1
|
Xu S, Yang N. The Role and Research Progress of Mitochondria in Sensorineural Hearing Loss. Mol Neurobiol 2025; 62:6913-6921. [PMID: 39292339 PMCID: PMC12078351 DOI: 10.1007/s12035-024-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Hearing loss is one of the most common human diseases, seriously affecting everyday lives. Mitochondria, as the energy metabolism center in cells, are also involved in regulating active oxygen metabolism and mediating the occurrence of inflammation and apoptosis. Mitochondrial defects are closely related to hearing diseases. Studies have shown that mitochondrial DNA mutations are one of the causes of hereditary hearing loss. In addition, changes in mitochondrial homeostasis are directly related to noise-induced hearing loss and presbycusis. This review mainly summarizes and discusses the effects of mitochondrial dysfunction and mitophagy on hearing loss. Subsequently, we introduce the recent research progress of targeted mitochondria therapy in the hearing system.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Brosey CA, Shen R, Tainer JA. NADH-bound AIF activates the mitochondrial CHCHD4/MIA40 chaperone by a substrate-mimicry mechanism. EMBO J 2025; 44:1220-1248. [PMID: 39806100 PMCID: PMC11832770 DOI: 10.1038/s44318-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates. NMR and X-ray scattering (SAXS) solution measurements, mutational analyses, and biochemistry show that the substrate-mimicking AIF-interaction domain shields CHCHD4's redox-sensitive active site. Disrupting this shield critically activates CHCHD4 substrate affinity and chaperone activity. Regulatory-domain sequestration by NADH-activated AIF directly stimulates chaperone binding and folding, revealing how AIF mediates CHCHD4 mitochondrial import. These results establish AIF as an integral component of the metazoan disulfide relay and point to NADH-activated dimeric AIF as an organizational import center for CHCHD4 and its substrates. Importantly, AIF regulation of CHCHD4 directly links AIF's cellular NAD(H) sensing to CHCHD4 chaperone function, suggesting a mechanism to balance tissue-specific oxidative phosphorylation (OXPHOS) capacity with NADH availability.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Zarges C, Riemer J. Oxidative protein folding in the intermembrane space of human mitochondria. FEBS Open Bio 2024; 14:1610-1626. [PMID: 38867508 PMCID: PMC11452306 DOI: 10.1002/2211-5463.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The mitochondrial intermembrane space hosts a machinery for oxidative protein folding, the mitochondrial disulfide relay. This machinery imports a large number of soluble proteins into the compartment, where they are retained through oxidative folding. Additionally, the disulfide relay enhances the stability of many proteins by forming disulfide bonds. In this review, we describe the mitochondrial disulfide relay in human cells, its components, and their coordinated collaboration in mechanistic detail. We also discuss the human pathologies associated with defects in this machinery and its protein substrates, providing a comprehensive overview of its biological importance and implications for health.
Collapse
Affiliation(s)
| | - Jan Riemer
- Institute for BiochemistryUniversity of CologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneGermany
| |
Collapse
|
4
|
Blue EE, Huang SJ, Khan A, Golden-Grant K, Boyd B, Rosenthal EA, Gillentine MA, Fleming LR, Adams DR, Wolfe L, Allworth A, Bamshad MJ, Caruana NJ, Chanprasert S, Chen J, Dargie N, Doherty D, Friederich MW, Hisama FM, Horike-Pyne M, Lee JC, Donovan TE, Hock DH, Leppig KA, Miller DE, Mirzaa G, Ranchalis J, Raskind WH, Michel CR, Reisdorph R, Schwarze U, Sheppeard S, Strohbehn S, Stroud DA, Sybert VP, Wener MH, University of Washington Center for Rare Disease Research, the Undiagnosed Diseases Network, Stergachis AB, Lam CT, Jarvik GP, Dipple KM, Van Hove JL, Glass IA. Dual diagnosis of UQCRFS1-related mitochondrial complex III deficiency and recessive GJA8-related cataracts. RARE (AMSTERDAM, NETHERLANDS) 2024; 2:100040. [PMID: 39421685 PMCID: PMC11484756 DOI: 10.1016/j.rare.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biallelic pathogenic variants in UQCRFS1 underlie a rare form of isolated mitochondrial complex III deficiency associated with lactic acidosis and a distinctive scalp alopecia previously described in two unrelated probands. Here, we describe a participant in the Undiagnosed Diseases Network (UDN) with a dual diagnosis of two autosomal recessive disorders revealed by genome sequencing: UQCRFS1-related mitochondrial complex III deficiency and GJA8-related cataracts. Both pathogenic variants have been reported before: UQCRFS1 (NM_006003.3:c.215-1 G>C, p.Val72_Thr81del10) in a case with mitochondrial complex III deficiency and GJA8 (NM 005267.5:c.736 G>T, p.Glu246*) as a somatic change in aged cornea leading to decreased junctional coupling. A multi-modal approach combining enzyme assays and cellular proteomics analysis provided clear evidence of complex III respiratory chain dysfunction and low abundance of the Rieske iron-sulfur protein, validating the pathogenic effect of the UQCRFS1 variant. This report extends the genotypic and phenotypic spectrum for these two rare disorders and highlights the utility of deep phenotyping and genomics data to achieve diagnosis and insights into rare disease.
