1
|
Peretto L, D'angiolillo C, Ferraresi P, Balestra D, Pinotti M. Rescue of a panel of Hemophilia A-causing 5'ss splicing mutations by unique Exon-specific U1snRNA variants. Mol Med 2025; 31:121. [PMID: 40148820 PMCID: PMC11948882 DOI: 10.1186/s10020-025-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Aberrant mRNA splicing is a well-established pathogenic mechanism for human disease, but its real impact is hardly predictable and underestimated. Splicing can be therefore modulated for therapeutic purposes, and splicing-switching molecules are in clinics for some diseases. Here, conscious that over 10% of all pathogenic mutations occurs at 5'ss, we aimed at characterizing and rescuing nine 5'ss mutations in three models of defective F8 exons whose skipping would lead to factor VIII (FVIII) deficiency (Hemophilia A), the most frequent coagulation factor disorder. METHODS HEK293T cells were transfected with F8 minigene variants, alone or with engineered U1 small nuclear RNAs (U1snRNAs), and splicing patterns analysed via RT-PCR. RESULTS All 5'ss mutations induced exon skipping, and the proportion of correct transcripts, not predictable by computational analysis, was consistent with residual FVIII levels in patients. For each exon we identified a unique engineered U1snRNAs, either compensatory or Exon Specific (ExSpeU1), able to rescue all mutations. Overall, ExSpeU1s were more effective than compensatory U1snRNAs, particularly in the defective exons 6 and 22. CONCLUSIONS Data highlight the importance of splicing assays to elucidate genotype-phenotype relationships and proved the correction efficacy of ExSpeU1s for each targeted defective F8 exon, thus expanding their translational potential for HA.
Collapse
Affiliation(s)
- Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Claudia D'angiolillo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Ferraresi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy.
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
2
|
Peruzzo P, Bergamin N, Bon M, Cappelli S, Longo A, Goina E, Stuani C, Buratti E, Dardis A. Rescue of common and rare exon 2 skipping variants of the GAA gene using modified U1 snRNA. Mol Med 2025; 31:45. [PMID: 39905333 PMCID: PMC11796170 DOI: 10.1186/s10020-025-01090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Pompe disease (PD) is an autosomal recessive lysosomal storage disorder caused by the deficient activity of acid alpha glucosidase (GAA) enzyme due to mutations in the GAA gene. As a result, undigested glycogen accumulates within lysosomes causing their dysfunction. From a clinical point of view, the disease can be classified in infantile-onset (IO) and late-onset (LO) forms. The common GAA c.-32-13T>G variant, found in 40-70% of LO-PD alleles, is a leaky splicing mutation interfering with the correct GAA exon 2 recognition by the spliceosome leading to the production of non-functional GAA transcripts. In this study, we used modified, GAA-tailored U1 snRNAs to correct the aberrant splicing determined by the c.-32-13T>G and other GAA exon 2-skipping mutations. METHODS A set of constructs expressing 5 different engineered U1 snRNAs was generated. A functional splicing assay using a GAA hybrid minigene carrying different variants known to affect GAA exon 2 splicing was used to test the effect of engineered U1 snRNAs on exon 2 inclusion. The effect on endogenously expressed GAA transcript and GAA enzymatic activity was assessed by transfecting patient-derived fibroblasts bearing the common c.-32-13T>G with the best performing modified U1 snRNA. RESULTS Modified U1-3, U1+1 and U1+6 snRNAs were all able to increase, in a dose-dependent manner, the inclusion of exon 2 within the transcript derived from the GAA minigene harbouring the c.-32-13T>G variant. The U1+1 was the most effective one (2,5 fold increase). Moreover, U1+1 snRNA partially rescued the correct splicing of GAA minigenes harbouring mutations that affect the 3'ss (c.-32-3C>G, c.-32-2A>G) and the 5'ss (c.546G>A, c.546G>C, c.546G>T). Notably, the treatment of patient-derived fibroblasts carrying the c.-32-13T>G mutation with the U1+1 snRNA increased the amount of normal GAA mRNA by 1,8 fold and the GAA enzymatic activity by 70%. CONCLUSIONS we provide the proof-of-concept for the use of modified GAA-tailored U1 snRNAs, designed to potentiate the recognition of the GAA exon 2 5'ss, as therapeutic tools to correct the aberrant transcripts carrying variants that affect exon 2 splicing, including the common c.-32-13T>G variant.
Collapse
Affiliation(s)
- Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy
| | - Natascha Bergamin
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy
| | - Martina Bon
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Alessandra Longo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Elisa Goina
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Trieste, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, P. Le Santa Maria Della Misericordi 15, 33100, Udine, Italy.
| |
Collapse
|
3
|
Schmok JC, Yeo GW. Strategies for programmable manipulation of alternative splicing. Curr Opin Genet Dev 2024; 89:102272. [PMID: 39471777 DOI: 10.1016/j.gde.2024.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
Alternative splicing (AS) plays a pivotal role in protein diversity and mRNA maturation. Programmable control of targeted AS events is of longstanding interest in RNA biology, promising correction of dysregulated splicing in disease and discovery of AS events. This review explores four main strategies for programmable splicing manipulation: (1) inhibiting splicing signals with antisense oligonucleotides (ASOs), exemplified by therapies approved by the U.S. Food and Drug Administration, (2) applying DNA-targeting clustered regularly interspaced short palindromic repeats systems to edit splicing signals, (3) using synthetic splicing factors, including synthetic proteins and ribonucleoproteins, inspired by natural RNA-binding proteins, and (4) guiding endogenous splicing machinery with bifunctional ASOs and engineered small nuclear RNAs. While ASOs remain clinically prominent, emerging technologies aim for broad, scalable, durable, and precise splicing modulation, holding promise for transformative advancements in RNA biology and therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; UCSD Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Bubenik JL, Scotti MM, Swanson MS. Therapeutic targeting of RNA for neurological and neuromuscular disease. Genes Dev 2024; 38:698-717. [PMID: 39142832 PMCID: PMC11444190 DOI: 10.1101/gad.351612.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.
Collapse
Affiliation(s)
- Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
5
|
Gonçalves M, Santos JI, Coutinho MF, Matos L, Alves S. Development of Engineered-U1 snRNA Therapies: Current Status. Int J Mol Sci 2023; 24:14617. [PMID: 37834063 PMCID: PMC10572768 DOI: 10.3390/ijms241914617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression. The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. Targeting aberrant RNA(s) may thus provide an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. To that purpose, the use of engineered U1 snRNA (either modified U1 snRNAs or exon-specific U1s-ExSpeU1s) has been applied as a potentially therapeutic strategy to correct splicing mutations, particularly those affecting the 5' splice-site (5'ss). Here we review and summarize a vast panoply of studies that used either modified U1 snRNAs or ExSpeU1s to mediate gene therapeutic correction of splicing defects underlying a considerable number of genetic diseases. We also focus on the pre-clinical validation of these therapeutic approaches both in vitro and in vivo, and summarize the main obstacles that need to be overcome to allow for their successful translation to clinic practice in the future.
