1
|
Li C, Wang K, Fang J, Qin L, Ling Q, Yu Y. TRIM25 activates Wnt/β-catenin signalling by destabilising MAT2A mRNA to drive thoracic aortic aneurysm development. Hum Mol Genet 2024; 33:1890-1899. [PMID: 39216871 DOI: 10.1093/hmg/ddae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
This study explored the roles of methionine adenosyltransferase 2A (MAT2A) and tripartite motif containing 25 (TRIM25) in the progression of thoracic aortic aneurysm (TAA). The TAA model was established based on the β-aminopropionitrile method. The effects of MAT2A on thoracic aortic lesions and molecular levels were analyzed by several pathological staining assays (hematoxylin-eosin, Verhoeff-Van Gieson, TUNEL) and molecular biology experiments (qRT-PCR, Western blot). Angiotensin II (Ang-II) was used to induce injury in vascular smooth muscle cells (VSMCs) in vitro. The effects of MAT2A, shMAT2A, shTRIM25 and/or Wnt inhibitor (IWR-1) on the viability, apoptosis and protein expressions of VSMCs were examined by CCK-8, Annexin V-FITC/PI and Western blot assays. In TAA mice, overexpression of MAT2A alleviated thoracic aortic injury, inhibited the aberrant expressions of aortic contractile proteins and dedifferentiation markers, and blocked the activation of Wnt/β-catenin pathway. In Ang-II-induced VSMCs, up-regulation of MAT2A increased cellular activity and repressed the expression of β-catenin protein. TRIM25 knockdown promoted activity of VSMCs, inhibited apoptosis, and blocked the Wnt/β-catenin pathway activation by binding to MAT2A. IWR-1 partially counteracted the regulatory effects of shMAT2A. Collectively, TRIM25 destabilises the mRNA of MAT2A to activate Wnt/β-catenin signaling and ultimately exacerbate TAA injury.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Mice
- Wnt Signaling Pathway/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Myocytes, Smooth Muscle/metabolism
- Apoptosis/genetics
- beta Catenin/metabolism
- beta Catenin/genetics
- Humans
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Disease Models, Animal
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Angiotensin II/pharmacology
Collapse
Affiliation(s)
- Chaojie Li
- Department of Cardiothoracic Surgery, People's Hospital of Xiangzhou District, No. 178 Lanpu Road, Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Kan Wang
- Department of Cardiothoracic Surgery, the Second Clinical College, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
- Applicants for Equivalent PhD, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Jian Fang
- Department of Anesthesiology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, No. 208 Yuehua Road, Zhuhai, Guangdong, 519000, China
| | - Lin Qin
- Department of Ophthalmology, the Second Clinical College, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Qiong Ling
- Department of Anesthesiology, the Second Clinical College, Guangzhou University of Chinese Medicine, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong, 510120, China
| | - Yu Yu
- Department of Health Examination, Zhuhai Women and Children's Hospital, No. 543 Ningxi Road, Zhuhai City, Guangdong, 519000, China
| |
Collapse
|
2
|
Ghazy T, Elzanaty N, Lackner HK, Irqsusi M, Rastan AJ, Behrendt CA, Mahlmann A. Prevalence and Influence of Genetic Variants on Follow-Up Results in Patients Surviving Thoracic Aortic Therapy. J Clin Med 2024; 13:5254. [PMID: 39274466 PMCID: PMC11396620 DOI: 10.3390/jcm13175254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objective: To investigate the prevalence and effects of genetic variants (GVs) in survivors of thoracic aortic dissection/aneurysm repair. Methods: Patients aged 18-80 years who survived follow-up after cardiosurgical or endovascular repair of thoracic aortic aneurysm or dissection at a single tertiary center between 2008 and 2019 and underwent genetic testing were enrolled. The exclusion criteria were age >60 years, no offspring, and inflammatory- or trauma-related pathogenesis. Follow-up entailed computed tomography-angiography at 3 and 9 months and annually thereafter. All patients underwent genetic analyses of nine genes using next-generation sequencing. In cases of specific suspicion, the analysis was expanded to include 32 genes. Results: The study included 95 patients. The follow-up period was 3 ± 2.5 years. GVs were detected in 40% of patients. Correlation analysis according to primary diagnosis showed no significant correlation in disease persistence, progression, or in reintervention rates in aneurysm patients and a correlation of disease persistence with genetic variants according to variant class in dissection patients (p = 0.037). Correlation analysis according to follow-up CD finding revealed that patients with detected dissection, irrespective of original pathology, showed a strong correlation with genetic variants regarding disease progression and reintervention rates (p = 0.012 and p = 0.047, respectively). Conclusions: The prevalence of VUS is high in patients with aortic pathology. In patients with dissected aorta in the follow-up, irrespective of original pathology, genetic variants correlate with higher reintervention rates, warranting extended-spectrum genetic testing. The role of VUS may be greater than is currently known.
Collapse
Affiliation(s)
- Tamer Ghazy
- Department of Cardiac and Thoracic Vascular Surgery, Marburg University Hospital, 35043 Marburg, Germany; (M.I.); (A.J.R.)
| | - Nesma Elzanaty
- Department of Medical Physiology, Tanta Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Helmut Karl Lackner
- Division of Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria;
| | - Marc Irqsusi
- Department of Cardiac and Thoracic Vascular Surgery, Marburg University Hospital, 35043 Marburg, Germany; (M.I.); (A.J.R.)
| | - Ardawan J. Rastan
- Department of Cardiac and Thoracic Vascular Surgery, Marburg University Hospital, 35043 Marburg, Germany; (M.I.); (A.J.R.)