Collapse
Affiliation(s)
- Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Samuel J. Huang
- Department of Medical Genetics, Marshfield Clinic, Marshfield, WI 54449, USA
| | - Alyna Khan
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Katie Golden-Grant
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brenna Boyd
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elisabeth A. Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Leah R. Fleming
- Department of Genetics, Saint Luke’s Genetics and Metabolic Clinic, Boise, ID 83712, USA
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Nikeisha J. Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Sirisak Chanprasert
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jingheng Chen
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Nitsuh Dargie
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Doherty
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Developmental Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Fuki M. Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Martha Horike-Pyne
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica C. Lee
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Tonia E. Donovan
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Kathleen A. Leppig
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Danny E. Miller
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ghayda Mirzaa
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wendy H. Raskind
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cole R. Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ulrike Schwarze
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sam Sheppeard
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Samuel Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David A. Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Virginia P. Sybert
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark H. Wener
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | | | - Andrew B. Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christina T. Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA
| | - Gail P. Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katrina M. Dipple
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA
| | - Johan L.K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Ian A. Glass
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597:205-223. [PMID: 36030088 DOI: 10.1002/1873-3468.14485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/26/2023]
Abstract
Compartmentalisation of eukaryotic cells enables fundamental otherwise often incompatible cellular processes. Establishment and maintenance of distinct compartments in the cell relies not only on proteins, lipids and metabolites but also on small redox molecules. In particular, small redox molecules such as glutathione, NAD(P)H and hydrogen peroxide (H2 O2 ) cooperate with protein partners in dedicated machineries to establish specific subcellular redox compartments with conditions that enable oxidative protein folding and redox signalling. Dysregulated redox homeostasis has been directly linked with a number of diseases including cancer, neurological disorders, cardiovascular diseases, obesity, metabolic diseases and ageing. In this review, we will summarise mechanisms regulating establishment and maintenance of redox homeostasis in the mitochondrial subcompartments of mammalian cells.
Collapse
Affiliation(s)
- Lianne J H C Jacobs
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
6
|
Verma AK, Sharma A, Subramaniyam N, Gandhi CR. Augmenter of liver regeneration: Mitochondrial function and steatohepatitis. J Hepatol 2022; 77:1410-1421. [PMID: 35777586 DOI: 10.1016/j.jhep.2022.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Augmenter of liver regeneration (ALR), a ubiquitous fundamental life protein, is expressed more abundantly in the liver than other organs. Expression of ALR is highest in hepatocytes, which also constitutively secrete it. ALR gene transcription is regulated by NRF2, FOXA2, SP1, HNF4α, EGR-1 and AP1/AP4. ALR's FAD-linked sulfhydryl oxidase activity is essential for protein folding in the mitochondrial intermembrane space. ALR's functions also include cytochrome c reductase and protein Fe/S maturation activities. ALR depletion from hepatocytes leads to increased oxidative stress, impaired ATP synthesis and apoptosis/necrosis. Loss of ALR's functions due to homozygous mutation causes severe mitochondrial defects and congenital progressive multiorgan failure, suggesting that individuals with one functional ALR allele might be susceptible to disorders involving compromised mitochondrial function. Genetic ablation of ALR from hepatocytes induces structural and functional mitochondrial abnormalities, dysregulation of lipid homeostasis and development of steatohepatitis. High-fat diet-fed ALR-deficient mice develop non-alcoholic steatohepatitis (NASH) and fibrosis, while hepatic and serum levels of ALR are lower than normal in human NASH and NASH-cirrhosis. Thus, ALR deficiency may be a critical predisposing factor in the pathogenesis and progression of NASH.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Nithyananthan Subramaniyam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
7
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
8
|
López-Gómez C, Cámara Y, Hirano M, Martí R. 232nd ENMC international workshop: Recommendations for treatment of mitochondrial DNA maintenance disorders. 16 - 18 June 2017, Heemskerk, The Netherlands. Neuromuscul Disord 2022; 32:609-620. [PMID: 35641351 DOI: 10.1016/j.nmd.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Michio Hirano
- Columbia University Irving Medical Center, New York, USA
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Sanchez-Marco SB, Pierre G, Sharples P, Love S, Urankar K, Hilliard T, Lunt P, Churchill A, Aungraheeta R, Dallosso A, Evans J, Williams M, Majumdar A. Severe Congenital Myopathy and Neuropathy with Congenital Cataracts due to GFER Variant: A Neuropathological Study. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1749671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe the clinical, muscle and nerve biopsy, and genetic findings in a 10-year-old girl with a profound and rapid global regression. She presented during neonatal period with hypotonia, followed by weakness in the facial, bulbar, respiratory, and neck flexor muscles. She developed bilateral cataracts at 4 months of age and started to regress. Quadriceps muscle biopsy revealed extensive fiber atrophy but sparing of some, predominantly type 1, fibers. Sural nerve biopsy showed depletion of myelinated and unmyelinated fibers; most remaining myelinated fibers were of small caliber. Neuroimaging revealed global brain atrophy. Although the investigations indicated a multisystem disorder, extensive genetic and metabolic investigations were negative. She was tracheostomy- and ventilator-dependent for most of her life. The child died at 10 years of age. Further deoxyribonucleic acid analysis undertaken via whole genome sequencing revealed a novel pathogenic GFER sequence variant consistent with the patient's clinical presentation.
Collapse
Affiliation(s)
| | - Germaine Pierre
- Department of Paediatric Metabolic Medicine, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Peta Sharples
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Seth Love
- Department of Neuropathology, North Bristol Hospital NHS Foundation Trust, Bristol, United Kingdom
| | - Kathryn Urankar
- Department of Neuropathology, North Bristol Hospital NHS Foundation Trust, Bristol, United Kingdom
| | - Tom Hilliard
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Peter Lunt
- South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Amanda Churchill
- Department of Ophthalmology, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Riyaad Aungraheeta
- South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Anthony Dallosso
- South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Julie Evans
- South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Maggie Williams
- South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom
| | - Anirban Majumdar
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| |
Collapse
|
10
|
Klyosova EY, Shkurat EA, Azarova YE, Polonikov AV. Polymorphism rs1046495 of the GFER Gene as a New Genetic Marker of Preposition to Type 2 Diabetes Mellitus. Bull Exp Biol Med 2022; 172:587-591. [PMID: 35352250 DOI: 10.1007/s10517-022-05441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 10/18/2022]
Abstract
The study involving 2830 subjects (1444 patients with type 2 diabetes mellitus and 1386 healthy controls) an association of the rs1046495 polymorphism of the GFER gene encoding FADdependent sulfhydryl oxidase with low risk of the disease in non-obese patients (OR=0.76, 95%CI 0.57-0.99, p=0.029). The protective effect of the polymorphic gene variant remained significant in individuals who consumed fresh vegetables and fruits (p=0.014), proteins (p=0.0017), and did not consume carbohydrate- and fat-reach food (p=0.0047). The association of the minor allele rs1046495-C with type 2 diabetes mellitus can be explained by its more pronounced effect on the expression of the GFER enzyme that through glutathionation maintains the ROS level for optimal functioning of complexes III and IV of the electron transport chain and promotes the formation of disulfide bonds in the CHCHD4 chaperone molecule. Impaired activity of this molecule underlies mitochondrial dysfunction, one of the key pathological changes in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- E Yu Klyosova
- Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of the Health of the Russian Federation, Kursk, Russia.