Collapse
Affiliation(s)
- Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (M.G.); (J.I.S.); (M.F.C.); (L.M.)
- Center for the Study of Animal Science, Institute of Sciences, Technologies and Agro-Environment, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculty of Veterinary Medicine, University of Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Morelli KH, Smargon AA, Yeo GW. Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders. RNA (NEW YORK, N.Y.) 2023; 29:489-497. [PMID: 36693761 PMCID: PMC10019361 DOI: 10.1261/rna.079519.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Disruptions in RNA processing play critical roles in the pathogenesis of neurological diseases. In this Perspective, we discuss recent progress in the development of RNA-targeting therapeutic modalities. We focus on progress, limitations, and opportunities in a new generation of therapies engineered from RNA binding proteins and other endogenous RNA regulatory macromolecules to treat human neurological disorders.
Collapse
Affiliation(s)
- Kathryn H Morelli
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92039, USA
| |
Collapse
|
7
|
Counteracting the Common Shwachman-Diamond Syndrome-Causing SBDS c.258+2T>C Mutation by RNA Therapeutics and Base/Prime Editing. Int J Mol Sci 2023; 24:ijms24044024. [PMID: 36835434 PMCID: PMC9962285 DOI: 10.3390/ijms24044024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) represents one of the most common inherited bone marrow failure syndromes and is mainly caused by SBDS gene mutations. Only supportive treatments are available, with hematopoietic cell transplantation required when marrow failure occurs. Among all causative mutations, the SBDS c.258+2T>C variant at the 5' splice site (ss) of exon 2 is one of the most frequent. Here, we investigated the molecular mechanisms underlying aberrant SBDS splicing and showed that SBDS exon 2 is dense in splicing regulatory elements and cryptic splice sites, complicating proper 5'ss selection. Studies ex vivo and in vitro demonstrated that the mutation alters splicing, but it is also compatible with tiny amounts of correct transcripts, which would explain the survival of SDS patients. Moreover, for the first time for SDS, we explored a panel of correction approaches at the RNA and DNA levels and provided experimental evidence that the mutation effect can be partially counteracted by engineered U1snRNA, trans-splicing, and base/prime editors, ultimately leading to correctly spliced transcripts (from barely detectable to 2.5-5.5%). Among them, we propose DNA editors that, by stably reverting the mutation and potentially conferring positive selection to bone-marrow cells, could lead to the development of an innovative SDS therapy.
Collapse
|
8
|
Hatch ST, Smargon AA, Yeo GW. Engineered U1 snRNAs to modulate alternatively spliced exons. Methods 2022; 205:140-148. [PMID: 35764245 PMCID: PMC11185844 DOI: 10.1016/j.ymeth.2022.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
Alternative splicing accounts for a considerable portion of transcriptomic diversity, as most protein-coding genes are spliced into multiple mRNA isoforms. However, errors in splicing patterns can give rise to mis-splicing with pathological consequences, such as the congenital diseases familial dysautonomia, Duchenne muscular dystrophy, and spinal muscular atrophy. Small nuclear RNA (snRNA) components of the U snRNP family have been proposed as a therapeutic modality for the treatment of mis-splicing. U1 snRNAs offer great promise, with prior studies demonstrating in vivo efficacy, suggesting additional preclinical development is merited. Improvements in enabling technologies, including screening methodologies, gene delivery vectors, and relevant considerations from gene editing approaches justify further advancement of U1 snRNA as a therapeutic and research tool. With the goal of providing a user-friendly protocol, we compile and demonstrate a methodological toolkit for sequence-specific targeted perturbation of alternatively spliced pre-mRNA with engineered U1 snRNAs. We observe robust modulation of endogenous pre-mRNA transcripts targeted in two contrasting splicing contexts, SMN2 exon 7 and FAS exon 6, exhibiting the utility and applicability of engineered U1 snRNA to both inclusion and exclusion of targeted exons. We anticipate that these demonstrations will contribute to the usability of U1 snRNA in investigating splicing modulation in eukaryotic cells, increasing accessibility to the broader research community.
Collapse
Affiliation(s)
- Samuel T Hatch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Program, University of California San Diego, Sanford Consortium for Regenerative Medicine, La Jolla, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Rescue of a familial dysautonomia mouse model by AAV9-Exon-specific U1 snRNA. Am J Hum Genet 2022; 109:1534-1548. [PMID: 35905737 PMCID: PMC9388384 DOI: 10.1016/j.ajhg.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.
Collapse
|
10
|
Sacchetto C, Peretto L, Baralle F, Maestri I, Tassi F, Bernardi F, van de Graaf SFJ, Pagani F, Pinotti M, Balestra D. OTC intron 4 variations mediate pathogenic splicing patterns caused by the c.386G>A mutation in humans and spf ash mice, and govern susceptibility to RNA-based therapies. Mol Med 2021; 27:157. [PMID: 34906067 PMCID: PMC8670272 DOI: 10.1186/s10020-021-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Background Aberrant splicing is a common outcome in the presence of exonic or intronic variants that might hamper the intricate network of interactions defining an exon in a specific gene context. Therefore, the evaluation of the functional, and potentially pathological, role of nucleotide changes remains one of the major challenges in the modern genomic era. This aspect has also to be taken into account during the pre-clinical evaluation of innovative therapeutic approaches in animal models of human diseases. This is of particular relevance when developing therapeutics acting on splicing, an intriguing and expanding research area for several disorders. Here, we addressed species-specific splicing mechanisms triggered by the OTC c.386G>A mutation, relatively frequent in humans, leading to Ornithine TransCarbamylase Deficiency (OTCD) in patients and spfash mice, and its differential susceptibility to RNA therapeutics based on engineered U1snRNA. Methods Creation and co-expression of engineered U1snRNAs with human and mouse minigenes, either wild-type or harbouring different nucleotide changes, in human (HepG2) and mouse (Hepa1-6) hepatoma cells followed by analysis of splicing pattern. RNA pulldown studies to evaluate binding of specific splicing factors. Results Comparative nucleotide analysis suggested a role for the intronic +10-11 nucleotides, and pull-down assays showed that they confer preferential binding to the TIA1 splicing factor in the mouse context, where TIA1 overexpression further increases correct splicing. Consistently, the splicing profile of the human minigene with mouse +10-11 nucleotides overlapped that of mouse minigene, and restored responsiveness to TIA1 overexpression and to compensatory U1snRNA. Swapping the human +10-11 nucleotides into the mouse context had opposite effects. Moreover, the interplay between the authentic and the adjacent cryptic 5′ss in the human OTC dictates pathogenic mechanisms of several OTCD-causing 5′ss mutations, and only the c.386+5G>A change, abrogating the cryptic 5′ss, was rescuable by engineered U1snRNA. Conclusions Subtle intronic variations explain species-specific OTC splicing patterns driven by the c.386G>A mutation, and the responsiveness to engineered U1snRNAs, which suggests careful elucidation of molecular mechanisms before proposing translation of tailored therapeutics from animal models to humans. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00418-9.