| | - Christian-Alexander Behrendt
- Department of Vascular and Endovascular Surgery, Asklepios Clinic Wandsbek, Asklepios Medical School, 20043 Hamburg, Germany;
- Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Adrian Mahlmann
- Centre for Vascular Medicine, Clinic of Angiology, St.-Josefs-Hospital, Katholische Krankenhaus Hagen gem. GmbH, 58099 Hagen, Germany;
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Wang Q, An J, Zhou W, Zhang Y, Huang J, Liao G, Wang M, Xia L, Le A, Zhu J. S-adenosyl-L-methionine supplementation alleviates aortic dissection by decreasing inflammatory infiltration. Nutr Metab (Lond) 2024; 21:67. [PMID: 39160585 PMCID: PMC11331618 DOI: 10.1186/s12986-024-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024] Open
Abstract
Methionine, an indispensable amino acid crucial for dietary balance, intricately governs metabolic pathways. Disruption in its equilibrium has the potential to heighten homocysteine levels in both plasma and tissues, posing a conceivable risk of inducing inflammation and detriment to the integrity of vascular endothelial cells. The intricate interplay between methionine metabolism, with a specific focus on S-adenosyl-L-methionine (SAM), and the onset of thoracic aortic dissection (TAD) remains enigmatic despite acknowledging the pivotal role of inflammation in this vascular condition. In an established murine model induced by β-aminopropionitrile monofumarate (BAPN), we delved into the repercussions of supplementing with S-adenosyl-L-methionine (SAM) on the progression of TAD. Our observations uncovered a noteworthy improvement in aortic dissection and rupture rates, accompanied by a marked reduction in mortality upon SAM supplementation. Notably, SAM supplementation exhibited a considerable protective effect against BAPN-induced degradation of elastin and the extracellular matrix. Furthermore, SAM supplementation demonstrated a robust inhibitory influence on the infiltration of immune cells, particularly neutrophils and macrophages. It also manifested a notable reduction in the inflammatory polarization of macrophages, evident through diminished accumulation of MHC-IIhigh macrophages and reduced expression of inflammatory cytokines such as IL1β and TNFα in macrophages. Simultaneously, SAM supplementation exerted a suppressive effect on the activation of CD4 + and CD8 + T cells within the aorta. This was evidenced by an elevated proportion of CD44- CD62L + naïve T cells and a concurrent decrease in CD44 + CD62L- effector T cells. In summary, our findings strongly suggest that the supplementation of SAM exhibits remarkable efficacy in alleviating BAPN-induced aortic inflammation, consequently impeding the progression of thoracic aortic dissection.
Collapse
Affiliation(s)
- Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun An
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Wei Zhou
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Yujing Zhang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Jiang Huang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Geping Liao
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Mingzhe Wang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Lingbo Xia
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Hypertension Research Institute, Nanchang, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Jianbing Zhu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Hypertension Research Institute, Nanchang, China.
| |
Collapse
|
4
|
Mills AC, Sandhu HK, Ikeno Y, Tanaka A. Heritable thoracic aortic disease: a literature review on genetic aortopathies and current surgical management. Gen Thorac Cardiovasc Surg 2024; 72:293-304. [PMID: 38480670 DOI: 10.1007/s11748-024-02017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/09/2024] [Indexed: 04/16/2024]
Abstract
Heritable thoracic aortic disease puts patients at risk for aortic aneurysms, rupture, and dissections. The diagnosis and management of this heterogenous patient population continues to evolve. Last year, the American Heart Association/American College of Cardiology Joint Committee published diagnosis and management guidelines for aortic disease, which included those with genetic aortopathies. Additionally, evolving research studying the implications of underlying genetic aberrations with new genetic testing continues to become available. In this review, we evaluate the current literature surrounding the diagnosis and management of heritable thoracic aortic disease, as well as novel therapeutic approaches and future directions of research.
Collapse
Affiliation(s)
- Alexander C Mills
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Harleen K Sandhu
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Yuki Ikeno
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA
| | - Akiko Tanaka
- Department of Cardiothoracic and Vascular Surgery, McGovern Medical School at UTHealth Houston, 6400 Fannin St., Ste. #2850, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Martelli F, Lin J, Mele S, Imlach W, Kanca O, Barlow CK, Paril J, Schittenhelm RB, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Identifying potential dietary treatments for inherited metabolic disorders using Drosophila nutrigenomics. Cell Rep 2024; 43:113861. [PMID: 38416643 PMCID: PMC11037929 DOI: 10.1016/j.celrep.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Inherited metabolic disorders are a group of genetic conditions that can cause severe neurological impairment and child mortality. Uniquely, these disorders respond to dietary treatment; however, this option remains largely unexplored because of low disorder prevalence and the lack of a suitable paradigm for testing diets. Here, we screened 35 Drosophila amino acid disorder models for disease-diet interactions and found 26 with diet-altered development and/or survival. Using a targeted multi-nutrient array, we examine the interaction in a model of isolated sulfite oxidase deficiency, an infant-lethal disorder. We show that dietary cysteine depletion normalizes their metabolic profile and rescues development, neurophysiology, behavior, and lifelong fly survival, thus providing a basis for further study into the pathogenic mechanisms involved in this disorder. Our work highlights the diet-sensitive nature of metabolic disorders and establishes Drosophila as a valuable tool for nutrigenomic studies for informing potential dietary therapies.
Collapse
Affiliation(s)
- Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Sarah Mele
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Wendy Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jefferson Paril
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics and Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
6
|
Levy LE, Zak M, Glotzbach JP. Current understanding of the genetics of thoracic aortic disease. VESSEL PLUS 2024; 8:4. [PMID: 40337343 PMCID: PMC12058223 DOI: 10.20517/2574-1209.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Thoracic aortic dissection is a feared, highly lethal condition most commonly developing from aneurysmal dilation of the thoracic aorta. Elective prophylactic replacement of thoracic aortic aneurysms dramatically mitigates this risk. However, diagnosis of a thoracic aortic aneurysm can be challenging. Thoracic aortic disease - horacic aortic aneurysm and dissection (TAAD) - can be sporadic or heritable. Patients with syndromic heritable TAAD present with classic phenotype and clinical features correlating to their disease. In contrast, patients with non-syndromic heritable disease are harder to diagnose due to their lack of defining uniform phenotypes. Recent advances in genomics have begun to elucidate the genetic underpinnings of non-syndromic TAAD (ns-TAAD) for better understanding this complex disease and improve diagnosis and management. Herein, we review the foundation of knowledge in ns-TAAD heritability and key research studies identifying gene mutations in vascular smooth muscle cells, the extracellular matrix, and TGF-beta signaling present in ns-TAAD. We summarize the current guidelines for the diagnosis, screening, and surgical management of ns-TAAD including recommendations for genetic testing of high-risk individuals. Finally, we highlight areas of future research that will continue to advance our understanding of the complex genetic and epigenetic factors in TAAD.