| | - E A Shkurat
- Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of the Health of the Russian Federation, Kursk, Russia
| | - Yu E Azarova
- Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of the Health of the Russian Federation, Kursk, Russia
| | - A V Polonikov
- Research Institute of Genetic and Molecular Epidemiology, Kursk State Medical University, Ministry of the Health of the Russian Federation, Kursk, Russia
| |
Collapse
|
11
|
Kabiri Y, Fuhrmann A, Becker A, Jedermann L, Eberhagen C, König AC, Silva TB, Borges F, Hauck SM, Michalke B, Knolle P, Zischka H. Mitochondrial Impairment by MitoBloCK-6 Inhibits Liver Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:725474. [PMID: 34616733 PMCID: PMC8488156 DOI: 10.3389/fcell.2021.725474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/20/2023] Open
Abstract
Augmenter of liver regeneration (ALR) is a critical multi-isoform protein with its longer isoform, located in the mitochondrial intermembrane space, being part of the mitochondrial disulfide relay system (DRS). Upregulation of ALR was observed in multiple forms of cancer, among them hepatocellular carcinoma (HCC). To shed light into ALR function in HCC, we used MitoBloCK-6 to pharmacologically inhibit ALR, resulting in profound mitochondrial impairment and cancer cell proliferation deficits. These effects were mostly reversed by supplementation with bioavailable hemin b, linking ALR function to mitochondrial iron homeostasis. Since many tumor cells are known for their increased iron demand and since increased iron levels in cancer are associated with poor clinical outcome, these results help to further advance the intricate relation between iron and mitochondrial homeostasis in liver cancer.
Collapse
Affiliation(s)
- Yaschar Kabiri
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anna Fuhrmann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anna Becker
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Luisa Jedermann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tiago Barros Silva
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
12
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
14
|
Goyal S, Tiwari S, Seth B, Tandon A, Shankar J, Sinha M, Singh SJ, Priya S, Chaturvedi RK. Bisphenol-A inhibits mitochondrial biogenesis via impairment of GFER mediated mitochondrial protein import in the rat brain hippocampus. Neurotoxicology 2021; 85:18-32. [PMID: 33878312 DOI: 10.1016/j.neuro.2021.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022]
Abstract
Mitochondrial biogenesis relies on different protein import machinery, as mitochondrial proteins are imported from the cytosol. The mitochondrial intermembrane space assembly (MIA) pathway consists of GFER/ALR and CHCHD4/Mia40, responsible for importing proteins and their oxidative folding inside the mitochondria. The MIA pathway plays an essential role in complex IV (COX IV) biogenesis via importing copper chaperone COX17, associated with the respiratory chain. BPA, an environmental toxicant, found in consumable plastics, causes neurotoxicity via impairment in mitochondrial dynamics, neurogenesis, and cognitive functions. We studied the levels of key regulatory proteins of mitochondrial import pathways and mitochondrial biogenesis after BPA exposure in the rat hippocampus. BPA caused a significant reduction in the levels of mitochondrial biogenesis proteins (PGC1α, and TFAM) and mitochondrial import protein (GFER). Immunohistochemical analysis showed reduced co-localization of NeuN with GFER, PGC-1α, and TFAM suggesting impaired mitochondrial biogenesis and protein import. BPA exposure resulted in damaged mitochondria with distorted cristae in neurons and caused a significant reduction in GFER localization inside IMS as depicted by immunogold electron microscopy. The reduced levels of GFER resulted in defective COX17 import. The translocation of cytochrome c into the cytosol and increased cleaved caspase-3 levels triggered apoptosis due to BPA toxicity. Overall, our study implicates GFER as a potential target for impaired mitochondrial protein machinery, biogenesis, and apoptosis against BPA neurotoxicity in the rat hippocampus.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, U.P, 226 028, India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Computational Toxicology Facility, CSIR-IITR, Lucknow, India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Finger Y, Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 2021; 401:749-763. [PMID: 32142475 DOI: 10.1515/hsz-2020-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The proteome of the mitochondrial intermembrane space (IMS) contains more than 100 proteins, all of which are synthesized on cytosolic ribosomes and consequently need to be imported by dedicated machineries. The mitochondrial disulfide relay is the major import machinery for soluble proteins in the IMS. Its major component, the oxidoreductase MIA40, interacts with incoming substrates, retains them in the IMS, and oxidatively folds them. After this reaction, MIA40 is reoxidized by the sulfhydryl oxidase augmenter of liver regeneration, which couples disulfide formation by this machinery to the activity of the respiratory chain. In this review, we will discuss the import of IMS proteins with a focus on recent findings showing the diversity of disulfide relay substrates, describing the cytosolic control of this import system and highlighting the physiological relevance of the disulfide relay machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Yannik Finger
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute for Biochemistry, Redox Biochemistry, University of Cologne, and Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| |
Collapse
|
17
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
18
|
Chang HC, Shapiro JS, Jiang X, Senyei G, Sato T, Geier J, Sawicki KT, Ardehali H. Augmenter of liver regeneration regulates cellular iron homeostasis by modulating mitochondrial transport of ATP-binding cassette B8. eLife 2021; 10:e65158. [PMID: 33835027 PMCID: PMC8055271 DOI: 10.7554/elife.65158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic loss of Augmenter of Liver Regeneration (ALR) results in mitochondrial myopathy with cataracts; however, the mechanism for this disorder remains unclear. Here, we demonstrate that loss of ALR, a principal component of the MIA40/ALR protein import pathway, results in impaired cytosolic Fe/S cluster biogenesis in mammalian cells. Mechanistically, MIA40/ALR facilitates the mitochondrial import of ATP-binding cassette (ABC)-B8, an inner mitochondrial membrane protein required for cytoplasmic Fe/S cluster maturation, through physical interaction with ABCB8. Downregulation of ALR impairs mitochondrial ABCB8 import, reduces cytoplasmic Fe/S cluster maturation, and increases cellular iron through the iron regulatory protein-iron response element system. Our finding thus provides a mechanistic link between MIA40/ALR import machinery and cytosolic Fe/S cluster maturation through the mitochondrial import of ABCB8, and offers a potential explanation for the pathology seen in patients with ALR mutations.