Collapse
Affiliation(s)
- Claudia Sacchetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.,Department of Molecular Genetics, University of Maastricht, Maastricht, The Netherlands
| | - Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | | | - Iva Maestri
- Department of Translational Medicine and for Romagna, Pathology Unit of Pathologic Anatomy, Histology and Cytology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Franco Pagani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.
| |
Collapse
|
11
|
Jüschke C, Klopstock T, Catarino CB, Owczarek-Lipska M, Wissinger B, Neidhardt J. Autosomal dominant optic atrophy: A novel treatment for OPA1 splice defects using U1 snRNA adaption. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1186-1197. [PMID: 34853716 PMCID: PMC8604756 DOI: 10.1016/j.omtn.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/03/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Autosomal dominant optic atrophy (ADOA) is frequently caused by mutations in the optic atrophy 1 (OPA1) gene, with haploinsufficiency being the major genetic pathomechanism. Almost 30% of the OPA1-associated cases suffer from splice defects. We identified a novel OPA1 mutation, c.1065+5G>A, in patients with ADOA. In patient-derived fibroblasts, the mutation led to skipping of OPA1 exon 10, reducing the OPA1 protein expression by approximately 50%. We developed a molecular treatment to correct the splice defect in OPA1 using engineered U1 splice factors retargeted to different locations in OPA1 exon 10 or intron 10. The strongest therapeutic effect was detected when U1 binding was engineered to bind to intron 10 at position +18, a position predicted by bioinformatics to be a promising binding site. We were able to significantly silence the effect of the mutation (skipping of exon 10) and simultaneously increase the expression level of normal transcripts. Retargeting U1 to the canonical splice donor site did not lead to a detectable splice correction. This proof-of-concept study indicates for the first time the feasibility of splice mutation correction as a treatment option for ADOA. Increasing the amount of correctly spliced OPA1 transcripts may suffice to overcome the haploinsufficiency.
Collapse
Affiliation(s)
- Christoph Jüschke
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Claudia B. Catarino
- Friedrich-Baur Institute, Department of Neurology, University Hospital, LMU Munich, University of Munich, 80336 Munich, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
- Joint Research Training Group of the Faculty of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
- Correspondence: John Neidhardt, Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129 Oldenburg, Germany.
| |
Collapse
|
12
|
Lombardi S, Leo G, Merlin S, Follenzi A, McVey JH, Maestri I, Bernardi F, Pinotti M, Balestra D. Dissection of pleiotropic effects of variants in and adjacent to F8 exon 19 and rescue of mRNA splicing and protein function. Am J Hum Genet 2021; 108:1512-1525. [PMID: 34242570 DOI: 10.1016/j.ajhg.2021.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The pathogenic significance of nucleotide variants commonly relies on nucleotide position within the gene, with exonic changes generally attributed to quantitative or qualitative alteration of protein biosynthesis, secretion, activity, or clearance. However, these changes may exert pleiotropic effects on both protein biology and mRNA splicing due to the overlapping of the amino acid and splicing codes, thus shaping the disease phenotypes. Here, we focused on hemophilia A, in which the definition of F8 variants' causative role and association to bleeding phenotypes is crucial for proper classification, genetic counseling, and management of affected individuals. We extensively characterized a large panel of hemophilia A-causing variants (n = 30) within F8 exon 19 by combining and comparing in silico and recombinant expression analyses. We identified exonic variants with pleiotropic effects and dissected the altered protein features of all missense changes. Importantly, results from multiple prediction algorithms provided qualitative results, while recombinant assays allowed us to correctly infer the likely phenotype severity for 90% of variants. Molecular characterization of pathogenic variants was also instrumental for the development of tailored correction approaches to rescue splicing affecting variants or missense changes impairing protein folding. A single engineered U1snRNA rescued mRNA splicing of nine different variants and the use of a chaperone-like drug resulted in improved factor VIII protein secretion for four missense variants. Overall, dissection of the molecular mechanisms of a large panel of HA variants allowed precise classification of HA-affected individuals and favored the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Gabriele Leo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - John H McVey
- School of Bioscience and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44123, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| |
Collapse
|
13
|
A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat Commun 2021; 12:3332. [PMID: 34099697 PMCID: PMC8185002 DOI: 10.1038/s41467-021-23663-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.
Collapse
|
14
|
Donegà S, Rogalska ME, Pianigiani G, Igreja S, Amaral MD, Pagani F. Rescue of common exon-skipping mutations in cystic fibrosis with modified U1 snRNAs. Hum Mutat 2020; 41:2143-2154. [PMID: 32935393 DOI: 10.1002/humu.24116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
In cystic fibrosis (CF), the correction of splicing defects represents an interesting therapeutic approach to restore normal CFTR function. In this study, we focused on 10 common mutations/variants 711+3A>G/C, 711+5G>A, TG13T3, TG13T5, TG12T5, 1863C>T, 1898+3A>G, 2789+5G>A, and 3120G>A that induce skipping of the corresponding CFTR exons 5, 10, 13, 16, and 18. To rescue the splicing defects we tested, in a minigene assay, a panel of modified U1 small nuclear RNAs (snRNAs), named Exon Specific U1s (ExSpeU1s), that was engineered to bind to intronic sequences downstream of each defective exon. Using this approach, we show that all 10 splicing mutations analyzed are efficiently corrected by specific ExSpeU1s. Using complementary DNA-splicing competent minigenes, we also show that the ExspeU1-mediated splicing correction at the RNA level recovered the full-length CFTR protein for 1863C>T, 1898+3A>G, 2789+5G>A variants. In addition, detailed mutagenesis experiments performed on exon 13 led us to identify a novel intronic regulatory element involved in the ExSpeU1-mediated splicing rescue. These results provide a common strategy based on modified U1 snRNAs to correct exon skipping in a group of disease-causing CFTR mutations.