Collapse
Affiliation(s)
- Lauren E Levy
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84106, USA
| | - Megan Zak
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84106, USA
| | - Jason P Glotzbach
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84106, USA
| |
Collapse
|
7
|
Mizrak D, Zhao Y, Feng H, Macaulay J, Tang Y, Sultan Z, Zhao G, Guo Y, Zhang J, Yang B, Eugene Chen Y. Single-Molecule Spatial Transcriptomics of Human Thoracic Aortic Aneurysms Uncovers Calcification-Related CARTPT-Expressing Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2023; 43:2285-2297. [PMID: 37823268 PMCID: PMC10842613 DOI: 10.1161/atvbaha.123.319329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yang Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jane Macaulay
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Tang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Zain Sultan
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Guizhen Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Jeoffrey SMH, Kalyanasundaram A, Zafar MA, Ziganshin BA, Elefteriades JA. Genetic Overlap of Spontaneous Dissection of Either the Thoracic Aorta or the Coronary Arteries. Am J Cardiol 2023; 205:69-74. [PMID: 37591066 DOI: 10.1016/j.amjcard.2023.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Ascending thoracic aortic dissection (ATAD) is a well-known vascular cause of sudden death. Spontaneous coronary artery dissections (SCAD) are emerging as an important cause of early-onset myocardial infarction and sudden death. Genetic variants in multiple connective tissue genes have been recognized to underlie ATAD; other genetic variants have similarly been recognized to underlie SCAD. Little data are available regarding any genetic commonality between ATAD and SCAD. Our objective is to determine and characterize any genetic overlap between genes coding for ATAD and SCAD. We identified and reviewed 17 retrospective and prospective genetic studies of thoracic aortic dissection and SCAD published between 2016 and 2022 identified through PubMed and Orbis. Articles highlighting the significant plausible triggers for ATAD or SCAD individually were analyzed. No previous study reviewed both ATAD and SCAD genetics together. Separate lists of causative genes were constructed for ATAD and SCAD-and then commonalities were sought. A Venn diagram was constructed to display the genetic overlap and common physiologic pathways involved. We identified a definite, meaningful overlap of 15 independent genes based on a genome-wide association study or other genetic methods. The associated genetic pathways involved various biologic processes including elastin degradation, smooth muscle cell function, and the TGFβ-pathway. The overlapping genes included the following: COL3A1, TGFB2, SMAD3, MYLK, TGFBR2, TGFBR1, LOX, FBN1, NOTCH1, ELN, COL5A1, COL5A2, COL1A2, MYH11, and TLN1. The corresponding molecular pathways were investigated and correlated for both diseases. We are not aware of other studies searching for genetic commonalities between ATAD and SCAD. We have successfully identified overlapping genes-and their corresponding molecular pathways-for ATAD and SCAD. We hope that these insights will lead to further clinical and scientific understanding of each disease through study of their fundamental commonalities.
Collapse
Affiliation(s)
| | - Asanish Kalyanasundaram
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
9
|
Rodríguez-Palomares JF, Dux-Santoy L, Guala A, Galian-Gay L, Evangelista A. Mechanisms of Aortic Dilation in Patients With Bicuspid Aortic Valve: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:448-464. [PMID: 37495282 DOI: 10.1016/j.jacc.2022.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 07/28/2023]
Abstract
Bicuspid aortic valve is the most common congenital heart disease and exposes patients to an increased risk of aortic dilation and dissection. Aortic dilation is a slow, silent process, leading to a greater risk of aortic dissection. The prevention of adverse events together with optimization of the frequency of the required lifelong imaging surveillance are important for both clinicians and patients and motivated extensive research to shed light on the physiopathologic processes involved in bicuspid aortic valve aortopathy. Two main research hypotheses have been consolidated in the last decade: one supports a genetic basis for the increased prevalence of dilation, in particular for the aortic root, and the second supports the damaging impact on the aortic wall of altered flow dynamics associated with these structurally abnormal valves, particularly significant in the ascending aorta. Current opinion tends to rule out mutually excluding causative mechanisms, recognizing both as important and potentially clinically relevant.
Collapse
Affiliation(s)
- Jose F Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | - Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is a leading global cause of morbidity and mortality, posing an increasing burden on society. Advances in next-generation technologies and disease models over the last decade have further delineated the genetic and molecular factors that might be exploited in development of therapeutics for affected patients. This review describes several advances in the molecular and genetic understanding of AVD, focusing on bicuspid aortic valve (BAV) and calcific aortic valve disease (CAVD). RECENT FINDINGS Genomic studies have identified a myriad of genes implicated in the development of BAV, including NOTCH1 , SMAD6 and ADAMTS19 , along with members of the GATA and ROBO gene families. Similarly, several genes associated with the initiation and progression of CAVD, including NOTCH1 , LPA , PALMD , IL6 and FADS1/2 , serve as the launching point for emerging clinical trials. SUMMARY These new insights into the genetic contributors of AVD have offered new avenues for translational disease investigation, bridging molecular discoveries to emergent pharmacotherapeutic options. Future studies aimed at uncovering new genetic associations and further defining implicated molecular pathways are fuelling the new wave of drug discovery.
Collapse
Affiliation(s)
- Ruth L. Ackah
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Sheppard MB, Smith JD, Bergmann LL, Famulski JK. Novel SMAD3 variant identified in a patient with familial aortopathy modeled using a zebrafish embryo assay. Front Cardiovasc Med 2023; 10:1103784. [PMID: 36926042 PMCID: PMC10011127 DOI: 10.3389/fcvm.2023.1103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
In human, pathogenic variants in smad3 are one cause of familial aortopathy. We describe a novel SMAD3 variant of unknown significance (VUS), V244F, in a patient who presented with aortic root dilation, right coronary artery ectasia, abdominal aortic aneurysm, right vertebral artery atresia, and cavernoma. Determination of variant pathogenicity impacted multiple aspects of the patient's care, including the most appropriate surgical threshold for which to recommend a valve-sparing aortic root replacement. To determine whether the newly identified SMAD3 variant, and whether SMAD3 induced aortopathy in general, can be assayed in a zebrafish embryo model, we injected smad3a mRNA into Tg[kdrl:mCherry] zebrafish embryos. By measuring the size of the dorsal aorta at 48hpf we found a correlation between pathogenic SMAD3 variants and increased dorsal aortic diameter. The newly identified V244F variant increased dorsal aortic diameter (p < 0.0001) similar to that of the pathogenic control variant T261I (p < 0.0084). In addition, we examined several previously identified variants of uncertain significance and found P124T (p < 0.0467), L296P (p < 0.0025) and A349P (p < 0.0056) to behave like T261I. These results demonstrate that the zebrafish embryo assay was successful in validating known pathogenic variants, classifying our newly identified variant V244F as likely pathogenic, and classifying previously identified variants P124T, L296P, and A349P as likely pathogenic. Overall, our findings identify a novel SMAD3 variant that is likely pathogenic as well as offer a new mechanism to model SMAD3 VUSs in vivo.