Collapse
Affiliation(s)
- Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Xinghang Jiang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Grant Senyei
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Teruki Sato
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Justin Geier
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Konrad T Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| |
Collapse
|
19
|
Lim AZ, Jones DM, Bates MGD, Schaefer AM, O'Sullivan J, Feeney C, Farrugia ME, Bourke JP, Turnbull DM, Gorman GS, McFarland R, Ng YS. Risk of cardiac manifestations in adult mitochondrial disease caused by nuclear genetic defects. Open Heart 2021. [PMCID: PMC8021886 DOI: 10.1136/openhrt-2020-001510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective Regular cardiac surveillance is advocated for patients with primary mitochondrial DNA disease. However, there is limited information to guide clinical practice in mitochondrial conditions caused by nuclear DNA defects. We sought to determine the frequency and spectrum of cardiac abnormalities identified in adult mitochondrial disease originated from the nuclear genome. Methods Adult patients with a genetically confirmed mitochondrial disease were identified and followed up at the national clinical service for mitochondrial disease in Newcastle upon Tyne, UK (January 2009 to December 2018). Case notes, molecular genetics reports, laboratory data and cardiac investigations, including serial electrocardiograms and echocardiograms, were reviewed. Results In this cohort-based observational study, we included 146 adult patients (92 women) (mean age 53.6±18.7 years, 95% CI 50.6 to 56.7) with a mean follow-up duration of 7.9±5.1 years (95% CI 7.0 to 8.8). Eleven different nuclear genotypes were identified: TWNK, POLG, RRM2B, OPA1, GFER, YARS2, TYMP, ETFDH, SDHA, TRIT1 and AGK. Cardiac abnormalities were detected in 14 patients (9.6%). Seven of these patients (4.8%) had early-onset cardiac manifestations: hypertrophic cardiomyopathy required cardiac transplantation (AGK; n=2/2), left ventricular (LV) hypertrophy and bifascicular heart block (GFER; n=2/3) and mild LV dysfunction (GFER; n=1/3, YARS2; n=1/2, TWNK; n=1/41). The remaining seven patients had acquired heart disease most likely related to conventional cardiovascular risk factors and presented later in life (14.6±12.8 vs 55.1±8.9 years, p<0.0001). Conclusions Our findings demonstrate that the risk of cardiac involvement is genotype specific, suggesting that routine cardiac screening is not indicated for most adult patients with nuclear gene-related mitochondrial disease.
Collapse
Affiliation(s)
- Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Daniel M Jones
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew G D Bates
- Department of Cardiology, James Cook University Hospital, Middlesbrough, UK
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - John O'Sullivan
- Cardiology, Freeman Hospital Cardiothoracic Centre, Newcastle upon Tyne, UK
| | - Catherine Feeney
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Maria E Farrugia
- Queen Elizabeth University Hospital, Institute of Neurological Sciences, Glasgow, UK
| | - John P Bourke
- Cardiology, Freeman Hospital Cardiothoracic Centre, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
20
|
Liaghati A, Pileggi CA, Parmar G, Patten DA, Hadzimustafic N, Cuillerier A, Menzies KJ, Burelle Y, Harper ME. Grx2 Regulates Skeletal Muscle Mitochondrial Structure and Autophagy. Front Physiol 2021; 12:604210. [PMID: 33762963 PMCID: PMC7982873 DOI: 10.3389/fphys.2021.604210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that Grx2 may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that Grx2 deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 Grx2-/- mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of Grx2-/- skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in Grx2-/- muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of tibialis anterior muscle, and decreased body weight in Grx2 deficient mice. Together, these are the first results to show that Grx2 regulates skeletal muscle mitochondrial structure, and autophagy.
Collapse
Affiliation(s)
- Ava Liaghati
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nina Hadzimustafic
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Alexanne Cuillerier
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Yan Burelle
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
22
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
23
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
24
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
25
|
Effects of Liposome and Cardiolipin on Folding and Function of Mitochondrial Erv1. Int J Mol Sci 2020; 21:ijms21249402. [PMID: 33321986 PMCID: PMC7764442 DOI: 10.3390/ijms21249402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Erv1 (EC number 1.8.3.2) is an essential mitochondrial enzyme catalyzing protein import and oxidative folding in the mitochondrial intermembrane space. Erv1 has both oxidase and cytochrome c reductase activities. While both Erv1 and cytochrome c were reported to be membrane associated in mitochondria, it is unknown how the mitochondrial membrane environment may affect the function of Erv1. Here, in this study, we used liposomes to mimic the mitochondrial membrane and investigated the effect of liposomes and cardiolipin on the folding and function of yeast Erv1. Enzyme kinetics of both the oxidase and cytochrome c reductase activity of Erv1 were studied using oxygen consumption analysis and spectroscopic methods. Our results showed that the presence of liposomes has mild impacts on Erv1 oxidase activity, but significantly inhibited the catalytic efficiency of Erv1 cytochrome c reductase activity in a cardiolipin-dependent manner. Taken together, the results of this study provide important insights into the function of Erv1 in the mitochondria, suggesting that molecular oxygen is a better substrate than cytochrome c for Erv1 in the yeast mitochondria.