Collapse
Affiliation(s)
- Stefano Donegà
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Malgorzata Ewa Rogalska
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Susana Igreja
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Margarida Duarte Amaral
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Franco Pagani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
15
|
Erkelenz S, Poschmann G, Ptok J, Müller L, Schaal H. Profiling of cis- and trans-acting factors supporting noncanonical splice site activation. RNA Biol 2020; 18:118-130. [PMID: 32693676 DOI: 10.1080/15476286.2020.1798111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recently, by combining transcriptomics with functional splicing reporter assays we were able to identify GT > GC > TT as the three highest ranked dinucleotides of human 5' splice sites (5'ss). Here, we have extended our investigations to the proteomic characterization of nuclear proteins that bind to canonical and noncanonical 5'ss. Surprisingly, we found that U1 snRNP binding to functional 5'ss sequences prevented components of the DNA damage response (DDR) from binding to the RNA, suggesting a close link between spliceosome arrangement and genome stability. We demonstrate that all tested noncanonical 5'ss sequences are bona-fide targets of the U2-type spliceosome and are bound by U1 snRNP, including U1-C, in the presence of splicing enhancers. The quantity of precipitated U1-C protein was similar for all noncanonical 5'ss dinucleotides, so that the highly different 5'ss usage was likely due to a later step after early U1 snRNP binding. In addition, we show that an internal GT at positions +5/+6 can be advantageous for splicing at position +1 of noncanonical splice sites. Likewise, and in agreement with previous observations, splicing inactive U1 snRNP binding sites could serve as splicing enhancers, which may also explain the higher abundance of U1 snRNPs compared to other U snRNPs. Finally, we observe that an arginine-serine (RS)-rich domain recruitment to stem loop I of the U1 snRNA is functionally sufficient to promote exon-definition and upstream 3'ss activation.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum Düsseldorf , Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
16
|
Suñé-Pou M, Limeres MJ, Moreno-Castro C, Hernández-Munain C, Suñé-Negre JM, Cuestas ML, Suñé C. Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease. Front Genet 2020; 11:731. [PMID: 32760425 PMCID: PMC7373156 DOI: 10.3389/fgene.2020.00731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-specific protein expression patterns. Global transcriptome analyses have suggested that >90% of human multiexon genes are alternatively spliced. Alterations in the splicing process cause missplicing events that lead to genetic diseases and pathologies, including various neurological disorders, cancers, and muscular dystrophies. In recent decades, research has helped to elucidate the mechanisms regulating alternative splicing and, in some cases, to reveal how dysregulation of these mechanisms leads to disease. The resulting knowledge has enabled the design of novel therapeutic strategies for correction of splicing-derived pathologies. In this review, we focus primarily on therapeutic approaches targeting splicing, and we highlight nanotechnology-based gene delivery applications that address the challenges and barriers facing nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María J Limeres
- Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Josep M Suñé-Negre
- Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María L Cuestas
- Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
17
|
Balestra D, Scalet D, Ferrarese M, Lombardi S, Ziliotto N, C. Croes C, Petersen N, Bosma P, Riccardi F, Pagani F, Pinotti M, van de Graaf SFJ. A Compensatory U1snRNA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I. Int J Mol Sci 2020; 21:E2136. [PMID: 32244944 PMCID: PMC7139742 DOI: 10.3390/ijms21062136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5' splice site (5'ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different splicing mutation types. However, the assessment of their correction potential in vivo is limited by the scarcity of animal models with the targetable splicing defects. Here, we challenged the U1snRNA in the FAH5961SB mouse model of hepatic fumarylacetoacetate hydrolase (FAH) deficiency (Hereditary Tyrosinemia type I, HT1) due to the FAH c.706G>A splicing mutation. Through minigene expression studies we selected a compensatory U1snRNA (U1F) that was able to rescue this mutation. Intriguingly, adeno-associated virus-mediated delivery of U1F (AAV8-U1F), but not of U1wt, partially rescued FAH splicing in mouse hepatocytes. Consistently, FAH protein was detectable only in the liver of AAV8-U1F treated mice, which displayed a slightly prolonged survival. Moreover, RNA sequencing revealed the negligible impact of the U1F on the splicing profile and overall gene expression, thus pointing toward gene specificity. These data provide early in vivo proof-of-principle of the correction potential of compensatory U1snRNAs in HTI and encourage further optimization on a therapeutic perspective, and translation to other splicing-defective forms of metabolic diseases.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
| | - Chrystal C. Croes
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Naomi Petersen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
| | - Piter Bosma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (F.R.); (F.P.)
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (F.R.); (F.P.)
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (D.S.); (M.F.); (S.L.); (N.Z.); (M.P.)
- LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Stan F. J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.C.C.); (N.P.); (P.B.); (S.F.J.v.d.G.)
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Donadon I, Bussani E, Riccardi F, Licastro D, Romano G, Pianigiani G, Pinotti M, Konstantinova P, Evers M, Lin S, Rüegg MA, Pagani F. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Res 2019; 47:7618-7632. [PMID: 31127278 PMCID: PMC6698663 DOI: 10.1093/nar/gkz469] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Spinal Muscular Atrophy results from loss-of-function mutations in SMN1 but correcting aberrant splicing of SMN2 offers hope of a cure. However, current splice therapy requires repeated infusions and is expensive. We previously rescued SMA mice by promoting the inclusion of a defective exon in SMN2 with germline expression of Exon-Specific U1 snRNAs (ExspeU1). Here we tested viral delivery of SMN2 ExspeU1s encoded by adeno-associated virus AAV9. Strikingly the virus increased SMN2 exon 7 inclusion and SMN protein levels and rescued the phenotype of mild and severe SMA mice. In the severe mouse, the treatment improved the neuromuscular function and increased the life span from 10 to 219 days. ExspeU1 expression persisted for 1 month and was effective at around one five-hundredth of the concentration of the endogenous U1snRNA. RNA-seq analysis revealed our potential drug rescues aberrant SMA expression and splicing profiles, which are mostly related to DNA damage, cell-cycle control and acute phase response. Vastly overexpressing ExspeU1 more than 100-fold above the therapeutic level in human cells did not significantly alter global gene expression or splicing. These results indicate that AAV-mediated delivery of a modified U1snRNP particle may be a novel therapeutic option against SMA.