Collapse
Affiliation(s)
- Mary B. Sheppard
- Saha Aortic Center, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Department of Family Medicine, University of Kentucky, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Jeffrey D. Smith
- Saha Aortic Center, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Lisa L. Bergmann
- Department Radiology, University of Kentucky, Lexington, KY, United States
| | - Jakub K. Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
13
|
Huang T, Cheng J, Feng H, Zhou W, Qiu P, Zhou D, Yang D, Zhang J, Willer C, Chen YE, Mizrak D, Yang B. Bicuspid Aortic Valve-Associated Regulatory Regions Reveal GATA4 Regulation and Function During Human-Induced Pluripotent Stem Cell-Based Endothelial-Mesenchymal Transition-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:312-322. [PMID: 36519469 PMCID: PMC10038164 DOI: 10.1161/atvbaha.122.318566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiaxi Cheng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongshan Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cristen Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
15
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
16
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
17
|
Hill JC, Billaud M, Richards TD, Kotlarczyk MP, Shiva S, Phillippi JA, Gleason TG. Layer-specific Nos3 expression and genotypic distribution in bicuspid aortic valve aortopathy. Eur J Cardiothorac Surg 2022; 62:ezac237. [PMID: 35460403 PMCID: PMC9615433 DOI: 10.1093/ejcts/ezac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We hypothesized that expression and activity of nitric oxide synthase-3 enzyme (Nos3) in bicuspid aortic valve (BAV) aortopathy are related to tissue layer and Nos3 genotype. METHODS Gene expression of Nos3 and platelet and endothelial cell adhesion molecule-1 (Pecam1) and NOS activity were measured in intima-containing media and adventitial specimens of ascending aortic tissue. The presence of 2 Nos3 single-nucleotide polymorphisms (SNPs; -786T/C and 894G/T) was determined for non-aneurysmal (NA) and aneurysmal patients with BAV (n = 40, 89, respectively); patients with tricuspid aortic valve (TAV) and aneurysm (n = 151); and NA patients with TAV (n = 100). RESULTS Elevated Nos3 relative to Pecam1 and reduced Pecam1 relative to a housekeeping gene were observed within intima-containing aortic specimens from BAV patients when compared with TAV patients. Lower Nos3 in the adventitia of aneurysmal specimens was noted when compared with specimens of NA aorta, independent of valve morphology. NOS activity was similar among cohorts in media/intima and decreased in the diseased adventitia, relative to control patients. Aneurysmal BAV patients exhibited an under-representation of the wild-type genotype for -786 SNP. No differences in genotype distribution were noted for 894 SNP. Primary intimal endothelial cells from patients with at least 1 C allele at -786 SNP exhibited lower Nos3 when compared with wild-type cells. CONCLUSIONS These findings of differential Nos3 in media/intima versus adventitia depending on valve morphology or aneurysm reveal new information regarding aneurysmal pathophysiology and support our ongoing assertion that there are distinct mechanisms giving rise to ascending aortopathy in BAV and TAV patients.
Collapse
Affiliation(s)
- Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie Billaud
- Department of Surgery, Division of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary P Kotlarczyk
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Rodrigues Bento J, Meester J, Luyckx I, Peeters S, Verstraeten A, Loeys B. The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annu Rev Genomics Hum Genet 2022; 23:223-253. [PMID: 36044906 DOI: 10.1146/annurev-genom-111521-104455] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFβ signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.
Collapse
Affiliation(s)
- Jotte Rodrigues Bento
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Josephina Meester
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Ilse Luyckx
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
20
|
Oxidative Stress Aggravates Apoptosis of Nucleus Pulposus Cells through m 6A Modification of MAT2A Pre-mRNA by METTL16. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4036274. [PMID: 35069973 PMCID: PMC8767407 DOI: 10.1155/2022/4036274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
The process of intervertebral disc degeneration (IVDD) is complex, and its mechanism is considered multifactorial. Apoptosis of oxidative stressed nucleus pulposus cells (NPCs) should be a fundamental element in the pathogenesis of IVDD. In our pilot study, we found that the expression of MAT2A decreased, and METTL16 increased in the degenerative nucleus pulposus tissues. Previous studies have shown that the balance of splicing, maturation, and degradation of MAT2A pre-mRNA is regulated by METTL16 m6A modification. In the current study, we aimed to figure out whether this mechanism was involved in the aberrant apoptosis of NPCs and IVDD. Human NPCs were isolated and cultured under oxidative stress. An IVDD animal model was established. It showed that significantly higher METTL16 expression and lower MAT2A expression were seen in either the NPCs under oxidative stress or the degenerative discs of the animal model. MAT2A was inhibited with siRNA in vitro or cycloleucine in vivo. METTL16 was overexpressed with lentivirus in vitro or in vivo. Downregulation of MAT2A or upregulation of METTL16 aggravated nucleus pulposus cell apoptosis and disc disorganization. The balance of splicing, maturation, and degradation of MAT2A pre-mRNA was significantly inclined to degradation in the NPCs with the overexpression of METTL16. Increased apoptosis of NPCs under oxidative stress could be rescued by reducing the expression of METTL16 using siRNA with more maturation of MAT2A pre-mRNA. Collectively, oxidative stress aggravates apoptosis of NPCs through disrupting the balance of splicing, maturation, and degradation of MAT2A pre-mRNA, which is m6A modified by METTL16.
Collapse
|
21
|
Abrial M, Basu S, Huang M, Butty V, Schwertner A, Jeffrey S, Jordan D, Burns CE, Burns CG. Latent TGFβ-binding proteins 1 and 3 protect the larval zebrafish outflow tract from aneurysmal dilatation. Dis Model Mech 2022; 15:dmm046979. [PMID: 35098309 PMCID: PMC8990920 DOI: 10.1242/dmm.046979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFβ) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFβ signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFβ signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFβ signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maryline Abrial
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sandeep Basu
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mengmeng Huang
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vincent Butty
- BioMicroCenter, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Asya Schwertner
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel Jordan
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Caroline E. Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C. Geoffrey Burns
- Cardiovascular Research Center, Department of Cardiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Update on the molecular landscape of thoracic aortic aneurysmal disease. Curr Opin Cardiol 2022; 37:201-211. [PMID: 35175228 DOI: 10.1097/hco.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THE REVIEW Thoracic aortic aneurysms and dissections (TAADs) are a major health problem in the Western population. This review summarises recent discoveries in the genetic landscape of TAAD disease, discusses current challenges in clinical practice, and describes the molecular road ahead in TAAD research. Disorders, in which aneurysmal disease is not observed in the thoracic aorta, are not discussed. RECENT FINDINGS Current gene discovery studies have pinpointed about 40 genes associated with TAAD risk, accounting for about 30% of the patients. Importantly, novel genes, and their subsequent functional characterisation, have expanded the knowledge on disease-related pathways providing crucial information on key elements in this disease, and it pinpoints new therapeutic targets. Moreover, current molecular evidence also suggests the existence of less monogenic nature of TAAD disease, in which the presentation of a diseased patient is most likely influenced by a multitude of genetic and environmental factors. SUMMARY CLINICAL PRACTICE/RELEVANCE Ongoing molecular genetic research continues to expand our understanding on the pathomechanisms underlying TAAD disease in order to improve molecular diagnosis, optimise risk stratification, advance therapeutic strategies and facilitate counselling of TAAD patients and their families.