Collapse
|
26
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Mitochondrial Dysfunction and Therapeutic Targets in Auditory Neuropathy. Neural Plast 2020; 2020:8843485. [PMID: 32908487 PMCID: PMC7474759 DOI: 10.1155/2020/8843485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022] Open
Abstract
Sensorineural hearing loss (SNHL) becomes an inevitable worldwide public health issue, and deafness treatment is urgently imperative; yet their current curative therapy is limited. Auditory neuropathies (AN) were proved to play a substantial role in SNHL recently, and spiral ganglion neuron (SGN) dysfunction is a dominant pathogenesis of AN. Auditory pathway is a high energy consumption system, and SGNs required sufficient mitochondria. Mitochondria are known treatment target of SNHL, but mitochondrion mechanism and pathology in SGNs are not valued. Mitochondrial dysfunction and pharmacological therapy were studied in neurodegeneration, providing new insights in mitochondrion-targeted treatment of AN. In this review, we summarized mitochondrial biological functions related to SGNs and discussed interaction between mitochondrial dysfunction and AN, as well as existing mitochondrion treatment for SNHL. Pharmaceutical exploration to protect mitochondrion dysfunction is a feasible and effective therapeutics for AN.
Collapse
|
28
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 657] [Impact Index Per Article: 131.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165746. [PMID: 32105825 DOI: 10.1016/j.bbadis.2020.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40. The redox-regulated CHCHD4/Mia40-dependent import machinery operates in the intermembrane space of the mitochondrion and controls the import of a set of nuclear-encoded cysteine-motif carrying protein substrates. In addition to their participation in the biogenesis of specific respiratory chain protein subunits, CHCHD4/Mia40 substrates are also implicated in the control of redox regulation, antioxidant response, translation, lipid homeostasis and mitochondrial ultrastructure and dynamics. Here, we discuss recent insights on the AIF/CHCHD4-dependent protein import pathway and review current data concerning the CHCHD4/Mia40 protein substrates in metazoan. Recent findings and the identification of disease-associated mutations in AIF or in specific CHCHD4/Mia40 substrates have highlighted these proteins as potential therapeutic targets in a variety of human disorders.
Collapse
|
30
|
Abstract
The POLG gene encodes the mitochondrial DNA polymerase that is responsible for replication of the mitochondrial genome. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 2% of the population carrying these mutations. POLG-related disorders comprise a continuum of overlapping phenotypes with onset from infancy to late adulthood. The six leading disorders caused by POLG mutations are Alpers-Huttenlocher syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external ophthalmoplegia; and autosomal dominant progressive external ophthalmoplegia. This Review describes the clinical features, pathophysiology, natural history and treatment of POLG-related disorders, focusing particularly on the neurological manifestations of these conditions.
Collapse
|
31
|
Nicolas E, Tricarico R, Savage M, Golemis EA, Hall MJ. Disease-Associated Genetic Variation in Human Mitochondrial Protein Import. Am J Hum Genet 2019; 104:784-801. [PMID: 31051112 PMCID: PMC6506819 DOI: 10.1016/j.ajhg.2019.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction has consequences not only for cellular energy output but also for cellular signaling pathways. Mitochondrial dysfunction, often based on inherited gene variants, plays a role in devastating human conditions such as mitochondrial neuropathies, myopathies, cardiovascular disorders, and Parkinson and Alzheimer diseases. Of the proteins essential for mitochondrial function, more than 98% are encoded in the cell nucleus, translated in the cytoplasm, sorted based on the presence of encoded mitochondrial targeting sequences (MTSs), and imported to specific mitochondrial sub-compartments based on the integrated activity of a series of mitochondrial translocases, proteinases, and chaperones. This import process is typically dynamic; as cellular homeostasis is coordinated through communication between the mitochondria and the nucleus, many of the adaptive responses to stress depend on modulation of mitochondrial import. We here describe an emerging class of disease-linked gene variants that are found to impact the mitochondrial import machinery itself or to affect the proteins during their import into mitochondria. As a whole, this class of rare defects highlights the importance of correct trafficking of mitochondrial proteins in the cell and the potential implications of failed targeting on metabolism and energy production. The existence of this variant class could have importance beyond rare neuromuscular disorders, given an increasing body of evidence suggesting that aberrant mitochondrial function may impact cancer risk and therapeutic response.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michelle Savage
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
32
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
33
|
Augmenter of liver regeneration: Essential for growth and beyond. Cytokine Growth Factor Rev 2018; 45:65-80. [PMID: 30579845 DOI: 10.1016/j.cytogfr.2018.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
Liver regeneration is a well-orchestrated process that is triggered by tissue loss due to trauma or surgical resection and by hepatocellular death induced by toxins or viral infections. Due to the central role of the liver for body homeostasis, intensive research was conducted to identify factors that might contribute to hepatic growth and regeneration. Using a model of partial hepatectomy several factors including cytokines and growth factors that regulate this process were discovered. Among them, a protein was identified to specifically support liver regeneration and therefore was named ALR (Augmenter of Liver Regeneration). ALR protein is encoded by GFER (growth factor erv1-like) gene and can be regulated by various stimuli. ALR is expressed in different tissues in three isoforms which are associated with multiple functions: The long forms of ALR were found in the inner-mitochondrial space (IMS) and the cytosol. Mitochondrial ALR (23 kDa) was shown to cooperate with Mia40 to insure adequate protein folding during import into IMS. On the other hand short form ALR, located mainly in the cytosol, was attributed with anti-apoptotic and anti-oxidative properties as well as its inflammation and metabolism modulating effects. Although a considerable amount of work has been devoted to summarizing the knowledge on ALR, an investigation of ALR expression in different organs (location, subcellular localization) as well as delineation between the isoforms and function of ALR is still missing. This review provides a comprehensive evaluation of ALR structure and expression of different ALR isoforms. Furthermore, we highlight the functional role of endogenously expressed and exogenously applied ALR, as well as an analysis of the clinical importance of ALR, with emphasis on liver disease and in vivo models, as well as the consequences of mutations in the GFER gene.