Collapse
Affiliation(s)
- Irving Donadon
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Erica Bussani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Federico Riccardi
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Danilo Licastro
- CBM S.c.r.l., Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giulia Romano
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, The Netherlands
| | - Shuo Lin
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
19
|
Balestra D, Maestri I, Branchini A, Ferrarese M, Bernardi F, Pinotti M. An Altered Splicing Registry Explains the Differential ExSpeU1-Mediated Rescue of Splicing Mutations Causing Haemophilia A. Front Genet 2019; 10:974. [PMID: 31649737 PMCID: PMC6796300 DOI: 10.3389/fgene.2019.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
The exon recognition and removal of introns (splicing) from pre-mRNA is a crucial step in the gene expression flow. The process is very complex and therefore susceptible to derangements. Not surprisingly, a significant and still underestimated proportion of disease-causing mutations affects splicing, with those occurring at the 5’ splice site (5’ss) being the most severe ones. This led to the development of a correction approach based on variants of the spliceosomal U1snRNA, which has been proven on splicing mutations in several cellular and mouse models of human disease. Since the alternative splicing mechanisms are strictly related to the sequence context of the exon, we challenged the U1snRNA-mediated strategy in the singular model of the exon 5 of coagulation factor (F)VIII gene (F8) in which the authentic 5’ss is surrounded by various cryptic 5’ss. This scenario is further complicated in the presence of nucleotide changes associated with FVIII deficiency (Haemophilia A), which weaken the authentic 5’ss and create/strengthen cryptic 5’ss. We focused on the splicing mutations (c.602-32A > G, c.602-10T > G, c.602G > A, c.655G > A, c.667G > A, c.669A > G, c.669A > T, c.670G > T, c.670+1G > T, c.670+1G > A, c.670+2T > G, c.670+5G > A, and c.670+6T > C) found in patients with severe to mild Haemophilia A. Minigenes expression studies demonstrated that all mutations occurring within the 5’ss, both intronic or exonic, lead to aberrant transcripts arising from the usage of two cryptic intronic 5’ss at positions c.670+64 and c.670+176. For most of them, the observed proportion of correct transcripts is in accordance with the coagulation phenotype of patients. In co-transfection experiments, we identified a U1snRNA variant targeting an intronic region downstream of the defective exon (Exon Specific U1snRNA, U1sh7) capable to re-direct usage of the proper 5’ss (∼80%) for several mutations. However, deep investigation of rescued transcripts from +1 and +2 variants revealed only the usage of adjacent cryptic 5’ss, leading to frameshifted transcript forms. These data demonstrate that a single ExSpeU1 can efficiently rescue different mutations in the F8 exon 5, and provide the first evidence of the applicability of the U1snRNA-based approach to Haemophilia A.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Coutinho MF, Matos L, Santos JI, Alves S. RNA Therapeutics: How Far Have We Gone? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:133-177. [PMID: 31342441 DOI: 10.1007/978-3-030-19966-1_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Liliana Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Juliana Inês Santos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Sandra Alves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal.
| |
Collapse
|
21
|
Balestra D, Giorgio D, Bizzotto M, Fazzari M, Ben Zeev B, Pinotti M, Landsberger N, Frasca A. Splicing Mutations Impairing CDKL5 Expression and Activity Can be Efficiently Rescued by U1snRNA-Based Therapy. Int J Mol Sci 2019; 20:ijms20174130. [PMID: 31450582 PMCID: PMC6747535 DOI: 10.3390/ijms20174130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in the CDKL5 gene lead to an incurable rare neurological condition characterized by the onset of seizures in the first weeks of life and severe intellectual disability. Replacement gene or protein therapies could represent intriguing options, however, their application may be inhibited by the recent demonstration that CDKL5 is dosage sensitive. Conversely, correction approaches acting on pre-mRNA splicing would preserve CDKL5 physiological regulation. Since ~15% of CDKL5 pathogenic mutations are candidates to affect splicing, we evaluated the capability of variants of the spliceosomal U1 small nuclear RNA (U1snRNA) to correct mutations affecting +1 and +5 nucleotides at the 5′ donor splice site and predicted to cause exon skipping. Our results show that CDKL5 minigene variants expressed in mammalian cells are a valid approach to assess CDKL5 splicing pattern. The expression of engineered U1snRNA effectively rescued mutations at +5 but not at the +1 nucleotides. Importantly, we proved that U1snRNA-mediated splicing correction fully restores CDKL5 protein synthesis, subcellular distribution and kinase activity. Eventually, by correcting aberrant splicing of an exogenously expressed splicing-competent CDKL5 transgene, we provided insights on the morphological rescue of CDKL5 null neurons, reporting the first proof-of-concept of the therapeutic value of U1snRNA-mediated CDKL5 splicing correction.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Domenico Giorgio
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy
| | - Matteo Bizzotto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Pediatric Hospital, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, 61000 Tel Aviv, Israel
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy.
| | - Angelisa Frasca
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milan, Italy.
| |
Collapse
|
22
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
23
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
24
|
Souček P, Réblová K, Kramárek M, Radová L, Grymová T, Hujová P, Kováčová T, Lexa M, Grodecká L, Freiberger T. High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing. RNA Biol 2019; 16:1364-1376. [PMID: 31213135 DOI: 10.1080/15476286.2019.1630796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
Collapse
Affiliation(s)
- Přemysl Souček
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Kamila Réblová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Michal Kramárek
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Lenka Radová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Tereza Grymová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tatiana Kováčová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University , Brno , Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tomáš Freiberger
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.,Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
25
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
26
|
Scalet D, Maestri I, Branchini A, Bernardi F, Pinotti M, Balestra D. Disease-causing variants of the conserved +2T of 5' splice sites can be rescued by engineered U1snRNAs. Hum Mutat 2018; 40:48-52. [PMID: 30408273 DOI: 10.1002/humu.23680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The ability of variants of the spliceosomal U1snRNA to rescue splicing has been proven in several human disease models, but not for nucleotide changes at the conserved GT nucleotide of 5' splice sites (5'ss), frequent and associated with severe phenotypes. Here, we focused on variants at the 5'ss of F9 intron 3, leading to factor IX (FIX) deficiency (hemophilia B). Through minigene expression, we demonstrated that all changes induce complete exon 3 skipping, which explains the associated hemophilia B phenotype. Interestingly, engineered U1snRNAs remarkably increased the proportion of correct transcripts in the presence of the c.277+4A>G (∼60%) and also c.277+2T>C mutation (∼20%). Expression of splicing-competent cDNA constructs indicated that the splicing rescue produces an appreciable increase of secreted FIX protein levels. These data provide the first experimental evidence that even part of variants at the conserved 5'ss +2T nucleotide can be rescued, thus expanding the applicability of this U1snRNA-based approach.
