in ECPR group than CCPR group. The expression of myocardial injury biomarkers (CK-MB, cTNI, H-FABP), endothelial injury biomarker (sP-selectin), and cardiac function biomarker (BNP) were remarkably increased after ROSC in both groups, but low levels in ECPR group than in CCPR group. Cardiomyocytes injury was attenuated in ECPR group under transmission electron microscopy (TEM). Typical apoptotic nuclei of cardiomyocytes were significantly reduced and oxidative damage were attenuated in ECPR group. CONCLUSIONS During prolonged VF-induced CA, ECPR contributes to improving hemodynamics, attenuating myocardial ischemia-reperfusion injury, ameliorating myocardial ultra structure, improving cardiac function, and elevating survival rate by preventing oxidative damage, regulating energy metabolism, inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Bo Liu
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Qiang Zhang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Yong Liang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Yun Zhang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Xiaoli Yuan
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Jiyang Ling
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Chunsheng Li
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| |
Collapse
|
10
|
Li Y, Liu H, Peng W, Song Z. Nicorandil improves clinical outcomes in patients with stable angina pectoris requiring PCI: a systematic review and meta-analysis of 14 randomized trials. Expert Rev Clin Pharmacol 2018; 11:855-865. [PMID: 30079778 DOI: 10.1080/17512433.2018.1508342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yiliang Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hai Liu
- Third Department of Cardiac Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Peng
- Department of Cardiology, The Central Hospital of Loudi Affiliated to the University of South China, Loudi, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|