Collapse
|
34
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
35
|
Reyes A, Melchionda L, Burlina A, Robinson AJ, Ghezzi D, Zeviani M. Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions. EMBO Mol Med 2018; 10:e8698. [PMID: 30190335 PMCID: PMC6180300 DOI: 10.15252/emmm.201708698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023] Open
Abstract
TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Laura Melchionda
- Unit of Molecular Neurogenetics, Foundation Carlo Besta Neurological Institute-IRCCS, Milan, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital Padova, Padova, Italy
| | - Alan J Robinson
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation Carlo Besta Neurological Institute-IRCCS, Milan, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Slone J, Peng Y, Chamberlin A, Harris B, Kaylor J, McDonald MT, Lemmon M, El-Dairi MA, Tchapyjnikov D, Gonzalez-Krellwitz LA, Sellars EA, McConkie-Rosell A, Reinholdt LG, Huang T. Biallelic mutations in FDXR cause neurodegeneration associated with inflammation. J Hum Genet 2018; 63:1211-1222. [PMID: 30250212 DOI: 10.1038/s10038-018-0515-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunction lies behind many neurodegenerative disorders, owing largely to the intense energy requirements of most neurons. Such mitochondrial dysfunction may work through a variety of mechanisms, from direct disruption of the electron transport chain to abnormal mitochondrial biogenesis. Recently, we have identified biallelic mutations in the mitochondrial flavoprotein "ferredoxin reductase" (FDXR) gene as a novel cause of mitochondriopathy, peripheral neuropathy, and optic atrophy. In this report, we expand upon those results by describing two new cases of disease-causing FDXR variants in patients with variable severity of phenotypes, including evidence of an inflammatory response in brain autopsy. To investigate the underlying pathogenesis, we examined neurodegeneration in a mouse model. We found that Fdxr mutant mouse brain tissues share pathological changes similar to those seen in patient autopsy material, including increased astrocytes. Furthermore, we show that these abnormalities are associated with increased levels of markers for both neurodegeneration and gliosis, with the latter implying inflammation as a major factor in the pathology of Fdxr mutations. These data provide further insight into the pathogenic mechanism of FDXR-mediated central neuropathy, and suggest an avenue for mechanistic studies that will ultimately inform treatment.
Collapse
Affiliation(s)
- Jesse Slone
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH, USA, 45229
| | - Yanyan Peng
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH, USA, 45229
| | | | | | - Julie Kaylor
- University of Arkansas for Medical Sciences, Section of Genetics and Metabolism, 1 Children's Way, Little Rock, AR, USA, 72202
| | - Marie T McDonald
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA, 27710
| | - Monica Lemmon
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA, 27710
| | | | - Dmitry Tchapyjnikov
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA, 27710
| | | | - Elizabeth A Sellars
- University of Arkansas for Medical Sciences, Section of Genetics and Metabolism, 1 Children's Way, Little Rock, AR, USA, 72202
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA, 27710
| | | | - Taosheng Huang
- Division of Human Genetics, Children's Hospital Medical Center, Cincinnati, OH, USA, 45229. .,Human Aging Research Institute, Nanchang University, Nanchang, China.
| |
Collapse
|
38
|
Erdogan AJ, Ali M, Habich M, Salscheider SL, Schu L, Petrungaro C, Thomas LW, Ashcroft M, Leichert LI, Roma LP, Riemer J. The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo. Redox Biol 2018; 17:200-206. [PMID: 29704824 PMCID: PMC6007816 DOI: 10.1016/j.redox.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022] Open
Abstract
Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity. We found that under basal conditions, endogenous CHCHD4 redox state in cultured cells and mouse tissues was predominantly oxidized, however, degrees of oxidation in different tissues varied from 70% to 90% oxidized. To test whether differences in the ratio between CHCHD4 and ALR might explain tissue-specific differences in the CHCHD4 redox state, we determined the molar ratio of both proteins in different mouse tissues. Surprisingly, ALR is superstoichiometric over CHCHD4 in most tissues. However, the levels of CHCHD4 and the ratio of ALR over CHCHD4 appear to correlate only weakly with the redox state, and although ALR is present in superstoichiometric amounts, it does not lead to fully oxidized CHCHD4.
Collapse
Affiliation(s)
- Alican J Erdogan
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Muna Ali
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany; Department of Biology, Cellular Biochemistry, University of Kaiserslautern, Erwin-Schroedinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Markus Habich
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Silja L Salscheider
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Laura Schu
- Department of Biology, Cellular Biochemistry, University of Kaiserslautern, Erwin-Schroedinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Carmelina Petrungaro
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, 44797 Bochum, Germany
| | - Leticia Prates Roma
- Biophysics Department, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Saar, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany.
| |
Collapse
|
39
|
Gupta P, Venugopal SK. Augmenter of liver regeneration: A key protein in liver regeneration and pathophysiology. Hepatol Res 2018; 48:587-596. [PMID: 29633440 DOI: 10.1111/hepr.13077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/22/2022]
Abstract
Liver is constantly exposed to pathogens, viruses, chemicals, and toxins, and several of them cause injury, leading to the loss of liver mass and sometimes resulting in cirrhosis and cancer. Under physiological conditions, liver can regenerate if the loss of cells is less than the proliferation of hepatocytes. If the loss is more than the proliferation, the radical treatment available is liver transplantation. Due to this reason, the search for an alternative therapeutic agent has been the focus of liver research. Liver regeneration is regulated by several growth factors; one of the key factors is augmenter of liver regeneration (ALR). Involvement of ALR has been reported in crucial processes such as oxidative phosphorylation, maintenance of mitochondria and mitochondrial biogenesis, and regulation of autophagy and cell proliferation. Augmenter of liver regeneration has been observed to be involved in liver regeneration by not only overcoming cell cycle inhibition but by maintaining the stem cell pool as well. These observations have created curiosity regarding the possible role of ALR in maintenance of liver health. Thus, this review brings a concise presentation of the work done in areas exploring the role of ALR in normal liver physiology and in liver health maintenance by fighting liver diseases, such as liver failure, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, viral infections, cirrhosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | | |
Collapse
|
40
|
Clinical and genetic aspects of defects in the mitochondrial iron-sulfur cluster synthesis pathway. J Biol Inorg Chem 2018; 23:495-506. [PMID: 29623423 PMCID: PMC6006192 DOI: 10.1007/s00775-018-1550-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Iron-sulfur clusters are evolutionarily conserved biological structures which play an important role as cofactor for multiple enzymes in eukaryotic cells. The biosynthesis pathways of the iron-sulfur clusters are located in the mitochondria and in the cytosol. The mitochondrial iron-sulfur cluster biosynthesis pathway (ISC) can be divided into at least twenty enzymatic steps. Since the description of frataxin deficiency as the cause of Friedreich's ataxia, multiple other deficiencies in ISC biosynthesis pathway have been reported. In this paper, an overview is given of the clinical, biochemical and genetic aspects reported in humans affected by a defect in iron-sulfur cluster biosynthesis.