Collapse
|
23
|
Prendergast A, Ziganshin BA, Papanikolaou D, Zafar MA, Nicoli S, Mukherjee S, Elefteriades JA. Phenotyping Zebrafish Mutant Models to Assess Candidate Genes Associated with Aortic Aneurysm. Genes (Basel) 2022; 13:123. [PMID: 35052463 PMCID: PMC8775119 DOI: 10.3390/genes13010123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Whole Exome Sequencing of patients with thoracic aortic aneurysm often identifies "Variants of Uncertain Significance" (VUS), leading to uncertainty in clinical management. We assess a novel mechanism for potential routine assessment of these genes in TAA patients. Zebrafish are increasingly used as experimental models of disease. Advantages include low cost, rapid maturation, and physical transparency, permitting direct microscopic assessment. (2) Methods: Zebrafish loss of function mutations were generated using a CRISPRC/CAS9 approach for EMILIN1 and MIB1 genes similar to VUSs identified in clinical testing. Additionally, "positive control" mutants were constructed for known deleterious variants in FBN1 (Marfan's) and COL1A2, COL5A1, COL5A2 (Ehlers-Danlos). Zebrafish embryos were followed to six days post-fertilization. Embryos were studied by brightfield and confocal microscopy to ascertain any vascular, cardiac, and skeletal abnormalities. (3) Results: A dramatic pattern of cardiac, cerebral, aortic, and skeletal abnormalities was identified for the known pathogenic FBN1 and COL1A2, COL5A1, and COL5A2 mutants, as well as for the EMILIN1 and MIB1 mutants of prior unknown significance. Visualized abnormalities included hemorrhage (peri-aortic and cranial), cardiomegaly, reduced diameter of the aorta and intersegmental vessels, lower aortic cell counts, and scoliosis (often extremely severe). (4) Conclusion: This pilot study suggests that candidate genes arising in clinical practice may be rapidly assessed via zebrafish mutants-thus permitting evidence-based decisions about pathogenicity. Thus, years-long delays to clinically demonstrate pathogenicity may be obviated. Zebrafish data would represent only one segment of analysis, which would also include frequency of the variant in the general population, in silico genetic analysis, and degree of preservation in phylogeny.
Collapse
Affiliation(s)
- Andrew Prendergast
- Yale Zebrafish Phenotyping Core, Yale University School of Medicine, New Haven, CT 06510, USA; (A.P.); (S.N.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, CT 06510, USA; (B.A.Z.); (D.P.); (M.A.Z.); (S.M.)
| | - Dimitra Papanikolaou
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, CT 06510, USA; (B.A.Z.); (D.P.); (M.A.Z.); (S.M.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, CT 06510, USA; (B.A.Z.); (D.P.); (M.A.Z.); (S.M.)
| | - Stefania Nicoli
- Yale Zebrafish Phenotyping Core, Yale University School of Medicine, New Haven, CT 06510, USA; (A.P.); (S.N.)
- Yale Cardiovascular Research Center, Cardiology, Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sandip Mukherjee
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, CT 06510, USA; (B.A.Z.); (D.P.); (M.A.Z.); (S.M.)
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, CT 06510, USA; (B.A.Z.); (D.P.); (M.A.Z.); (S.M.)
| |
Collapse
|
24
|
Kern CB. Excess Provisional Extracellular Matrix: A Common Factor in Bicuspid Aortic Valve Formation. J Cardiovasc Dev Dis 2021; 8:92. [PMID: 34436234 PMCID: PMC8396938 DOI: 10.3390/jcdd8080092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
A bicuspid aortic valve (BAV) is the most common cardiac malformation, found in 0.5% to 2% of the population. BAVs are present in approximately 50% of patients with severe aortic stenosis and are an independent risk factor for aortic aneurysms. Currently, there are no therapeutics to treat BAV, and the human mutations identified to date represent a relatively small number of BAV patients. However, the discovery of BAV in an increasing number of genetically modified mice is advancing our understanding of molecular pathways that contribute to BAV formation. In this study, we utilized the comparison of BAV phenotypic characteristics between murine models as a tool to advance our understanding of BAV formation. The collation of murine BAV data indicated that excess versican within the provisional extracellular matrix (P-ECM) is a common factor in BAV development. While the percentage of BAVs is low in many of the murine BAV models, the remaining mutant mice exhibit larger and more amorphous tricuspid AoVs, also with excess P-ECM compared to littermates. The identification of common molecular characteristics among murine BAV models may lead to BAV therapeutic targets and biomarkers of disease progression for this highly prevalent and heterogeneous cardiovascular malformation.
Collapse
Affiliation(s)
- Christine B Kern
- Department of Regenerative Medicine and Cell Biology, 171 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Milewicz DM, Guo D, Hostetler E, Marin I, Pinard AC, Cecchi AC. Update on the genetic risk for thoracic aortic aneurysms and acute aortic dissections: implications for clinical care. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 62:203-210. [PMID: 33736427 PMCID: PMC8513124 DOI: 10.23736/s0021-9509.21.11816-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic variation plays a significant role in predisposing individuals to thoracic aortic aneurysms and dissections. Advances in genomic research have led to the discovery of 11 genes validated to cause heritable thoracic aortic disease (HTAD). Identifying the pathogenic variants responsible for aortic disease in affected patients confers substantial clinical utility by establishing a definitive diagnosis to inform tailored treatment and management, and enables identification of at-risk relatives to prevent downstream morbidity and mortality. The availability and access to clinical genetic testing has improved dramatically such that genetic testing is considered an integral part of the clinical evaluation for patients with thoracic aortic disease. This review provides an update on our current understanding of the genetic basis of thoracic aortic disease, practical recommendations for genetic testing, and clinical implications.
Collapse
Affiliation(s)
- Dianna M Milewicz
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA -
| | - Dongchuan Guo
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Ellen Hostetler
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Isabella Marin
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Amelie C Pinard
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Alana C Cecchi
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
26
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
28
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
30
|
Rohde S, Zafar MA, Ziganshin BA, Elefteriades JA. Thoracic aortic aneurysm gene dictionary. Asian Cardiovasc Thorac Ann 2020; 29:682-696. [PMID: 32689806 DOI: 10.1177/0218492320943800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is typically clinically silent, with a natural history of progressive enlargement until a potentially lethal complication such as rupture or dissection occurs. Underlying genetic predisposition strongly influences the risk of thoracic aortic aneurysm and dissection. Familial cases are more virulent, have a higher rate of aneurysm growth, and occur earlier in life. To date, over 30 genes have been associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection. The causative genes and their specific variants help to predict the disease phenotype, including age at presentation, risk of dissection at small aortic sizes, and risk of other cardiovascular and systemic manifestations. This genetic "dictionary" is already a clinical reality, allowing us to personalize care based on specific causative mutations for a substantial proportion of these patients. Widespread genetic sequencing of thoracic aortic aneurysm and dissection patients has been and continues to be crucial to the rapid expansion of this dictionary and ultimately, the delivery of truly personalized care to every patient.