Collapse
Affiliation(s)
- Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Editors T. Program and Book of the 15th Interuniversity Institute of Myology Meeting - Assisi (Italy), 2018. Eur J Transl Myol 2018; 28:7927. [PMID: 30662694 PMCID: PMC6317144 DOI: 10.4081/ejtm.2018.7927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/24/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- The Editors
- Interuniversity Institute of Myology (IIM), Rome, Italy
| |
Collapse
|
28
|
Yamazaki N, Kanazawa K, Kimura M, Ike H, Shinomiya M, Tanaka S, Shinohara Y, Minakawa N, Itoh K, Takiguchi Y. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5′-splice site mutation of human cathepsin A gene. Gene 2018; 677:41-48. [DOI: 10.1016/j.gene.2018.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
|
29
|
A new biomarker candidate for spinal muscular atrophy: Identification of a peripheral blood cell population capable of monitoring the level of survival motor neuron protein. PLoS One 2018; 13:e0201764. [PMID: 30102724 PMCID: PMC6089418 DOI: 10.1371/journal.pone.0201764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe genetic neuromuscular disorder caused by insufficiency of functional survival motor neuron (SMN) protein. Several clinical trials have been conducted with the aim of upregulating the expression of the SMN protein in SMA patients. In order to evaluate the efficiency of these SMN-targeted approaches, it has become necessary to verify SMN protein levels in the cells of SMA patients. Accordingly, we have developed a method allowing the evaluation of the functional SMN protein with < 1.5 mL of peripheral blood using imaging flow cytometry. The expression of SMN protein in CD3+, CD19+, and CD33++ cells obtained from SMA patients, was significantly reduced compared with that in cells from control subjects. In spot analysis of CD33++ cells, the intensities of SMN spots were significantly reduced in SMA subjects, when compared with that in controls. Therefore, SMN spots implied the presence of functional SMN protein in the cell nucleus. To our knowledge, our results are the first to demonstrate the presence of functional SMN protein in freshly isolated peripheral blood cells. We anticipate that SMN spot analysis will become the primary endpoint assay for the evaluation and monitoring of therapeutic intervention, with SMN serving as a reliable biomarker of therapeutic efficacy in SMA patients.
Collapse
|
30
|
Donadon I, Pinotti M, Rajkowska K, Pianigiani G, Barbon E, Morini E, Motaln H, Rogelj B, Mingozzi F, Slaugenhaupt SA, Pagani F. Exon-specific U1 snRNAs improve ELP1 exon 20 definition and rescue ELP1 protein expression in a familial dysautonomia mouse model. Hum Mol Genet 2018; 27:2466-2476. [PMID: 29701768 PMCID: PMC6030917 DOI: 10.1093/hmg/ddy151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Familial dysautonomia (FD) is a rare genetic disease with no treatment, caused by an intronic point mutation (c.2204+6T>C) that negatively affects the definition of exon 20 in the elongator complex protein 1 gene (ELP1 also known as IKBKAP). This substitution modifies the 5' splice site and, in combination with regulatory splicing factors, induces different levels of exon 20 skipping, in various tissues. Here, we evaluated the therapeutic potential of a novel class of U1 snRNA molecules, exon-specific U1s (ExSpeU1s), in correcting ELP1 exon 20 recognition. Lentivirus-mediated expression of ELP1-ExSpeU1 in FD fibroblasts improved ELP1 splicing and protein levels. We next focused on a transgenic mouse model that recapitulates the same tissue-specific mis-splicing seen in FD patients. Intraperitoneal delivery of ELP1-ExSpeU1s-adeno-associated virus particles successfully increased the production of full-length human ELP1 transcript and protein. This splice-switching class of molecules is the first to specifically correct the ELP1 exon 20 splicing defect. Our data provide proof of principle of ExSpeU1s-adeno-associated virus particles as a novel therapeutic strategy for FD.
Collapse
Affiliation(s)
- Irving Donadon
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Katarzyna Rajkowska
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Elisabetta Morini
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Helena Motaln
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Biomedical Research Institute BRIS, Ljubljana, Slovenia
| | - Federico Mingozzi
- Genethon and INSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Franco Pagani
- Human Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
31
|
Aguti S, Malerba A, Zhou H. The progress of AAV-mediated gene therapy in neuromuscular disorders. Expert Opin Biol Ther 2018; 18:681-693. [DOI: 10.1080/14712598.2018.1479739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Aguti
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
32
|
Yanaizu M, Sakai K, Tosaki Y, Kino Y, Satoh JI. Small nuclear RNA-mediated modulation of splicing reveals a therapeutic strategy for a TREM2 mutation and its post-transcriptional regulation. Sci Rep 2018; 8:6937. [PMID: 29720600 PMCID: PMC5931963 DOI: 10.1038/s41598-018-25204-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function mutations in TREM2 cause Nasu-Hakola disease (NHD), a rare genetic disease characterized by early-onset dementia with leukoencephalopathy and bone cysts. An NHD-associated mutation, c.482 + 2 T > C, disrupts the splice donor site of intron 3 and causes aberrant skipping of exon 3, resulting in the loss of full-length TREM2 protein. Here, we examined the efficacy of artificial U1 and U7 small nuclear RNAs (snRNAs) designed to enhance exon 3 inclusion. Using mutant TREM2 minigenes, we found that some modified U1, but not U7, snRNAs enhanced exon 3 inclusion and restored TREM2 protein expression. Unexpectedly, we found that exon 3 of wild-type TREM2 is an alternative exon, whose skipping leads to reduced expression of the full-length protein. Indeed, TREM2 protein levels were modulated by modified snRNAs that either promoted or repressed exon 3 inclusion. The splice donor site flanking exon 3 was predicted to be weak, which may explain both the alternative splicing of exon 3 under normal conditions and complete exon skipping when the c.482 + 2 T > C mutation was present. Collectively, our snRNA-based approaches provide a potential therapeutic strategy for NHD-associated mis-splicing and novel insights into the post-transcriptional regulation of TREM2.