Collapse
|
41
|
van Diemen CC, Kerstjens-Frederikse WS, Bergman KA, de Koning TJ, Sikkema-Raddatz B, van der Velde JK, Abbott KM, Herkert JC, Löhner K, Rump P, Meems-Veldhuis MT, Neerincx PBT, Jongbloed JDH, van Ravenswaaij-Arts CM, Swertz MA, Sinke RJ, van Langen IM, Wijmenga C. Rapid Targeted Genomics in Critically Ill Newborns. Pediatrics 2017; 140:peds.2016-2854. [PMID: 28939701 DOI: 10.1542/peds.2016-2854] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rapid diagnostic whole-genome sequencing has been explored in critically ill newborns, hoping to improve their clinical care and replace time-consuming and/or invasive diagnostic testing. A previous retrospective study in a research setting showed promising results with diagnoses in 57%, but patients were highly selected for known and likely Mendelian disorders. The aim of our prospective study was to assess the speed and yield of rapid targeted genomic diagnostics for clinical application. METHODS We included 23 critically ill children younger than 12 months in ICUs over a period of 2 years. A quick diagnosis could not be made after routine clinical evaluation and diagnostics. Targeted analysis of 3426 known disease genes was performed by using whole-genome sequencing data. We measured diagnostic yield, turnaround times, and clinical consequences. RESULTS A genetic diagnosis was obtained in 7 patients (30%), with a median turnaround time of 12 days (ranging from 5 to 23 days). We identified compound heterozygous mutations in the EPG5 gene (Vici syndrome), the RMND1 gene (combined oxidative phosphorylation deficiency-11), and the EIF2B5 gene (vanishing white matter), and homozygous mutations in the KLHL41 gene (nemaline myopathy), the GFER gene (progressive mitochondrial myopathy), and the GLB1 gene (GM1-gangliosidosis). In addition, a 1p36.33p36.32 microdeletion was detected in a child with cardiomyopathy. CONCLUSIONS Rapid targeted genomics combined with copy number variant detection adds important value in the neonatal and pediatric intensive care setting. It led to a fast diagnosis in 30% of critically ill children for whom the routine clinical workup was unsuccessful.
Collapse
Affiliation(s)
| | | | - Klasien A Bergman
- Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Tom J de Koning
- Department of Genetics, University of Groningen; and.,Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | | | | | - Patrick Rump
- Department of Genetics, University of Groningen; and
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease.
Collapse
Affiliation(s)
- Russell P Saneto
- Seattle Children's Hospital/University of Washington, Seattle, WA, United States.
| |
Collapse
|
43
|
|
44
|
Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol 2017; 76:142-153. [PMID: 28765093 DOI: 10.1016/j.semcdb.2017.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura F Fielden
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
45
|
Protein trafficking in the mitochondrial intermembrane space: mechanisms and links to human disease. Biochem J 2017; 474:2533-2545. [PMID: 28701417 PMCID: PMC5509380 DOI: 10.1042/bcj20160627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria fulfill a diverse range of functions in cells including oxygen metabolism, homeostasis of inorganic ions and execution of apoptosis. Biogenesis of mitochondria relies on protein import pathways that are ensured by dedicated multiprotein translocase complexes localized in all sub-compartments of these organelles. The key components and pathways involved in protein targeting and assembly have been characterized in great detail over the last three decades. This includes the oxidative folding machinery in the intermembrane space, which contributes to the redox-dependent control of proteostasis. Here, we focus on several components of this system and discuss recent evidence suggesting links to human proteopathy.
Collapse
|
46
|
Viscomi C, Zeviani M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 2017; 40:587-599. [PMID: 28324239 PMCID: PMC5500664 DOI: 10.1007/s10545-017-0027-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/02/2023]
Abstract
A large group of mitochondrial disorders, ranging from early-onset pediatric encephalopathic syndromes to late-onset myopathy with chronic progressive external ophthalmoplegia (CPEOs), are inherited as Mendelian disorders characterized by disturbed mitochondrial DNA (mtDNA) maintenance. These errors of nuclear-mitochondrial intergenomic signaling may lead to mtDNA depletion, accumulation of mtDNA multiple deletions, or both, in critical tissues. The genes involved encode proteins belonging to at least three pathways: mtDNA replication and maintenance, nucleotide supply and balance, and mitochondrial dynamics and quality control. In most cases, allelic mutations in these genes may lead to profoundly different phenotypes associated with either mtDNA depletion or multiple deletions.