Collapse
Affiliation(s)
- Stefanie Rohde
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Abstract
Aortic dilatation is common in patients with congenital heart disease and is seen in patients with bicuspid aortic valve and those with conotruncal congenital heart defects. It is important to identify patients with bicuspid aortic valve at high risk for aortic dissection. High-risk patients include those with the aortic root phenotype and those with syndromic or familial aortopathies including Marfan syndrome, Loeys-Dietz syndrome, and Turner syndrome. Aortic dilatation is common in patients with conotruncal congenital heart defects and rarely results in aortic dissection.
Collapse
|
32
|
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect, found in up to 2% of the population and associated with a 30% lifetime risk of complications. BAV is inherited as an autosomal dominant trait with incomplete penetrance and variable expressivity due to a complex genetic architecture that involves many interacting genes. In this review, we highlight the current state of knowledge about BAV genetics, principles and methods for BAV gene discovery, clinical applications of BAV genetics, and important future directions.
Collapse
|
33
|
Panmanee J, Antonyuk SV, Hasnain SS. Structural basis of the dominant inheritance of hypermethioninemia associated with the Arg264His mutation in the MAT1A gene. Acta Crystallogr D Struct Biol 2020; 76:594-607. [PMID: 32496220 PMCID: PMC7271947 DOI: 10.1107/s2059798320006002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferase (MAT) deficiency, characterized by isolated persistent hypermethioninemia (IPH), is caused by mutations in the MAT1A gene encoding MATαl, one of the major hepatic enzymes. Most of the associated hypermethioninemic conditions are inherited as autosomal recessive traits; however, dominant inheritance of hypermethioninemia is caused by an Arg264His (R264H) mutation. This mutation has been confirmed in a screening programme of newborns as the most common mutation in babies with IPH. Arg264 makes an inter-subunit salt bridge located at the dimer interface where the active site assembles. Here, it is demonstrated that the R264H mutation results in greatly reduced MAT activity, while retaining its ability to dimerize, indicating that the lower activity arises from alteration at the active site. The first crystallographic structure of the apo form of the wild-type MATαl enzyme is provided, which shows a tetrameric assembly in which two compact dimers combine to form a catalytic tetramer. In contrast, the crystal structure of the MATαl R264H mutant reveals a weaker dimeric assembly, suggesting that the mutation lowers the affinity for dimer-dimer interaction. The formation of a hetero-oligomer with the regulatory MATβV1 subunit or incubation with a quinolone-based compound (SCR0911) results in the near-full recovery of the enzymatic activity of the pathogenic mutation R264H, opening a clear avenue for a therapeutic solution based on chemical interventions that help to correct the defect of the enzyme in its ability to metabolize methionine.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
34
|
Chou EL, Lindsay ME. The genetics of aortopathies: Hereditary thoracic aortic aneurysms and dissections. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:136-148. [PMID: 32034893 DOI: 10.1002/ajmg.c.31771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Aortopathies encompass a variety of inherited and acquired pathologies that increase risk of life-threatening dissection or rupture. Identifying individuals with hereditary thoracic aortic aneurysm and dissection (HTAAD) for longitudinal monitoring, medical therapy, or elective and preventative repair is paramount to reduce risk of cardiovascular-related mortality and complications from dissection and rupture. Over the past couple of decades, pathogenic variants in numerous genes have been identified in relation to HTAAD. The genetic diagnosis can help stratify patient risk and provide guidance on medical treatment, timing of prophylactic surgical repair, as well as longitudinal surveillance and imaging. Implicated genes and their associated proteins have been found to act on a diverse variety of pathways, cells and structural components linked to transforming growth factor beta (TGF-β) signaling pathways, disruption of the vascular smooth muscle cell contractile apparatus, and primary disruption of extracellular matrix homeostasis. This review describes relevant genetic variants that may help identify and guide the management of hereditary thoracic aortic aneurysms and dissections.
Collapse
Affiliation(s)
- Elizabeth L Chou
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark E Lindsay
- Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Genetics Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Pediatric Cardiology Division, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Ostberg NP, Zafar MA, Ziganshin BA, Elefteriades JA. The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective. Biomolecules 2020; 10:E182. [PMID: 31991693 PMCID: PMC7072177 DOI: 10.3390/biom10020182] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) affects many patients globally and has high mortality rates if undetected. Once thought to be solely a degenerative disease that afflicted the aorta due to high pressure and biomechanical stress, extensive investigation of the heritability and natural history of TAAD has shown a clear genetic basis for the disease. Here, we review both the cellular mechanisms and clinical manifestations of syndromic and non-syndromic TAAD. We particularly focus on genes that have been linked to dissection at diameters <5.0 cm, the current lower bound for surgical intervention. Genetic screening tests to identify patients with TAAD associated mutations that place them at high risk for dissection are also discussed.
Collapse
Affiliation(s)
- Nicolai P. Ostberg
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
- Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, 420012 Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| |
Collapse
|
36
|
Faggion Vinholo T, Brownstein AJ, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: 2019 Update and Clinical Implications. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2019; 7:99-107. [PMID: 31842235 PMCID: PMC6914358 DOI: 10.1055/s-0039-3400233] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is a typically silent disease characterized by a lethal natural history. Since the discovery of the familial nature of thoracic aortic aneurysm and dissection (TAAD) almost 2 decades ago, our understanding of the genetics of this disorder has undergone a transformative amplification. To date, at least 37 TAAD-causing genes have been identified and an estimated 30% of the patients with familial nonsyndromic TAAD harbor a pathogenic mutation in one of these genes. In this review, we present our yearly update summarizing the genes associated with TAAD and the ensuing clinical implications for surgical intervention. Molecular genetics will continue to bolster this burgeoning catalog of culprit genes, enabling the provision of personalized aortic care.
Collapse
Affiliation(s)
- Thais Faggion Vinholo
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Adam J Brownstein
- Department of Medicine, Johns Hopkins Hospital and Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, and Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Simon C Body
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
37
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To review the literature and provide a summary of management of syndromic and nonsyndromic aortopathies. RECENT FINDINGS The number of newly identified genetic causes for aortopathies have continued to increase over the past 10 years. The number of reported individuals with most hereditary aneurysm genes is small but increasing with more publications focusing describing the natural history caused by each gene. SUMMARY Aortopathy can present as an isolated finding or present as part of a larger genetic syndrome. Advances in genetic testing technology has shed light on the increasing importance of molecular diagnostics in the evaluation and management of patients with hereditary aortic disease. Molecular diagnostics and family phenotyping can aide in the diagnosis and management of pediatric patients with aortic disease.