Collapse
Affiliation(s)
- Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kenji Sakai
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Youhei Tosaki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| |
Collapse
|
33
|
Martínez-Pizarro A, Dembic M, Pérez B, Andresen BS, Desviat LR. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site. PLoS Genet 2018; 14:e1007360. [PMID: 29684050 PMCID: PMC5933811 DOI: 10.1371/journal.pgen.1007360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Phenylketonuria (PKU), one of the most common inherited diseases of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene. Recently, PAH exon 11 was identified as a vulnerable exon due to a weak 3’ splice site, with different exonic mutations affecting exon 11 splicing through disruption of exonic splicing regulatory elements. In this study, we report a novel intron 11 regulatory element, which is involved in exon 11 splicing, as revealed by the investigated pathogenic effect of variants c.1199+17G>A and c.1199+20G>C, identified in PKU patients. Both mutations cause exon 11 skipping in a minigene system. RNA binding assays indicate that binding of U1snRNP70 to this intronic region is disrupted, concomitant with a slightly increased binding of inhibitors hnRNPA1/2. We have investigated the effect of deletions and point mutations, as well as overexpression of adapted U1snRNA to show that this splicing regulatory motif is important for regulation of correct splicing at the natural 5’ splice site. The results indicate that U1snRNP binding downstream of the natural 5’ splice site determines efficient exon 11 splicing, thus providing a basis for development of therapeutic strategies to correct PAH exon 11 splicing mutations. In this work, we expand the functional effects of non-canonical intronic U1 snRNP binding by showing that it may enhance exon definition and that, consequently, intronic mutations may cause exon skipping by a novel mechanism, where they disrupt stimulatory U1 snRNP binding close to the 5’ splice site. Notably, our results provide further understanding of the reported therapeutic effect of exon specific U1 snRNA for splicing mutations in disease. Splicing defects constitute a major cause of human disease. Mutations affecting conserved splicing sequences at exon-intron junctions are easily recognized as possibly pathogenic, whereas variants in exonic or intronic regions are difficult to classify without functional evidence provided by transcript analysis or in vitro analysis using minigenes. In this work, we sought out to study the pathogenicity of two novel intronic PAH variants identified in phenylketonuria patients. Both mutations resulted in exon skipping in minigenes. We demonstrate that U1snRNP70 binds to the intronic region and that this binding is abolished in the mutant sequences. Correction of the splicing defect was achieved using modified U1 snRNA perfectly complementary to each of the mutant sequences. The results extend the repertoire of natural U1 snRNP cellular functions by including its role as splicing enhancer via binding downstream of the natural 5’ splice site. In addition, our results correlate with the described therapeutic effect of modified U1snRNP for splicing mutations in different genes, thus having a significant impact in the development of specific therapies for splicing defects.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail: (BSA); (LRD)
| | - Lourdes R. Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma, Madrid, Spain
- * E-mail: (BSA); (LRD)
| |
Collapse
|
34
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
36
|
Abstract
More than 15% of all disease-causing mutations result in mRNA splicing defects. U1 snRNA binds to the 5' splice site (5'ss) through base pairing. Mutation-adapted U1 snRNA (with compensatory U1 snRNA changes) and exon-specific U1 snRNA (complementary to intronic sequences) have been shown to suppress 5'ss mutations in cellular and animal models. Areas covered: The history, mechanism of action, and efficacy of U1 snRNA-mediated gene therapy are covered. The clinical utility of this technology and its limitations will be discussed. Expert commentary: Recently, gene therapies with mutation-adapted U1 snRNAs have been conducted on animal models, including aromatic l-amino acid decarboxylase deficiency and spinal muscular atrophy. However, although U1-mediated therapy has the advantage of maintaining the regulated expression of defective genes, its accuracy and efficacy needs to be improved before clinical application of this technique is possible.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Yu-May Lee
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ni-Chung Lee
- a Department of Pediatrics and Medical Genetics , National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
37
|
Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Hum Genet 2017; 136:1215-1235. [DOI: 10.1007/s00439-017-1802-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
|
38
|
van der Woerd WL, Houwen RHJ, van de Graaf SFJ. Current and future therapies for inherited cholestatic liver diseases. World J Gastroenterol 2017; 23:763-775. [PMID: 28223721 PMCID: PMC5296193 DOI: 10.3748/wjg.v23.i5.763] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Familial intrahepatic cholestasis (FIC) comprises a group of rare cholestatic liver diseases associated with canalicular transport defects resulting predominantly from mutations in ATP8B1, ABCB11 and ABCB4. Phenotypes range from benign recurrent intrahepatic cholestasis (BRIC), associated with recurrent cholestatic attacks, to progressive FIC (PFIC). Patients often suffer from severe pruritus and eventually progressive cholestasis results in liver failure. Currently, first-line treatment includes ursodeoxycholic acid in patients with ABCB4 deficiency (PFIC3) and partial biliary diversion in patients with ATP8B1 or ABCB11 deficiency (PFIC1 and PFIC2). When treatment fails, liver transplantation is needed which is associated with complications like rejection, post-transplant hepatic steatosis and recurrence of disease. Therefore, the need for more and better therapies for this group of chronic diseases remains. Here, we discuss new symptomatic treatment options like total biliary diversion, pharmacological diversion of bile acids and hepatocyte transplantation. Furthermore, we focus on emerging mutation-targeted therapeutic strategies, providing an outlook for future personalized treatment for inherited cholestatic liver diseases.
Collapse
|
39
|
Viral Vector-Mediated Antisense Therapy for Genetic Diseases. Genes (Basel) 2017; 8:genes8020051. [PMID: 28134780 PMCID: PMC5333040 DOI: 10.3390/genes8020051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
RNA plays complex roles in normal health and disease and is becoming an important target for therapeutic intervention; accordingly, therapeutic strategies that modulate RNA function have gained great interest over the past decade. Antisense oligonucleotides (AOs) are perhaps the most promising strategy to modulate RNA expression through a variety of post binding events such as gene silencing through degradative or non-degradative mechanisms, or splicing modulation which has recently demonstrated promising results. However, AO technology still faces issues like poor cellular-uptake, low efficacy in target tissues and relatively rapid clearance from the circulation which means repeated injections are essential to complete therapeutic efficacy. To overcome these limitations, viral vectors encoding small nuclear RNAs have been engineered to shuttle antisense sequences into cells, allowing appropriate subcellular localization with pre-mRNAs and permanent correction. In this review, we outline the different strategies for antisense therapy mediated by viral vectors and provide examples of each approach. We also address the advantages and limitations of viral vector use, with an emphasis on their clinical application.