Collapse
Affiliation(s)
- Carlo Viscomi
- MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
47
|
Comparative analysis of microRNA and mRNA expression profiles in cells and exosomes under toluene exposure. Toxicol In Vitro 2017; 41:92-101. [DOI: 10.1016/j.tiv.2017.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/26/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
|
48
|
Thomas LW, Staples O, Turmaine M, Ashcroft M. CHCHD4 Regulates Intracellular Oxygenation and Perinuclear Distribution of Mitochondria. Front Oncol 2017; 7:71. [PMID: 28497026 PMCID: PMC5406405 DOI: 10.3389/fonc.2017.00071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is a characteristic of the tumor microenvironment and is known to contribute to tumor progression and treatment resistance. Hypoxia-inducible factor (HIF) dimeric transcription factors control the cellular response to reduced oxygenation by regulating the expression of genes involved in metabolic adaptation, cell motility, and survival. Alterations in mitochondrial metabolism are not only a downstream consequence of HIF-signaling but mitochondria reciprocally regulate HIF signaling through multiple means, including oxygen consumption, metabolic intermediates, and reactive oxygen species generation. CHCHD4 is a redox-sensitive mitochondrial protein, which we previously identified and showed to be a novel regulator of HIF and hypoxia responses in tumors. Elevated expression of CHCHD4 in human tumors correlates with the hypoxia gene signature, disease progression, and poor patient survival. Here, we show that either long-term (72 h) exposure to hypoxia (1% O2) or elevated expression of CHCHD4 in tumor cells in normoxia leads to perinuclear accumulation of mitochondria, which is dependent on the expression of HIF-1α. Furthermore, we show that CHCHD4 is required for perinuclear localization of mitochondria and HIF activation in response to long-term hypoxia. Mutation of the functionally important highly conserved cysteines within the Cys-Pro-Cys motif of CHCHD4 or inhibition of complex IV activity (by sodium azide) redistributes mitochondria from the perinuclear region toward the periphery of the cell and blocks HIF activation. Finally, we show that CHCHD4-mediated perinuclear localization of mitochondria is associated with increased intracellular hypoxia within the perinuclear region and constitutive basal HIF activation in normoxia. Our study demonstrates that the intracellular distribution of the mitochondrial network is an important feature of the cellular response to hypoxia, contributing to hypoxic signaling via HIF activation and regulated by way of the cross talk between CHCHD4 and HIF-1α.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Oliver Staples
- Centre for Cell Signalling and Molecular Genetics, Division of Medicine, University College London, London, UK
| | - Mark Turmaine
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
49
|
Nambot S, Gavrilov D, Thevenon J, Bruel A, Bainbridge M, Rio M, Goizet C, Rötig A, Jaeken J, Niu N, Xia F, Vital A, Houcinat N, Mochel F, Kuentz P, Lehalle D, Duffourd Y, Rivière J, Thauvin-Robinet C, Beaudet A, Faivre L. Further delineation of a rare recessive encephalomyopathy linked to mutations in GFER thanks to data sharing of whole exome sequencing data. Clin Genet 2017; 92:188-198. [DOI: 10.1111/cge.12985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- S. Nambot
- Centre de Génétique et Centre de référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants; Centre Hospitalier Universitaire de Dijon; Dijon France
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie; Centre Hospitalier Universitaire de Dijon; Dijon France
| | - D. Gavrilov
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology; Mayo Clinic College of Medicine; Rochester Minnesota
- Department of Genetics and Genomics; Mayo Clinic College of Medicine; Rochester Minnesota
| | - J. Thevenon
- Centre de Génétique et Centre de référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants; Centre Hospitalier Universitaire de Dijon; Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD); Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté; Dijon France
- Génétique des Anomalies du Développement; Université de Bourgogne; Dijon France
| | - A.L. Bruel
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie; Centre Hospitalier Universitaire de Dijon; Dijon France
- Génétique des Anomalies du Développement; Université de Bourgogne; Dijon France
| | - M. Bainbridge
- Human Genome Sequencing Center; Baylor College of Medicine; Houston Texas
| | - M. Rio
- Service de Génétique Médicale; Hôpital Necker Enfants Malades; Paris France
| | - C. Goizet
- Service de Génétique Médicale; Centre Hospitalier Universitaire de Bordeaux-GH Pellegrin; Bordeaux France
| | - A. Rötig
- Laboratoire de Génétique Moléculaire, Institut de Recherche Necker Enfants Malades; Hôpital Necker Enfants Malades; Paris France
| | - J. Jaeken
- Center for Metabolic Diseases; University Hospital Gasthuisberg; Leuven Belgium
| | - N. Niu
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - F. Xia
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - A. Vital
- Service de Pathologie, Pôle Biologie et Pathologie; Centre Hospitalier Universitaire de Bordeaux-GH Pellegrin; Bordeaux France
| | - N. Houcinat
- Centre de Génétique et Centre de référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants; Centre Hospitalier Universitaire de Dijon; Dijon France
| | - F. Mochel
- Service de Génétique médicale; Centre Hospitalier Universitaire La Pitié Salpêtrière-Charles Foix; Paris France
| | - P. Kuentz
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie; Centre Hospitalier Universitaire de Dijon; Dijon France
| | - D. Lehalle
- Centre de Génétique et Centre de référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants; Centre Hospitalier Universitaire de Dijon; Dijon France
| | - Y. Duffourd
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD); Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté; Dijon France
- Génétique des Anomalies du Développement; Université de Bourgogne; Dijon France
| | - J.B. Rivière
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie; Centre Hospitalier Universitaire de Dijon; Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD); Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté; Dijon France
- Génétique des Anomalies du Développement; Université de Bourgogne; Dijon France
| | - C. Thauvin-Robinet
- Centre de Génétique et Centre de référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants; Centre Hospitalier Universitaire de Dijon; Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD); Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté; Dijon France
- Génétique des Anomalies du Développement; Université de Bourgogne; Dijon France
| | - A.L. Beaudet
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - L. Faivre
- Centre de Génétique et Centre de référence «Anomalies du Développement et Syndromes Malformatifs», Hôpital d'Enfants; Centre Hospitalier Universitaire de Dijon; Dijon France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD); Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté; Dijon France
- Génétique des Anomalies du Développement; Université de Bourgogne; Dijon France
| |
Collapse
|
50
|
Ivanov S, Semin M, Lagunin A, Filimonov D, Poroikov V. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions. Mol Inform 2017; 36. [PMID: 28145637 DOI: 10.1002/minf.201600142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research.
Collapse
Affiliation(s)
- Sergey Ivanov
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia.,Pirogov Russian National Research Medical University, Medico-Biological Faculty 1, Ostrovitianova str., 117997, Moscow, Russia
| | - Maxim Semin
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia.,Pirogov Russian National Research Medical University, Medico-Biological Faculty 1, Ostrovitianova str., 117997, Moscow, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia.,Pirogov Russian National Research Medical University, Medico-Biological Faculty 1, Ostrovitianova str., 117997, Moscow, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry 10 building 8, Pogodinskaya str., 119121, Moscow, Russia
| |
Collapse
|