Collapse
Affiliation(s)
| | - Rocio T Moran
- Division of Genetics and Genomics, The MetroHealth System, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Harky A, Fan KS, Fan KH. The genetics and biomechanics of thoracic aortic diseases. VASCULAR BIOLOGY 2019; 1:R13-R25. [PMID: 32923967 PMCID: PMC7439919 DOI: 10.1530/vb-19-0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Thoracic aortic aneurysms and aortic dissections (TAAD) are highly fatal emergencies within cardiothoracic surgery. With increasing age, thoracic aneurysms become more prevalent and pose an even greater threat when they develop into aortic dissections. Both diseases are multifactorial and are influenced by a multitude of physiological and biomechanical processes. Structural stability of aorta can be disrupted by genes, such as those for extracellular matrix and contractile protein, as well as telomere dysfunction, which leads to senescence of smooth muscle and endothelial cells. Biomechanical changes such as increased luminal pressure imposed by hypertension are also very prevalent and lead to structural instability. Furthermore, ageing is associated with a pro-inflammatory state that exacerbates degeneration of vessel wall, facilitating the development of both aortic aneurysms and aortic dissection. This literature review provides an overview of the aetiology and pathophysiology of both thoracic aneurysms and aortic dissections. With an improved understanding, new therapeutic targets may eventually be identified to facilitate treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest, Liverpool, UK
| | - Ka Siu Fan
- St. George's Medical School, University of London, London, UK
| | - Ka Hay Fan
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
40
|
Saito H, Hayashi H, Ueda T, Mine T, Kumita SI. Changes in Aortic Wall Thickness at a Site of Entry Tear on Computed Tomography before Development of Acute Aortic Dissection. Ann Vasc Dis 2019; 12:379-384. [PMID: 31636750 PMCID: PMC6766757 DOI: 10.3400/avd.oa.19-00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: To determine if there are changes in the aortic wall before acute aortic dissection (AD) that can be observed on contrast-enhanced computed tomography (CECT). Materials and Methods: Twenty-two patients with AD who underwent CECT before developing AD were retrospectively identified and enrolled as the AD group. Twenty-five consecutive patients who underwent CECT and did not develop AD were enrolled as the control group. In the AD group, the site of entry tear was detected on CECT images; the aortic wall thickness at this site, defined as the dissection-related wall thickness (D-T), was then measured on CECT images acquired before AD. Moreover, the mean thickness of the ascending, thoracic descending, and abdominal aortic walls before AD was defined as the non-dissection-related wall thickness (non-D-T). In the control group, the aortic wall thickness was measured similarly and defined as the control wall thickness (C-T). The D-T, non-D-T, and C-T values were compared using one-way analysis of variance with the Games-Howell pairwise comparison test. Results: The D-T (2.17±0.75 mm) was significantly greater than the non-D-T (1.58±0.22 mm; P<.01) and C-T (1.53±0.15 mm; P<.01). Conclusion: The aortic wall may have become thicker prior to the onset of AD.
Collapse
Affiliation(s)
- Hidemasa Saito
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | | | - Tatsuo Ueda
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | - Takahiko Mine
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
41
|
Michel JB, Jondeau G, Milewicz DM. From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovasc Res 2019; 114:578-589. [PMID: 29360940 DOI: 10.1093/cvr/cvy006] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) play a crucial role in both the pathogenesis of Aneurysms and Dissections of the ascending thoracic aorta (TAAD) in humans and in the associated adaptive compensatory responses, since thrombosis and inflammatory processes are absent in the majority of cases. Aneurysms and dissections share numerous characteristics, including aetiologies and histopathological alterations: vSMC disappearance, medial areas of mucoid degeneration, and extracellular matrix (ECM) breakdown. Three aetiologies predominate in TAAD in humans: (i) genetic causes in heritable familial forms, (ii) an association with bicuspid aortic valves, and (iii) a sporadic degenerative form linked to the aortic aging process. Genetic forms include mutations in vSMC genes encoding for molecules of the ECM or the TGF-β pathways, or participating in vSMC tone. On the other hand, aneurysms and dissections, whatever their aetiologies, are characterized by an increase in wall permeability leading to transmural advection of plasma proteins which could interact with vSMCs and ECM components. In this context, blood-borne plasminogen appears to play an important role, because its outward convection through the wall is increased in TAAD, and it could be converted to active plasmin at the vSMC membrane. Active plasmin can induce vSMC disappearance, proteolysis of adhesive proteins, activation of MMPs and release of TGF-β from its ECM storage sites. Conversely, vSMCs could respond to aneurysmal biomechanical and proteolytic injury by an epigenetic phenotypic switch, including constitutional overexpression and nuclear translocation of Smad2 and an increase in antiprotease and ECM protein synthesis. In contrast, such an epigenetic phenomenon is not observed in dissections. In this context, dysfunction of proteins involved in vSMC tone are interesting to study, particularly in interaction with plasma protein transport through the wall and TGF-β activation, to establish the relationship between these dysfunctions and ECM proteolysis.
Collapse
Affiliation(s)
- Jean-Baptiste Michel
- UMR 1148, Laboratory for Translational Vascular Science, Inserm and Paris 7- Denis Diderot University, Xavier Bichat Hospital, 75018 Paris, France
| | - Guillaume Jondeau
- UMR 1148, Laboratory for Translational Vascular Science, Inserm and Paris 7- Denis Diderot University, Xavier Bichat Hospital, 75018 Paris, France.,Cardiology Department, National Reference Center for Marfan Syndrome and Related Diseases, APHP Hopital Bichat, 75018 Paris
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW This discussion is intended to review the anatomy and pathology of the aortic valve and aortic root region, and to provide a basis for the understanding of and treatment of the important life-threatening diseases that affect the aortic valve. RECENT FINDINGS The most exciting recent finding is that less invasive methods are being developed to treat diseases of the aortic valve. There are no medical cures for aortic valve diseases. Until recently, open-heart surgery was the only effective method of treatment. Now percutaneous approaches to implant bioprosthetic valves into failed native or previously implanted bioprosthetic valves are being developed and utilized. A genetic basis for many of the diseases that affect the aortic valve is being discovered that also should lead to innovative approaches to perhaps prevent these disease. Sequencing of ribosomal RNA is assisting in identifying organisms causing endocarditis, leading to more effective antimicrobial therapy. There is exciting, expanding, therapeutic innovation in the treatment of aortic valve disease.
Collapse
Affiliation(s)
- Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, CHS 1P-326, Los Angeles, CA, 90095, USA.
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, CHS 1P-326, Los Angeles, CA, 90095, USA
| |
Collapse
|
43
|
Froese DS, Fowler B, Baumgartner MR. Vitamin B 12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 2019; 42:673-685. [PMID: 30693532 DOI: 10.1002/jimd.12009] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022]
Abstract
Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.