Collapse
|
40
|
Balestra D, Scalet D, Pagani F, Rogalska ME, Mari R, Bernardi F, Pinotti M. An Exon-Specific U1snRNA Induces a Robust Factor IX Activity in Mice Expressing Multiple Human FIX Splicing Mutants. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e370. [PMID: 27701399 PMCID: PMC5095682 DOI: 10.1038/mtna.2016.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
Abstract
In cellular models we have demonstrated that a unique U1snRNA targeting an intronic region downstream of a defective exon (Exon-specific U1snRNA, ExSpeU1) can rescue multiple exon-skipping mutations, a relevant cause of genetic disease. Here, we explored in mice the ExSpeU1 U1fix9 toward two model Hemophilia B-causing mutations at the 5′ (c.519A > G) or 3′ (c.392-8T > G) splice sites of F9 exon 5. Hydrodynamic injection of wt-BALB/C mice with plasmids expressing the wt and mutant (hFIX-2G5′ss and hFIX-8G3′ss) splicing-competent human factor IX (hFIX) cassettes resulted in the expression of hFIX transcripts lacking exon 5 in liver, and in low plasma levels of inactive hFIX. Coinjection of U1fix9, but not of U1wt, restored exon inclusion of variants and in the intrinsically weak FIXwt context. This resulted in appreciable circulating hFIX levels (mean ± SD; hFIX-2G5′ss, 1.0 ± 0.5 µg/ml; hFIX-8G3′ss, 1.2 ± 0.3 µg/ml; and hFIXwt, 1.9 ± 0.6 µg/ml), leading to a striking shortening (from ~100 seconds of untreated mice to ~80 seconds) of FIX-dependent coagulation times, indicating a hFIX with normal specific activity. This is the first proof-of-concept in vivo that a unique ExSpeU1 can efficiently rescue gene expression impaired by distinct exon-skipping variants, which extends the applicability of ExSpeU1s to panels of mutations and thus cohort of patients.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Franco Pagani
- Internation Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Rosella Mari
- Haemostasis & Thrombosis Center, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
41
|
Exploring Splicing-Switching Molecules For Seckel Syndrome Therapy. Biochim Biophys Acta Mol Basis Dis 2016; 1863:15-20. [PMID: 27639833 DOI: 10.1016/j.bbadis.2016.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
The c.2101A>G synonymous change (p.G674G) in the gene for ATR, a key player in the DNA-damage response, has been the first identified genetic cause of Seckel Syndrome (SS), an orphan disease characterized by growth and mental retardation. This mutation mainly causes exon 9 skipping, through an ill-defined mechanism. Through ATR minigene expression studies, we demonstrated that the detrimental effect of this mutation (6±1% of correct transcripts only) depends on the poor exon 9 definition (47±4% in the ATRwt context), because the change was ineffective when the weak 5' or the 3' splice sites (ss) were strengthened (scores from 0.54 to 1) by mutagenesis. Interestingly, the exonic c.2101A nucleotide is conserved across species, and the SS-causing mutation is predicted to concurrently strengthen a Splicing Silencer (ESS) and weaken a Splicing Enhancer (ESE). Consistently, the artificial c.2101A>C change, predicted to weaken the ESE only, moderately impaired exon inclusion (28±7% of correct transcripts). The observation that an antisense oligonucleotide (AONATR) targeting the c.2101A position recovers exon inclusion in the mutated context supports a major role of the underlying ESS. A U1snRNA variant (U1ATR) designed to perfectly base-pair the weak 5'ss, rescued exon inclusion (63±3%) in the ATRSS-allele. Most importantly, upon lentivirus-mediated delivery, the U1ATR partially rescued ATR mRNA splicing (from ~19% to ~54%) and protein (from negligible to ~6%) in embryonic fibroblasts derived from humanized ATRSS mice. Altogether these data elucidate the molecular mechanisms of the ATR c.2101A>G mutation and identify two potential complementary RNA-based therapies for Seckel syndrome.
Collapse
|
42
|
Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function. PLoS Genet 2016; 12:e1006082. [PMID: 27227676 PMCID: PMC4882169 DOI: 10.1371/journal.pgen.1006082] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 12/24/2022] Open
Abstract
Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects.
Collapse
|
43
|
Therapeutic activity of modified U1 core spliceosomal particles. Nat Commun 2016; 7:11168. [PMID: 27041075 PMCID: PMC4822034 DOI: 10.1038/ncomms11168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Modified U1 snRNAs bound to intronic sequences downstream of the 5′ splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro, RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations. Modification of the spliceosome is being tested as a potential therapy for exon-skipping diseases, such as spinal muscular atrophy (SMA). Here the authors show that 70K and stem loop IV structural elements of a modified U1 particle are essential for splicing enhancement and effective treatment of SMA mice.
Collapse
|
44
|
Ahmad S, Bhatia K, Kannan A, Gangwani L. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy. J Exp Neurosci 2016; 10:39-49. [PMID: 27042141 PMCID: PMC4807884 DOI: 10.4137/jen.s33122] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.
Collapse
Affiliation(s)
- Saif Ahmad
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Kanchan Bhatia
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
45
|
Igreja S, Clarke LA, Botelho HM, Marques L, Amaral MD. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Hum Mutat 2015; 37:209-15. [PMID: 26553470 DOI: 10.1002/humu.22931] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.
Collapse
Affiliation(s)
- Susana Igreja
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luís Marques
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
46
|
Richard E, Pérez B, Pérez-Cerdá C, Desviat LR. Understanding molecular mechanisms in propionic acidemia and investigated therapeutic strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Nizzardo M, Simone C, Dametti S, Salani S, Ulzi G, Pagliarani S, Rizzo F, Frattini E, Pagani F, Bresolin N, Comi G, Corti S. Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Sci Rep 2015; 5:11746. [PMID: 26123042 PMCID: PMC4485234 DOI: 10.1038/srep11746] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders.
Collapse
Affiliation(s)
- Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Dametti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Pagliarani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Frattini
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
48
|
Dal Mas A, Fortugno P, Donadon I, Levati L, Castiglia D, Pagani F. Exon-Specific U1s Correct SPINK5 Exon 11 Skipping Caused by a Synonymous Substitution that Affects a Bifunctional Splicing Regulatory Element. Hum Mutat 2015; 36:504-12. [PMID: 25665175 DOI: 10.1002/humu.22762] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
The c.891C>T synonymous transition in SPINK5 induces exon 11 (E11) skipping and causes Netherton syndrome (NS). Using a specific RNA-protein interaction assay followed by mass spectrometry analysis along with silencing and overexpression of splicing factors, we showed that this mutation affects an exonic bifunctional splicing regulatory element composed by two partially overlapping silencer and enhancer sequences, recognized by hnRNPA1 and Tra2β splicing factors, respectively. The C-to-T substitution concomitantly increases hnRNPA1 and weakens Tra2β-binding sites, leading to pathological E11 skipping. In hybrid minigenes, exon-specific U1 small nuclear RNAs (ExSpe U1s) that target by complementarity intronic sequences downstream of the donor splice site rescued the E11 skipping defect caused by the c.891C>T mutation. ExSpe U1 lentiviral-mediated transduction of primary NS keratinocytes from a patient bearing the mutation recovered the correct full-length SPINK5 mRNA and the corresponding functional lympho-epithelial Kazal-type related inhibitor protein in a dose-dependent manner. This study documents the reliability of a mutation-specific, ExSpe U1-based, splicing therapy for a relatively large subset of European NS patients. Usage of ExSpe U1 may represent a general approach for correction of splicing defects affecting skin disease genes.
Collapse
Affiliation(s)
- Andrea Dal Mas
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Human Molecular Genetics, Trieste, Italy
| | | | | | | | | | | |
Collapse
|