Collapse
Affiliation(s)
- D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Brian Fowler
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
44
|
Fukuhara S, Ibrahim M, Dohle D, Bavaria JE. Threshold for intervention upon ascending aortic aneurysms: an evolving target and implication of bicuspid aortic valve. Indian J Thorac Cardiovasc Surg 2019; 35:96-105. [PMID: 33061073 PMCID: PMC7525390 DOI: 10.1007/s12055-018-0674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022] Open
Abstract
With the proliferation of non-invasive thoracic imaging modalities, the question of when to operate on asymptomatic ascending aortic aneurysms for non-syndromic patients is becoming increasingly relevant. Operation is extensive, often involves circulatory arrest, and subjects the patient to significant risk of mortality and morbidity. Surgery is performed to avert fatal aortic adverse events, which carry a markedly poor prognosis. The question of when the balance is tipped toward preemptive surgical repair is challenging and is centered around predicting the risk of an acute aortic syndrome. Size of the aneurysm has been the traditional guide for decision-making but how this is measured, what risks it truly predicts, the influence of the patient's size, valve morphology, genetic profile, and other risk factors for non-syndromic patients are poorly understood. We here review this issue in detail.
Collapse
Affiliation(s)
- Shinichi Fukuhara
- Department of Cardiac Surgery, University of Michigan Cardiovascular Center, Ann Arbor, MI USA
| | - Michael Ibrahim
- Division of Cardiovascular Surgery, University of Pennsylvania, 3400 Spruce Street, 6 Silverstein, Philadelphia, PA 19104 USA
| | - Daniel Dohle
- Division of Cardiovascular Surgery, University of Pennsylvania, 3400 Spruce Street, 6 Silverstein, Philadelphia, PA 19104 USA
| | - Joseph E. Bavaria
- Division of Cardiovascular Surgery, University of Pennsylvania, 3400 Spruce Street, 6 Silverstein, Philadelphia, PA 19104 USA
| |
Collapse
|
45
|
Kloth K, Bierhals T, Johannsen J, Harms FL, Juusola J, Johnson MC, Grange DK, Kutsche K. Biallelic variants in SMAD6 are associated with a complex cardiovascular phenotype. Hum Genet 2019; 138:625-634. [DOI: 10.1007/s00439-019-02011-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 01/10/2023]
|
46
|
Wu L. The pathogenesis of thoracic aortic aneurysm from hereditary perspective. Gene 2018; 677:77-82. [DOI: 10.1016/j.gene.2018.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
|
47
|
Genetic testing for large-caliber vessel aneurysms. THE EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Large-caliber vessels are those with a diameter of 10 mm or more. Most aneurysms remain asymptomatic until they expand or rupture. Aortic aneurysms are of special interest for physicians and scientists because of their prevalence. Aortic aneurysms and dissections account for 1-2% of all deaths in western countries. Expansion and rupture of vascular aneurysms show a strong correlation with hyperlipidemia, hypertension, smoking, sex and age. Heritability estimates have been as high as 70%. This Utility Gene Test was developed on the basis of an analysis of the literature and existing diagnostic protocols. It is useful for confirming diagnosis, as well as for differential diagnosis, couple risk assessment and access to clinical trials.
Collapse
|
48
|
Mariscalco G, Debiec R, Elefteriades JA, Samani NJ, Murphy GJ. Systematic Review of Studies That Have Evaluated Screening Tests in Relatives of Patients Affected by Nonsyndromic Thoracic Aortic Disease. J Am Heart Assoc 2018; 7:e009302. [PMID: 30371227 PMCID: PMC6201478 DOI: 10.1161/jaha.118.009302] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Background Nonsyndromic thoracic aortic diseases ( NS - TADs ) are often silent entities until they present as life-threatening emergencies. Despite familial inheritance being common, screening is not the current standard of care in NS - TAD s. We sought to determine the incidence of aortic diseases, the predictive accuracy of available screening tests, and the effectiveness of screening programs in relatives of patients affected by NS - TADs . Methods and Results A systematic literature search on PubMed/ MEDLINE , Embase, and the Cochrane Library was conducted from inception to the end of December 2017. The search was supplemented with the Online Mendelian Inheritance in Man database. A total of 53 studies were included, and a total of 2696 NS - TAD relatives were screened. Screening was genetic in 49% of studies, followed by imaging techniques in 11% and a combination of the 2 in 40%. Newly affected individuals were identified in 33%, 24%, and 15% of first-, second-, and third-degree relatives, respectively. Familial NS - TAD s were primarily attributed to single-gene mutations, expressed in an autosomal dominant pattern with incomplete penetrance. Specific gene mutations were observed in 25% of the screened families. Disease subtype and genetic mutations stratified patients with respect to age of presentation, aneurysmal location, and aortic diameter before dissection. Relatives of patients with sporadic NS - TAD s were also found to be affected. No studies evaluated the predictive accuracy of imaging or genetic screening tests, or the clinical or cost-effectiveness of an NS - TAD screening program. Conclusions First- and second-degree relatives of patients affected by both familial and sporadic NS - TAD s may benefit from personalized screening programs.
Collapse
Affiliation(s)
- Giovanni Mariscalco
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research CentreLeicesterUnited Kingdom
| | - Radoslaw Debiec
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research CentreLeicesterUnited Kingdom
| | | | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research CentreLeicesterUnited Kingdom
| | - Gavin J. Murphy
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Cardiovascular Biomedical Research CentreLeicesterUnited Kingdom
| |
Collapse
|
49
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The incidence of aortic dilation and acute complications (rupture and dissection) is higher in patients with a bicuspid aortic valve (BAV), the most frequent congenital heart defect.The present review focuses on the current knowledge in the genetics of BAV, emphasizing the clinical implications for early detection and personalized care. RECENT FINDINGS BAV is a highly heritable trait, but the genetic causes remain largely elusive. NOTCH1 is the only proven candidate gene to be associated with both familial and sporadic BAV. Other genes have been reported to be associated with BAV, but some of these associations may result from coexisting disease.The application of modern high-throughput technologies (next generation sequencing, genome-wide copy number and genome-wide methylation arrays) have begun to dissect the genetic heterogeneity underlying BAV as well as the diverse molecular pathways involved in the progression of BAV aortopathy. SUMMARY The clinical variability seen in BAV aortopathy, in terms of phenotype and natural/clinical history, suggests complex interactions between primary genetic defects, other modifier genes, epigenetic factors (DNA methylation or histone modifications, microRNA) and environmental factors (disturbed flow). Integrated, more comprehensive studies are needed for elucidating these connections to develop more individualized and accurate risk assessment methods.
Collapse
|